
Research Article
T-Stability of the Heun Method and Balanced
Method for Solving Stochastic Differential Delay Equations

Xiaolin Zhu and Hu Peng

School of Mathematics, Hefei University of Technology, Hefei 230009, China

Correspondence should be addressed to Xiaolin Zhu; zxl hfut@126.com

Received 9 March 2014; Accepted 15 May 2014; Published 11 June 2014

Academic Editor: Senlin Guo

Copyright © 2014 X. Zhu and H. Peng.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper studies the T-stability of the Heun method and balanced method for solving stochastic differential delay equations
(SDDEs). Two T-stable conditions of the Heun method are obtained for two kinds of linear SDDEs. Moreover, two conditions
under which the balanced method is T-stable are obtained for two kinds of linear SDDEs. Some numerical examples verify the
theoretical results proposed.

1. Introduction

Stochastic differential delay equations (SDDEs) are the pro-
motion of stochastic differential equations (SDEs) and dif-
ferential delay equations (DDEs). These kinds of equations
consider not only the stochastic factors in the process of the
development of a system, but also the impact of the delay. As
an important mathematical model, SDDEs have been applied
widely in many areas, such as stochastic control, economics,
and biology. Since it is difficult to find the analytic solutions to
SDDEs, to get the numerical solutions to SDDEs generated by
some numerical methods is commonly used. For a numerical
method, it is important to analyze its stability.

The general form of SDDEs with Gaussian white noise is

d𝑋(𝑡) = 𝑓 (𝑡, 𝑋 (𝑡) , 𝑋 (𝑡 − 𝜏)) d𝑡

+ 𝑔 (𝑡, 𝑋 (𝑡) , 𝑋 (𝑡 − 𝜏)) d𝑊(𝑡) , 𝑡 ∈ [0, 𝑇] ,

𝑋 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(1)

where 𝜏 > 0, 𝜑(𝑡) ∈ C([−𝜏, 0],R𝑚), 𝑓 : R+ × R𝑚 × R𝑚 →

R𝑚, 𝑔 : R+ × R𝑚 × R𝑚 → R𝑚×𝑑, and 𝑊(𝑡) is a standard
𝑑-dimensional Wiener process. Equation (1) has a unique

solution if 𝑓 and 𝑔 are sufficiently smooth and satisfy the
following conditions:

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥1, 𝑦1) − 𝑓 (𝑡, 𝑥2, 𝑦2)
󵄨󵄨󵄨󵄨 ∨

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑥1, 𝑦1) − 𝑔 (𝑡, 𝑥2, 𝑦2)
󵄨󵄨󵄨󵄨

≤ 𝐿 (
󵄨󵄨󵄨󵄨𝑥1 − 𝑥2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑦1 − 𝑦2

󵄨󵄨󵄨󵄨) ,

(2)

󵄨󵄨󵄨󵄨𝑓(𝑡, 𝑥, 𝑦)
󵄨󵄨󵄨󵄨

2

∨
󵄨󵄨󵄨󵄨𝑔(𝑡, 𝑥, 𝑦)

󵄨󵄨󵄨󵄨

2

≤ 𝐾 (1 + |𝑥|
2

+
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

2

) , (3)

where 𝑡 ≥ 0, 𝑥, 𝑦, 𝑥
1
, 𝑦
1
, 𝑥
2
, 𝑦
2
∈ R𝑚, and 𝐿 and 𝐾 are

constants. The condition in (2) is called Lipschitz condition,
and the condition in (3) is called the linear growth condition.

The main numerical methods for SDDEs are Euler-
Maruyama method [1, 2] and Milstein method [3] at present.
The mean square stability of these methods for SDDEs has
been well studied. Cao et al. [1] studied the mean square
stability of Euler-Maruyama method for linear SDDEs. Liu
et al. [2] studied the mean square stability of the semi-
implicit Euler method for linear SDDEs. Wang and Zhang
[3] discussed themean square stability ofMilsteinmethod for
linear SDDEs.Wang and Chen [4, 5] studied themean square
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stability of semi-implicit Euler method for nonlinear neutral
SDDEs and that of Heun methods for nonlinear SDDEs. Tan
et al. [6] discussed the mean square stability of balanced
methods for SDDEs. T-stability is introduced by Saito et al.
in [7–9], and it is another kind of stability with respect to
the approximate sequence of sample path. Cao [10] studied
the T-stability of the semi-implicit Euler method for delay
differential equations with multiplicative noise. Rathinasamy
and Balachandran [11] studied the T-stability of the split-step
𝜃-methods for linear SDDEs. Yang and Liu [12] discussed
the T-stability of the 𝜃-method for a stochastic pantograph
differential equation.

