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We present the equilibrium point bifurcation and singularity analysis of HH model with constraints. We investigate the effect of
constraints and parameters on the type of equilibrium point bifurcation. HH model with constraints has more transition sets. The
Matcont toolbox software environment was used for analysis of the bifurcation points in conjunction withMatlab.We also illustrate
the stability of the equilibrium points.

1. Introduction

The Hodgkin-Huxley nonlinear model (HH) [1] is one of
the biggest challenges in the life science in the near history.
HH quantitatively describes the electrical excitations of squid
giant axon. Under the HH formalism, many mathematical
models (HH-type) for diverse neurons are established [2–
5]. A bifurcation is a qualitative change in the behavior
of a nonlinear dynamical system as its parameters pass
through critical values [6]. The study of bifurcations in
neural models is important to understand the dynamical
origin of many neurons and the organization of behavior.
Many studies have been done on the bifurcation analysis
of HH model. Guckenheimer and Labouriau [7] give the
detailed bifurcation diagrams ofHHmodel in two-parameter
space of 𝐼 and 𝑉K. Bedrov reveals the possible bifurcations
with changes of 𝑔Na and 𝑔K, representing the maximal
conductance of sodium and potassium, respectively [8, 9].
The global structure of bifurcations in multiple-parameter
space of the HH model is examined [10], and the details
of the degenerate Hopf bifurcations are analyzed using the
singularity theoretic approach [11]. Singularity theory offers
an extremely useful approach to bifurcation problems [12].
The aim of this paper is to illustrate how constraints and
parameters affect the dynamics of HH model. In the first
attempt we choose 𝐼 as bifurcation parameter, 𝑔K, 𝑔𝐿 as

unfolding parameters, and we restrict 𝑉 > 0; then we use
the singularity theory of bifurcations and the computing
method of bifurcations with constraint to obtain the new
constraint transition sets. Secondly, using the above results,
we investigate the effect of constraint and parameters on the
type of equilibrium point bifurcation, and we also illustrate
the stability of the equilibrium points.

2. Hodgkin-Huxley Equations

TheHH comprises the following differential equations:

𝑑𝑉

𝑑𝑡
=

1

𝐶
𝑀

[𝐼 − 𝑔Na𝑚
3
ℎ (𝑉 − 𝑉Na)

−𝑔K𝑛
4
(𝑉 − 𝑉K) − 𝑔𝑙 (𝑉 − 𝑉

𝑙
)] ,

𝑑𝑚

𝑑𝑡
= 𝛼
𝑚 (1 − 𝑚) − 𝛽𝑚𝑚,

𝑑ℎ

𝑑𝑡
= 𝛼
ℎ (1 − ℎ) − 𝛽ℎℎ,

𝑑𝑛

𝑑𝑡
= 𝛼
𝑛 (1 − 𝑛) − 𝛽𝑛𝑛.

(1)

𝑉 represents the membrane potential. 0 ≤ 𝑚 ≤ 1 and
0 ≤ ℎ ≤ 1 are the gating variables representing activation
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Figure 1: Constraint transition set.

and inactivation of the Na+ current, respectively. 0 ≤ 𝑛 ≤ 1 is
the gating variable representing activation of the K+ current.
𝛼
𝑚
, 𝛽
𝑚
, 𝛼
ℎ
, 𝛽
ℎ
, 𝛼
𝑛
, 𝛽
𝑛
are the function of 𝑉 as follows:

𝛼
𝑚
=

2.5 − 0.1𝑉

[exp (2.5 − 0.1𝑉) − 1]
, 𝛽

𝑚
= 4 exp( −𝑉

18.0
) ,

𝛼
ℎ
= 0.07 exp(−𝑉

20
) , 𝛽

ℎ
=

1

[exp (3 − 0.1𝑉) + 1]
,

𝛼
𝑛
=

(0.1 − 0.01𝑉)

[exp (1 − 0.1𝑉) − 1]
, 𝛽

𝑛
= 0.125 exp(−𝑉

80
) .