Applying the Heun method [5] to (1) gives

𝑋
𝑛+1

= 𝑋
𝑛
+
1

2
[𝑓 (𝑡
𝑛
, 𝑋
𝑛
, 𝑋
𝑛−𝑚

)

+ 𝑓 (𝑡
𝑛+1

, 𝑋
𝑛
+ ℎ 𝑓 (𝑡

𝑛
, 𝑋
𝑛
, 𝑋
𝑛−𝑚

) , 𝑋
𝑛−𝑚+1

)] ℎ

+ 𝑔 (𝑡
𝑛
, 𝑋
𝑛
, 𝑋
𝑛−𝑚

) Δ𝑊
𝑛
,

(4)

where ℎ > 0 is a step size with 𝜏 = 𝑚ℎ for a positive integer𝑚
and 𝑡
𝑛
= 𝑛ℎ.𝑋

𝑛
is an approximation of𝑋(𝑡

𝑛
), and𝑋

𝑛
= 𝜑(𝑡
𝑛
)

if 𝑡
𝑛
≤ 0. Δ𝑊

𝑛
= 𝑊(𝑡

𝑛+1
) − 𝑊(𝑡

𝑛
) ∼ 𝑁(0, ℎ).

The mean square stability of the Heun method in (4) was
studied in [5], but there is no result about T-stability of the
method at present. This paper gives two T-stable conditions
of the Heun method (4) for two kinds of linear SDDEs.

The balanced method for solving (1) is

𝑋
𝑛+1

= 𝑋
𝑛
+ 𝑓 (𝑡

𝑛
, 𝑋
𝑛
, 𝑋
𝑛−𝑚

) ℎ + 𝑔 (𝑡
𝑛
, 𝑋
𝑛
, 𝑋
𝑛−𝑚

) Δ𝑊
𝑛

+ 𝐶 (𝑋
𝑛
, 𝑋
𝑛−𝑚

) (𝑋
𝑛
− 𝑋
𝑛+1

) ,

(5)

where 𝐶(𝑋
𝑛
, 𝑋
𝑛−𝑚

) = 𝐶
0
(𝑋
𝑛
, 𝑋
𝑛−𝑚

)ℎ + 𝐶
1
(𝑋
𝑛
, 𝑋
𝑛−𝑚

)|Δ𝑊
𝑛
|

and 𝐶
0
, 𝐶
1
are 𝑑 × 𝑑 real matrix functions.

Let 𝑀(𝑥, 𝑦) = 𝐼 + 𝛽
0
𝐶
0
(𝑥, 𝑦) + 𝛽

1
𝐶
1
(𝑥, 𝑦), where 𝐼 is a

unit matrix, 𝛽
0
∈ [0, 𝛼], 𝛼 ≥ ℎ, 𝛽

1
≥ 0, and (𝑥, 𝑦) ∈ 𝑅𝑑 × 𝑅𝑑.

Assume that𝑀(𝑥, 𝑦) is invertible with |(𝑀(𝑥, 𝑦))
−1

| ≤ 𝐾 <

∞.
The mean square stability of the balanced method for

SDEs and SDEs with jumps was studied in [13, 14], respec-
tively. In 2011, Tan et al. [6] applied the balanced method
to SDDEs and discussed the mean square convergence and
stability of this method. However, there is no research result
about T-stability of the balancedmethod (5) at present. In this
paper, the conditions under which the balanced method (5)
is T-stable are obtained for two kinds of linear SDDEs.

Section 2 introduces the stochastically asymptotically
stable conditions in the large for two kinds of linear SDDEs.
In Section 3, T-stability of the Heun method equipped with a
specified driving process is discussed and the corresponding
step size range is given. Section 4 studies T-stability of
the balanced method, and Section 5 uses some numerical
examples to verify the results given in this paper.

2. Asymptotic Stability of Analytical Solution

Consider the following two scalar linear test equations:

d𝑋 (𝑡) = [𝑎𝑋 (𝑡) + 𝑏𝑋 (𝑡 − 𝜏)] d𝑡

+ 𝑐𝑋 (𝑡) d𝑊(𝑡) , 𝑡 ∈ [0, 𝑇]

𝑋 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(6)

d𝑋 (𝑡) = [𝑎𝑋 (𝑡) + 𝑏𝑋 (𝑡 − 𝜏)] d𝑡

+ [𝑐𝑋 (𝑡) + 𝑑𝑋 (𝑡 − 𝜏)] d𝑊(𝑡) , 𝑡 ∈ [0, 𝑇]

𝑋 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏, 0] .

(7)

Let (Ω, F, {𝐹
𝑡
}
𝑡≥0
, 𝑃) be a complete probability space with

a filtration {𝐹
𝑡
}
𝑡≥0

, which is right continuous, and each 𝐹
𝑡

contains all 𝑃-null sets in F. In (6) and (7), 𝑎, 𝑏, 𝑐, 𝑑 ∈

R; 𝜏 > 0;𝑊(𝑡) is a one-dimensional standardWiener process;
initial function 𝜑(𝑡) ∈ C([−𝜏, 0], R𝑚) is 𝐹

0
-measurable and

𝐸‖𝜑‖
2

< ∞. Equations (6) and (7) have unique strong
solution if (6) and (7) meet Lipschitz condition in (2) and the
linear growth condition in (3).

Definition 1 (see [10]). The solution of (1) is stochastically
asymptotically stable in the large if

𝑃( lim
𝑡→∞

󵄨󵄨󵄨󵄨𝑋 (𝑡, 𝜑)
󵄨󵄨󵄨󵄨 = 0) = 1 (8)

for all initial functions 𝜑.

From Corollary 3.2 in [15], we get Lemmas 2 and 3 as
follows.

Lemma 2. The solution of (6) is stochastically asymptotically
stable in the large if parameters 𝑎, 𝑏, and 𝑐 in (6) satisfy

𝑎 < − |𝑏| −
1

2
𝑐
2

. (9)

Lemma 3. The solution of (7) is stochastically asymptotically
stable in the large if parameters 𝑎, 𝑏, 𝑐, and 𝑑 in (7) satisfy

𝑎 < − |𝑏| −
1

2
(|𝑐| + |𝑑|)

2

. (10)

3. T-Stability of the Heun Method

Definition 4 (see [10]). Suppose that the condition in (9) or in
(10) is fulfilled. Anumerical scheme equippedwith a specified
driving process is said to be T-stable if

lim
𝑛→∞

󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨 󳨀→ 0 a.s. (11)

for the driving process, where 𝑋
𝑛
is the numerical solution

generated by the numerical scheme applied to the test
equation (6) or (7).

For analyzing T-stability, we focus our attention on
the trajectory of numerical solution. A specified driving
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process proposed in Definition 4 is used to approximate the
Wiener incrementΔ𝑊

𝑛
of the numericalmethods.This paper

analyzes the Heun method equipped with two-point random
variables for the driving process. SoΔ𝑊

𝑛
:= 𝜂
𝑛
√ℎ and𝑃(𝜂

𝑛
=

±1) = 1/2, where 𝑃 denotes the probability.
The Heun method applied to (6) and (7), respectively,

gives

𝑋
𝑛+1

= (1 + 𝑎ℎ +
1

2
𝑎
2

ℎ
2

+ 𝑐Δ𝑊
𝑛
)𝑋
𝑛

+
1

2
𝑏ℎ (1 + 𝑎ℎ)𝑋

𝑛−𝑚
+
1

2
𝑏ℎ𝑋
𝑛−𝑚+1

,

(12)

𝑋
𝑛+1

= (1 + 𝑎ℎ +
1

2
𝑎
2

ℎ
2

+ 𝑐Δ𝑊
𝑛
)𝑋
𝑛

+ [
1

2
𝑏ℎ (1 + 𝑎ℎ) + 𝑑Δ𝑊

𝑛
]𝑋
𝑛−𝑚

+
1

2
𝑏ℎ𝑋
𝑛−𝑚+1

,

(13)

where ℎ > 0 is a step size with 𝜏 = 𝑚ℎ for a positive integer
𝑚 and 𝑡

𝑛
= 𝑛ℎ,𝑋

𝑛
≈ 𝑋(𝑡

𝑛
) if 𝑡
𝑛
≤ 0,𝑋

𝑛
= 𝜑(𝑡
𝑛
).

For the Heun method in (12), we have

󵄨󵄨󵄨󵄨𝑋𝑛+1
󵄨󵄨󵄨󵄨 ≤ (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 + 𝑎ℎ +

1

2
𝑎
2

ℎ
2

+ 𝑐Δ𝑊
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ (1 + 𝑎ℎ)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

×max {󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑋𝑛−𝑚

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑋𝑛−𝑚+1

󵄨󵄨󵄨󵄨}

= (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
(1 + 𝑎ℎ)

2

+
1

2
+ 𝑐𝜂
𝑛

√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ (1 + 𝑎ℎ)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

×max {󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑋𝑛−𝑚

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑋𝑛−𝑚+1

󵄨󵄨󵄨󵄨} .

(14)

Let

𝑅 (ℎ, 𝑎, 𝑏, 𝑐) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ (1 + 𝑎ℎ)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
(1 + 𝑎ℎ)

2

+
1

2
+ 𝑐𝜂
𝑛

√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
.

(15)

It is clear that |𝑋
𝑛
| → 0, a.s. (𝑛 → ∞) if 𝑃(𝑅(ℎ, 𝑎, 𝑏, 𝑐) <

1) = 1, and therefore the Heun method in (12) is T-stable.
Denote

𝑅
𝑇
(ℎ, 𝑎, 𝑏, 𝑐)

= (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ (1 + 𝑎ℎ)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
(1 + 𝑎ℎ)

2

+
1

2
+ 𝑐√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

× (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ (1 + 𝑎ℎ)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
(1 + 𝑎ℎ)

2

+
1

2
− 𝑐√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

(16)

Since 𝜂
𝑛
’s follow two-point distribution, we get |𝑋

𝑛
| →

0, a.s. (𝑛 → ∞) if 𝑅
𝑇
(ℎ, 𝑎, 𝑏, 𝑐) < 1, which means that the

Heun method in (12) is T-stable.
Similarly, for the Heun method in (13), we can get

𝑅̃
𝑇
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) as follows:

𝑅̃
𝑇
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑)

= (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ (1 + 𝑎ℎ) + 𝑑√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
(1 + 𝑎ℎ)

2

+
1

2
+ 𝑐√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

× (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ (1 + 𝑎ℎ) − 𝑑√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
(1 + 𝑎ℎ)

2

+
1

2
− 𝑐√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
) ,

(17)

and |𝑋
𝑛
| → 0, a.s. (𝑛 → ∞) if 𝑅̃

𝑇
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) < 1, which

means that the Heun method in (13) is T-stable.