(2)

The HH includes the following parameters: 𝑉K = −12.0mV,
𝑉Na = 115.0mV, and 𝑉

𝑙
= 10.599mV representing

the equilibrium potentials of K+, Na+, and leak currents,
respectively. They are determined uniquely by the Nernst
equation. 𝑔Na = 120.0mS/cm2, 𝑔K = 36.0mS/cm2, 𝑔

𝑙
=

0.3mS/cm2 represent the maximum conductance of the
corresponding ionic currents. 𝐶

𝑚
= 1.0 𝜇F/cm2 is the

membrane capacitance. 𝐼 represents the external current, in
𝜇A/cm2.

3. Constrained Bifurcation Theory

For the following bifurcation equation:

𝑔 (𝑢, 𝜆; 𝛼) = 0, (3)

where 𝑢, 𝜆, 𝛼 are state variable, bifurcation parameter, and
auxiliary parameter (or unfolding parameter), respectively.
The bifurcation equation can deal with the singularity theo-
ries developed by Golubitsky and Schaeffer [12]. However, in
some case, the variation of the state variable is often subjected
to restriction, here called constraint.The forms of constraints

are different in different problems, of which themost popular
single-sided constraint is listed here [13].

Themathematical expressionwith single-sided constraint
is

𝑔 (𝑢, 𝜆; 𝛼) = 0,

𝛿 [𝑢 − 𝑈] ≥ 0.

(4)

The following are transition sets for single-sided constraint:

(B) :
{{{

{{{

{

𝑔 (𝑢, 𝜆; 𝛼) = 0,

𝑔
𝑢 (𝑢, 𝜆; 𝛼) = 0,

𝑔
𝜆 (𝑢, 𝜆; 𝛼) = 0,

𝛿 [𝑢 − 𝑈] ≥ 0;

(BI) : { 𝑔 (𝑈, 𝜆; 𝛼) = 0,

𝑔
𝜆 (𝑈, 𝜆; 𝛼) = 0;

(H) :
{{{

{{{

{

𝑔 (𝑢, 𝜆; 𝛼) = 0,

𝑔
𝑢 (𝑢, 𝜆; 𝛼) = 0,

𝑔
𝑢𝑢 (𝑢, 𝜆; 𝛼) = 0,

𝛿 [𝑢 − 𝑈] ≥ 0;

(HI) : { 𝑔 (𝑈, 𝜆; 𝛼) = 0,

𝑔
𝑢 (𝑈, 𝜆; 𝛼) = 0,

(DL) :
{{{

{{{

{

𝑔 (𝑢
𝑖
, 𝜆; 𝛼) = 0,

𝑔
𝑢
(𝑢
𝑖
, 𝜆; 𝛼) = 0,

𝑢
1
̸= 𝑢
2
,

𝛿 [𝑢
𝑖
− 𝑈] ≥ 0;

(DLI) :
{

{

{

𝑔 (𝑈, 𝜆; 𝛼) = 0,

𝑔 (𝑢, 𝜆; 𝛼) = 𝑔𝑢 (𝑢, 𝜆; 𝛼) = 0,

𝑢 ̸=𝑈, 𝛿 [𝑢 − 𝑈] ≥ 0,

(5)

where B, H, and DL are nonconstrained bifurcation point set,
hysteresis point set, and double limit point set, respectively,
and BI, HI, and DLI are constrained bifurcation point set,
hysteresis point set, and double limit point set, respectively.
Compared with nonconstrained bifurcation 𝑔(𝑢, 𝜆; 𝛼) = 0,
there exist new transiton sets which are BI, HI, and DLI. For
the restriction, there come new bifurcation types, which give
the systemmore bifurcation properties and can explain some
nonlinear aspects in engineering systems and other nonlinear
systems.

4. Singularity and Bifurcation Analysis Results

4.1. Constrained Transition Set. The external current 𝐼 is
chosen as bifurcation parameter and 𝑔K, 𝑔𝐿 as unfolding
parameters, and we restrict 𝑉 > 0. It is impossible to
give the HH model’s analytic solutions. So, we use the
singularity theory of bifurcations and the computing method
of bifurcations with constraint in Section 3 to numerically
construct the bifurcation diagrams; constraint transition sets
are obtained in Figure 1.