Theorem 5. Suppose (6)meets the condition in (9). The Heun
method in (12) is T-stable if ℎ < 𝐻, where

𝐻 = min{ 2

|𝑏| − 𝑎
,
1

4𝑐2
} . (18)

Proof. The condition in (9) gives 𝑎 < 0. Denote

𝑅
1
(ℎ, 𝑎, 𝑏, 𝑐) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ (1 + 𝑎ℎ)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
(1 + 𝑎ℎ)

2

+
1

2
+ 𝑐√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

𝑅
2
(ℎ, 𝑎, 𝑏, 𝑐) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ (1 + 𝑎ℎ)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
(1 + 𝑎ℎ)

2

+
1

2
− 𝑐√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

(∗)

and 𝑅
𝑇
(ℎ, 𝑎, 𝑏, 𝑐) = 𝑅

1
(ℎ, 𝑎, 𝑏, 𝑐)𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐).

For 𝑏 ̸= 0, we have 𝑎 + 𝑏 < 0, 𝑎 − 𝑏 < 0 from the condition
in (9). Let

ℎ
1
= −

1

𝑎
, ℎ
2
= min {−1

𝑎
,
1

4𝑐2
} . (19)

Only the conclusion of the theorem when 𝑏 < 0, 𝑐 > 0

is proven, and that of the theorem when 𝑏 < 0, 𝑐 < 0 or 𝑏 >
0, 𝑐 > 0 or 𝑏 > 0, 𝑐 < 0 can be proven similarly.

If ℎ < ℎ
2
, then ℎ < −1/𝑎 and ℎ < 1/4𝑐

2, and we have
1 + 𝑎ℎ > 0 and (1/2) − 𝑐√ℎ > 0. Hence

𝑅
1
(ℎ, 𝑎, 𝑏, 𝑐) + 𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐)

= −𝑏ℎ (1 + 𝑎ℎ) − 𝑏ℎ + (1 + 𝑎ℎ)
2

+ 1

= (𝑎 − 𝑏) (𝑎ℎ + 2) ℎ + 2.

(20)

Since 𝑎ℎ + 1 > 0 and 𝑎 − 𝑏 < 0, we have 𝑎ℎ + 2 > 0 and

0 < 𝑅
1
(ℎ, 𝑎, 𝑏, 𝑐) + 𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐) < 2. (21)
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Consequently,

𝑅
𝑇
(ℎ, 𝑎, 𝑏, 𝑐) = 𝑅

1
(ℎ, 𝑎, 𝑏, 𝑐) 𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐)

≤ [
𝑅
1
(ℎ, 𝑎, 𝑏, 𝑐) + 𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐)

2
]

2

< 1,

(22)

which means that the Heun method (12) is T-stable if ℎ < ℎ
2
.

(a) When ℎ
1
= −1/𝑎 < 𝐻, if 𝐻 = 1/4𝑐

2, then ℎ
2
=

min{−1/𝑎, 1/4𝑐2} = −1/𝑎 = ℎ
1
.

If 𝐻 = 2/(|𝑏| − 𝑎), then 𝐻 ≤ 1/4𝑐
2, which yields ℎ

1
=

−1/𝑎 < 𝐻 ≤ 1/4𝑐
2, and ℎ

2
= −1/𝑎 = ℎ

1
. Hence ℎ

2
= ℎ
1
if

ℎ
1
< 𝐻.
For obtaining the result of this theorem in this case, the

left work is to prove the method is T-stable for ℎ
1
≤ ℎ < 𝐻.

If ℎ
1
≤ ℎ < 𝐻, then −1/𝑎 ≤ ℎ < 1/4𝑐

2, ℎ < 2/(|𝑏| − 𝑎);
that is,

1 + 𝑎ℎ ≤ 0,
1

2
− 𝑐√ℎ > 0, (𝑎 − |𝑏|) ℎ + 2 > 0. (23)

Since 𝑎 − |𝑏| ≤ 𝑎 + 𝑏, we get (𝑎 + 𝑏)ℎ + 2 ≥ (𝑎 − |𝑏|)ℎ + 2 > 0.
Since

𝑅
1
(ℎ, 𝑎, 𝑏, 𝑐) + 𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐)

= 𝑏ℎ (1 + 𝑎ℎ) − 𝑏ℎ + (1 + 𝑎ℎ)
2

+ 1

= 𝑎ℎ [(𝑎 + 𝑏) ℎ + 2] + 2,

(24)

we have 0 < 𝑅
1
(ℎ, 𝑎, 𝑏, 𝑐) + 𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐) < 2 from 𝑎 < 0 and

(∗), and therefore

𝑅
𝑇
(ℎ, 𝑎, 𝑏, 𝑐) = 𝑅

1
(ℎ, 𝑎, 𝑏, 𝑐) 𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐)

≤ [
𝑅
1
(ℎ, 𝑎, 𝑏, 𝑐) + 𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐)

2
]

2

< 1,

(25)

which means that the Heun method (12) is T-stable if ℎ < 𝐻.
(b) When ℎ

1
= 𝐻, it is easy to know ℎ

2
= ℎ
1
, and the

Heun method (12) is T-stable if ℎ < ℎ
2
= 𝐻.