From Figure 1 we can conclude that the transition sets
without constraint contain only hysteresis set which divides
the parameter-plane into two regions, where there are two
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Figure 2: The bifurcation diagram for 𝑔
𝐿
, 𝑔K variation.

bifurcation modes. However, the transition sets with con-
straint contain hysteresis set and double limit set which divide
the parameter-plane into four regions, where there are four
bifurcation modes. The bifurcation diagram corresponding
to four different 𝑔

𝐿
, 𝑔K variations taken from the above four

parameters regions is obtained in Figure 2.

4.2. Bifurcation Analysis Results

4.2.1.𝑔
𝐿
= 2, 𝑔

𝐾
= 4. In order to show the bifurcation char-

acteristics of HH, it is convenient to show the bifurcation
diagrams obtained by the Matcont software for the varying

values of 𝑔
𝐿
, 𝑔K. These are given in Figure 3(a). Using the

results in Figure 3(a), the stability of equilibrium points
is obtained in Figure 3(b). The solid curve denotes the
equilibrium points are stable, while the dashed curve denotes
the equilibrium points are unstable. Contrasting Figure 3(a)
with Figure 2(c), they are identical; then it proves the validity
of computing. This can be considered as a verification of the
Matcont algorithms for a high order nonlinear system.

Beginning from the left side of the abscissa of Figure 3(a),
the first label H denotes that the equilibrium point is a Hopf
bifurcation point with 𝑉 = 7.609434, 𝑚 = 0.123894, ℎ =

0.331941, 𝑛 = 0.437840, 𝐼 = −11.231605, and first Lyapunov
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Figure 3: The bifurcation diagram and stability of equilibrium points for 𝑔
𝐿
= 2, 𝑔K = 4.
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Figure 4: The limit cycle emerging from sH at 𝐼 = 20.428518.
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Figure 5: The limit cycle emerging from sH at 𝐼 = −11.231605.

coefficient is positive, and there are two eigenvalues with
Re 𝜆
1,2

≈ 0, Im 𝜆
1
̸= 0; then at the Hopf bifurcation point,

HH is unstable, and there is an unstable limit cycle, so it is the
subcritical Hopf bifurcation (uH). Although the equilibrium
points of the second and fifth are labelled as H, they are not
Hopf bifurcation points.They are neutral saddle point, where

Table 1: Bifurcation analysis results derived by the Matcont soft-
ware.

Parameter Equilibrium
points 𝐼 Type of condition

𝑔
𝐿
= 2

𝑔K = 4

𝑉 = 7.609434

𝑚 = 0.123894

ℎ = 0.331941

𝑛 = 0.437840

𝐼 = −11.231605 uH

𝑉 = 9.426017

𝑚 = 0.149260

ℎ = 0.278301

𝑛 = 0.466512

𝐼 = −10.010747 Neutral saddle

𝑉 = 25.688959

𝑚 = 0.518771

ℎ = 0.046889

𝑛 = 0.686086

𝐼 = −6.575754 Neutral saddle

𝑉 = 11.796299

𝑚 = 0.188048

ℎ = 0.217790

𝑛 = 0.503195

𝐼 = −9.438630 Limit point

𝑉 = 20.373201

𝑚 = 0.378788

ℎ = 0.083800

𝑛 = 0.623808

𝐼 = −12.559365 Limit point

𝑉 = 31.816299

𝑚 = 0.668810

ℎ = 0.025491

𝑛 = 0.745429

𝐼 = 20.428518 sH

the former has 𝑉 = 9.4260170, 𝑚 = 0.149260, ℎ = 0.278301,
𝑛 = 0.466512, 𝐼 = −10.010747, and the latter has 𝑉 =
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Figure 6: The bifurcation diagram and stability of equilibrium points for 𝑔
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= 0.1, 𝑔K = 2.
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Figure 7: The limit cycle emerging from uH at 𝐼 = −26.281425.
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Figure 9: The limit cycle emerging from uH at 𝐼 = −13.971904.
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Figure 10: The limit cycle emerging from uH at 𝐼 = −9.406580.
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Figure 12: The limit cycle emerging from uH at 𝐼 = 7.131765 and
sH at 𝐼 = 115.224276.