(c) When ℎ
1
= −1/𝑎 > 𝐻, if 𝐻 = 1/4𝑐

2, then ℎ
2
=

min{−1/𝑎, 1/4𝑐2} = 1/4𝑐
2

= 𝐻. If 𝐻 = 2/(|𝑏| − 𝑎), then
−1/𝑎 > 2/(|𝑏| − 𝑎). Solving this gives 𝑎 > −|𝑏|, which
contradicts the condition in (9). So ℎ

2
= 𝐻 if ℎ

1
> 𝐻. Hence

the Heun method in (12) is T-stable if ℎ < ℎ
2
= 𝐻.

The discussion above shows that the Heunmethod in (12)
is T-stable provided that ℎ < 𝐻, which completes the proof.

Theorem6. Suppose (7)meets the condition in (10).TheHeun
method in (13) is T-stable if𝐻

1
< ℎ < 𝐻

2
, where

𝐻
1
=

4𝑑
2

(𝑎 + |𝑏|)
2
, 𝐻

2
= min{−1

𝑎
,
1

4𝑐2
,
4𝑑
2

𝑏2
} . (26)

Proof. The condition in (10) gives 𝑎 < 0. Denote

𝑅̃
1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ (1 + 𝑎ℎ) + 𝑑√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
(1 + 𝑎ℎ)

2

+
1

2
+ 𝑐√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

𝑅̃
2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ (1 + 𝑎ℎ) − 𝑑√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝑏ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
(1 + 𝑎ℎ)

2

+
1

2
− 𝑐√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

(∗∗)

and then 𝑅̃
𝑇
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) = 𝑅̃

1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑)𝑅̃

2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑)

from (17).
(a) Suppose 𝑏 < 0, 𝑐 > 0, 𝑑 > 0, and 𝐻

1
< 𝐻
2
. With

ℎ < 𝐻
2
, we have

1 + 𝑎ℎ > 0,
1

2
𝑏ℎ + 𝑑√ℎ > 0,

1

2
− 𝑐√ℎ > 0, (27)

and 𝑅̃
1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) + 𝑅̃

2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) = (2𝑎 − 𝑏)ℎ + 2𝑑√ℎ +

𝑎
2

ℎ
2

+ 2 from (∗∗). With ℎ > 𝐻
1
, we have ℎ > 4𝑑

2

/(𝑎 − 𝑏)
2;

that is, (2𝑎− 𝑏)ℎ+ 2𝑑√ℎ < 𝑎ℎ. The inequality 1+𝑎ℎ > 0with
𝑎 < 0 gives 𝑎ℎ < −𝑎

2

ℎ
2, and therefore (2𝑎 − 𝑏)ℎ + 2𝑑√ℎ <

−𝑎
2

ℎ
2. With this and (∗∗), we get 0 < 𝑅̃

1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) +

𝑅̃
2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) < 2. Consequently,

𝑅̃
𝑇
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) = 𝑅̃

1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) 𝑅̃

2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑)

< [
𝑅̃
1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) + 𝑅̃

2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑)

2
]

2

< 1,

(28)

which means the Heun method in (13) is T-stable.
In the same way, we can prove that the Heun method in

(13) is T-stable when 𝑏 < 0, 𝑐 > 0, 𝑑 < 0 or 𝑏 < 0, 𝑐 < 0, 𝑑 > 0
or 𝑏 < 0, 𝑐 < 0, 𝑑 < 0.

(b) Suppose 𝑏 > 0, 𝑐 > 0, 𝑑 > 0, and 𝐻
1
< 𝐻
2
. With

ℎ < 𝐻
2
, we get

1 + 𝑎ℎ > 0,
1

2
𝑏ℎ − 𝑑√ℎ < 0,

1

2
− 𝑐√ℎ > 0, (29)

and 𝑅̃
1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) + 𝑅̃

2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) = (2𝑎 + 𝑏)ℎ + 2𝑑√ℎ +

𝑎
2

ℎ
2

+ 2 from (∗∗). With ℎ > 𝐻
1
, we have ℎ > 4𝑑

2

/(𝑎 + 𝑏)
2;

that is, (2𝑎+ 𝑏)ℎ+ 2𝑑√ℎ < 𝑎ℎ. The inequality 1+𝑎ℎ > 0with
𝑎 < 0 gives 𝑎ℎ < −𝑎

2

ℎ
2, and therefore (2𝑎 + 𝑏)ℎ + 2𝑑√ℎ <

−𝑎
2

ℎ
2. With this and (∗∗), we get 0 < 𝑅̃

1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) +

𝑅̃
2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) < 2. Consequently,

𝑅̃
𝑇
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) = 𝑅̃

1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) 𝑅̃

2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑)

< [
𝑅̃
1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) + 𝑅̃

2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑)

2
]

2

< 1,

(30)

which means that the Heun method in (13) is T-stable.
In the same way, we can prove that the Heun method in

(13) is T-stable when 𝑏 > 0, 𝑐 > 0, 𝑑 < 0 or 𝑏 > 0, 𝑐 < 0, 𝑑 > 0
or 𝑏 > 0, 𝑐 < 0, 𝑑 < 0.

The proof of the theorem is complete.
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4. T-Stability of the Balanced Method

The balanced method applied to (6) and (7), respectively,
gives

𝑋
𝑛+1

= (1 +
𝑎ℎ + 𝑐Δ𝑊

𝑛

1 + 𝐶
)𝑋
𝑛
+ (

𝑏ℎ

1 + 𝐶
)𝑋
𝑛−𝑚

, (31)

𝑋
𝑛+1

= (1 +
𝑎ℎ + 𝑐Δ𝑊

𝑛

1 + 𝐶
)𝑋
𝑛
+ (

𝑏ℎ + 𝑑Δ𝑊
𝑛

1 + 𝐶
)𝑋
𝑛−𝑚

, (32)

where 𝐶 = 𝐶
0
ℎ + 𝐶

1
|Δ𝑊
𝑛
| and 𝐶

0
and 𝐶

1
are real numbers.

In the analysis of T-stability of balanced method, we also use
two-point random variables for the driving process.

For the balanced method in (31), we have

󵄨󵄨󵄨󵄨𝑋𝑛+1
󵄨󵄨󵄨󵄨 ≤ (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 +
𝑎ℎ + 𝑐Δ𝑊

𝑛

1 + 𝐶
0
ℎ + 𝐶
1

󵄨󵄨󵄨󵄨Δ𝑊𝑛
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏ℎ

1 + 𝐶
0
ℎ + 𝐶
1

󵄨󵄨󵄨󵄨Δ𝑊𝑛
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)max {󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑋𝑛−𝑚

󵄨󵄨󵄨󵄨} .

(33)

Denote

𝑅 (ℎ, 𝑎, 𝑏, 𝑐) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 +
𝑎ℎ + 𝑐𝜂

𝑛
√ℎ

1 + 𝐶
0
ℎ + 𝐶
1

󵄨󵄨󵄨󵄨𝜂𝑛
󵄨󵄨󵄨󵄨
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏ℎ

1 + 𝐶
0
ℎ + 𝐶
1

󵄨󵄨󵄨󵄨𝜂𝑛
󵄨󵄨󵄨󵄨
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

𝑅
𝑇
(ℎ, 𝑎, 𝑏, 𝑐) = (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 +
𝑎ℎ + 𝑐√ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

× (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 +
𝑎ℎ − 𝑐√ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

) .

(34)

The discussion about the Heun method in Section 3 implies
|𝑋
𝑛
| → 0, a.s. (𝑛 → ∞) if 𝑅

𝑇
(ℎ, 𝑎, 𝑏, 𝑐) < 1, which means

that the balanced method in (31) is T-stable if 𝑅
𝑇
(ℎ, 𝑎, 𝑏, 𝑐) <

1.
Similarly, for the balanced method in (32), we get

𝑅̃
𝑇
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑)

= (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 +
𝑎ℎ + 𝑐√ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏ℎ + 𝑑√ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

× (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 +
𝑎ℎ − 𝑐√ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏ℎ − 𝑑√ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

) ,

(35)

and |𝑋
𝑛
| → 0, a.s. (𝑛 → ∞) if 𝑅̃

𝑇
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) < 1,

which means that the Heun method in (32) is T-stable if
𝑅̃
𝑇
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) < 1.

Theorem 7. Suppose (6) meets the condition in (9). The
balanced method in (31) is T-stable if 𝐹(ℎ) ≥ 0, where

𝐹 (ℎ) = (𝐶
0
+ 𝑎) ℎ + (𝐶

1
− |𝑐|)√ℎ. (36)

Proof. The condition in (9) gives 𝑎 < 0. Denote

𝑅
1
(ℎ, 𝑎, 𝑏, 𝑐) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 +
𝑎ℎ + 𝑐√ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

𝑅
2
(ℎ, 𝑎, 𝑏, 𝑐) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 +
𝑎ℎ − 𝑐√ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(∗ ∗ ∗)

and 𝑅
𝑇
(ℎ, 𝑎, 𝑏, 𝑐) = 𝑅

1
(ℎ, 𝑎, 𝑏, 𝑐)𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐) from (34). It is

easy to know 𝑎 + 𝑏 < 0, 𝑎 − 𝑏 < 0 for 𝑏 ̸= 0.
If 𝑐 > 0, 𝑏 > 0, we have

𝐶
0
ℎ + 𝐶
1

√ℎ + 𝑎ℎ − 𝑐√ℎ ≥ 0,

𝐶
0
ℎ + 𝐶
1

√ℎ + 𝑎ℎ + 𝑐√ℎ ≥ 0,

(37)

from the assumption 𝐹(ℎ) ≥ 0, which applies 1 + 𝐶
0
ℎ +

𝐶
1
√ℎ > 0. Then 𝑅

1
(ℎ, 𝑎, 𝑏, 𝑐) and 𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐) in (∗ ∗ ∗)

become

𝑅
1
(ℎ, 𝑎, 𝑏, 𝑐) =

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ + 𝑎ℎ + 𝑐√ℎ + 𝑏ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

,

𝑅
2
(ℎ, 𝑎, 𝑏, 𝑐) =

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ + 𝑎ℎ − 𝑐√ℎ + 𝑏ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

,

𝑅
1
(ℎ, 𝑎, 𝑏, 𝑐) + 𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐) = 2 +

2 (𝑎 + 𝑏) ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

.

(38)

Since 𝑎 + 𝑏 < 0, 1 + 𝐶
0
ℎ + 𝐶

1
√ℎ > 0, we have 0 <

𝑅
1
(ℎ, 𝑎, 𝑏, 𝑐) + 𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐) < 2 and

𝑅
𝑇
(ℎ, 𝑎, 𝑏, 𝑐) = 𝑅

1
(ℎ, 𝑎, 𝑏, 𝑐) 𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐)

< [
𝑅
1
(ℎ, 𝑎, 𝑏, 𝑐) + 𝑅

2
(ℎ, 𝑎, 𝑏, 𝑐)

2
]

2

< 1,

(39)

which means that balanced method in (31) is T-stable.
In the same way, we can prove that the balanced method

in (31) is T-stable when

𝑐 > 0, 𝑏 < 0 or 𝑐 < 0, 𝑏 > 0,

or 𝑐 < 0, 𝑏 < 0.

(40)

The proof of the theorem is complete.

Theorem 8. Suppose (7) meets the condition in (10). The
balanced method in (32) is T-stable if ℎ > 𝐻 and 𝐹(ℎ) ≥ 0,
where

𝐻 =
𝑑
2

𝑏2
, 𝐹 (ℎ) = (𝐶

0
+ 𝑎) ℎ + (𝐶

1
− |𝑐|)√ℎ. (41)
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Figure 1: Simulations with the Heun method for (6) with 𝑎 = −7, 𝑏 = 1, and 𝑐 = 1. (a1) ℎ = 1

9
, (b1) ℎ = 1

7
, (c1) ℎ = 1

5
, and (d1) ℎ = 1/3.

Proof. The condition in (10) gives 𝑎 < 0. Denote

𝑅̃
1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 +
𝑎ℎ + 𝑐√ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏ℎ + 𝑑√ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

𝑅̃
2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 +
𝑎ℎ − 𝑐√ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏ℎ − 𝑑√ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(∗ ∗ ∗∗)

and then 𝑅̃
𝑇
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) = 𝑅̃

1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑)𝑅̃

2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑)

from (35). It is easy to know 𝑎 + 𝑏 < 0, 𝑎 − 𝑏 < 0 for 𝑏 ̸= 0.

If 𝑐 > 0, 𝑏 > 0, 𝑑 > 0, we have 𝑏ℎ − 𝑑√ℎ > 0 from ℎ > 𝐻

and

𝐶
0
ℎ + 𝐶
1

√ℎ + 𝑎ℎ − 𝑐√ℎ ≥ 0,

𝐶
0
ℎ + 𝐶
1

√ℎ + 𝑎ℎ + 𝑐√ℎ ≥ 0,

(42)

from the assumption 𝐹(ℎ) ≥ 0, which yields 1 + 𝐶
0
ℎ +

𝐶
1
√ℎ > 0. Then 𝑅̃

1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) and 𝑅̃

2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) in

(∗ ∗ ∗∗) become

𝑅̃
1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) =

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ + 𝑎ℎ + 𝑐√ℎ + 𝑏ℎ + 𝑑√ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

,

𝑅̃
2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) =

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ + 𝑎ℎ − 𝑐√ℎ + 𝑏ℎ − 𝑑√ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

,

𝑅̃
1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) + 𝑅̃

2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) = 2 +

2 (𝑎 + 𝑏) ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

.

(43)
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Figure 2: Simulations with the Heun method for (7) with 𝑎 = −9, 𝑏 = −1, 𝑐 = 1.1, and 𝑑 = 0.9. (a2) ℎ = 1/19, (b2) ℎ = 1/15, (c2) ℎ = 1/11,
and (d2) ℎ = 1/3.

Since 𝑎 + 𝑏 < 0, 1 + 𝐶
0
ℎ + 𝐶

1
√ℎ > 0, we have 0 <

𝑅̃
1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) + 𝑅̃

2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) < 2, and 𝑅̃

𝑇
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) =

𝑅̃
1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑)𝑅̃

2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) < 1, which means that the

balanced method in (32) is T-stable.
In the same way, we can prove that the balanced method

in (32) is T-stable when

𝑐 > 0, 𝑏 > 0, 𝑑 < 0 or 𝑐 > 0, 𝑏 < 0, 𝑑 > 0

or 𝑐 > 0, 𝑏 < 0, 𝑑 < 0.

(44)

If 𝑐 < 0, 𝑏 > 0, 𝑑 > 0, we get 𝑏ℎ − 𝑑√ℎ > 0 from ℎ > 𝐻

and

𝐶
0
ℎ + 𝐶
1

√ℎ + 𝑎ℎ + 𝑐√ℎ ≥ 0,

𝐶
0
ℎ + 𝐶
1

√ℎ + 𝑎ℎ − 𝑐√ℎ ≥ 0

(45)

from the assumption𝐹(ℎ) ≥ 0, which applies 1+𝐶
0
ℎ+𝐶
1
√ℎ >

0. Then

𝑅̃
1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) + 𝑅̃

2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) = 2 +

2 (𝑎 + 𝑏) ℎ

1 + 𝐶
0
ℎ + 𝐶
1
√ℎ

(46)

from (∗ ∗ ∗∗). Since 𝑎 + 𝑏 < 0, 1 + 𝐶
0
ℎ + 𝐶
1
√ℎ > 0, we have

0 < 𝑅̃
1
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) + 𝑅̃

2
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) < 2; (47)

consequently, 𝑅̃
𝑇
(ℎ, 𝑎, 𝑏, 𝑐, 𝑑) < 1, which means that the

balanced method in (32) is T-stable.
In the same way, we can prove that the balanced method

in (32) is T-stable when

𝑐 < 0, 𝑏 > 0, 𝑑 < 0 or 𝑐 < 0, 𝑏 < 0, 𝑑 > 0

or 𝑐 < 0, 𝑏 < 0, 𝑑 < 0.

(48)

The proof of Theorem 8 is complete.
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Figure 3: Simulations with the balanced method for (6) with 𝑎 = −3, 𝑏 = 2, and 𝑐 = 1. (a3) ℎ = 1/22, (b3) ℎ = 1/16, (c3) ℎ = 1/10, and
(d3) ℎ = 1/4.

5. Numerical Examples

Consider test equations (6) and (7) with 𝜏 = 1, 𝜑(𝑡) = 𝑡 +

1, 𝑡 ∈ [−1, 0]. In the following figures 𝑡
𝑛
’s are nodes, and 𝑋

𝑛

denotes the numerical solution at 𝑡 = 𝑡
𝑛
.

Take 𝑎 = −7, 𝑏 = 1, and 𝑐 = 1 in (6). From (18), we get
𝐻 = 1/4, which means that the Heun method in (12) is T-
stable if ℎ < 1/4. Figure 1 shows that the Heun method in
(12) is T-stable when ℎ = 1/9, ℎ = 1/7, and ℎ = 1/5 but is
unstable when ℎ = 1/3, since ℎ = 1/3 exceeds the range of ℎ
in Theorem 5, which verifies Theorem 5.

Take 𝑎 = −9, 𝑏 = −1, 𝑐 = 1.1, and 𝑑 = 0.9 in (7).
From (26), we get 𝐻

1
≈ 1/20, 𝐻

2
= 1/9, which means that

the Heun method in (13) is T-stable if 1/20 < ℎ < 1/9.
Figure 2 shows that the Heunmethod in (13) is T-stable when
ℎ = 1/19, ℎ = 1/15, and ℎ = 1/11, but it is unstable when
ℎ = 1/3, since ℎ = 1/3 exceeds the range of ℎ in Theorem 6,
which verifies Theorem 6.

Take 𝑎 = −3, 𝑏 = 2, and 𝑐 = 1 in (6) and 𝐶
0
= 1, 𝐶

1
= 2

in the balanced method in (31).Then the balanced method in
(31) is T-stable if ℎ ≤ 1/4 from Theorem 7. Figure 3 shows
that the balanced method in (31) is T-stable when ℎ = 1/22,
ℎ = 1/16, ℎ = 1/10, and ℎ = 1/4, since these h’s are in the
range of ℎ in Theorem 7, which verifies Theorem 7.

Take 𝑎 = −5, 𝑏 = 1, 𝑐 = 1, and 𝑑 = 0.2 in (7) and 𝐶
0
=

2, 𝐶
1
= 2 in the balanced method (32). Then the balanced

method in (32) is T-stable if 1/25 < ℎ ≤ 1/9 fromTheorem 8.
Figure 4 shows that the balanced method in (32) is T-stable
when ℎ = 1/15, ℎ = 1/13, ℎ = 1/11, and ℎ = 1/9, since
these h’s are in the range of ℎ in Theorem 8, which verifies
Theorem 8.

6. Conclusion

In this paper, T-stability of the Heun methods and the
balanced methods for two kinds of linear SDDEs is studied.
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Figure 4: Simulations with the balanced method for (7) with 𝑎 = −5, 𝑏 = 1, 𝑐 = 1, and 𝑑 = 0.2. (a4) ℎ = 1/15, (b4) ℎ = 1/13, (c4) ℎ = 1/11,
and (d4) ℎ = 1/9.

TheWiener increment of the numericalmethods in this paper
is approximated by a discrete random variable with two-
point distribution in the process of the study of T-stability.
The T-stable conditions for the Heun methods and balanced
methods are given, respectively, and are verified by some
numerical examples.
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