Table 2: Bifurcation analysis results derived by the Matcont soft-
ware.

Parameter Equilibrium
points 𝐼 Type of condition

𝑔
𝐿
= 0.1

𝑔K = 2

𝑉 = −3.692856

𝑚 = 0.033952

ℎ = 0.716772

𝑛 = 0.262913

𝐼 = −1.749367 Limit point

𝑉 = −0.754488

𝑚 = 0.048408

ℎ = 0.622236

𝑛 = 0.306181

𝐼 = −1.918161 Neutral saddle

𝑉 = −1.822633

𝑚 = 0.042603

ℎ = 0.658089

𝑛 = 0.290154

𝐼 = −1.811258 Neutral saddle

𝑉 = 27.252348

𝑚 = 0.559277

ℎ = 0.039851

𝑛 = 0.702462

𝐼 = −52.626190 Limit point

𝑉 = 30.900097

𝑚 = 0.648151

ℎ = 0.027784

𝑛 = 0.737363

𝐼 = −48.954977 Neutral saddle

𝑉 = 37.692334

𝑚 = 0.781785

ℎ = 0.015320

𝑛 = 0.791063

𝐼 = −26.281425 uH

25.688959, 𝑚 = 0.518771, ℎ = 0.046889, 𝑛 = 0.686086,
𝐼 = −6.575754. The equilibrium points labelled as LP of the
third and fourth are both limit points, where the former has
𝑉 = 11.796299, 𝑚 = 0.188048, ℎ = 0.217790, 𝑛 = 0.503195,
𝐼 = −9.438630, and the latter has 𝑉 = 20.373201, 𝑚 =

0.378788, ℎ = 0.083800, 𝑛 = 0.623808, 𝐼 = −12.559365.
The equilibrium point labelled as H of the sixth is a Hopf
bifurcation point with 𝑉 = 31.816299, 𝑚 = 0.668810, ℎ =

0.025491, 𝑛 = 0.745429, 𝐼 = 20.428518, and first Lyapunov
coefficient is negative, and there are two eigenvalues with
Re 𝜆
1,2

≈ 0; then at the Hopf bifurcation point, HH is stable,
and there is a stable limit cycle, so it is the supercritical Hopf

Table 3: Bifurcation analysis results derived by the Matcont soft-
ware.

Parameter Equilibrium
points 𝐼 Type of condition

𝑔
𝐿
= 1

𝑔K = 2

𝑉 = 4.315751

𝑚 = 0.086823

ℎ = 0.442071

𝑛 = 0.385365

𝐼 = −9.406580 uH

𝑉 = 5.346944

𝑚 = 0.097269

ℎ = 0.406190

𝑛 = 0.401801

𝐼 = −9.266520 Neutral saddle

𝑉 = 5.583327

𝑚 = 0.099807

ℎ = 0.398116

𝑛 = 0.405572

𝐼 = −9.261244 Limit point

𝑉 = 25.615559

𝑚 = 0.516847

ℎ = 0.047253

𝑛 = 0.685295

𝐼 = −38.368717 Limit point

𝑉 = 29.221394

𝑚 = 0.608443

ℎ = 0.032689

𝑛 = 0.721865

𝐼 = −34.782328 Neutral saddle

𝑉 = 35.263043

𝑚 = 0.739314

ℎ = 0.018740

𝑛 = 0.773422

𝐼 = −13.971904 uH

bifurcation (sH). Equilibrium points between the first H and
the sixth H are unstable.

The limit cycle emerging from sH at 𝐼 = 20.428518 is in
Figure 4.

The limit cycle emerging from uH at 𝐼 = −11.231605 is in
Figure 5.

In Table 1, the bifurcation points found by the Matcont
software are presented for 𝑔

𝐿
= 2, 𝑔K = 4.

4.2.2. 𝑔
𝐿

= 0.1, 𝑔
𝐾

= 2. The bifurcation diagrams and
the stability of equilibrium points are obtained in Figure 6.
The limit cycle emerging from uH at 𝐼 = −26.281425 is
in Figure 7. The bifurcation points found by the Matcont
software are presented in Table 2 for 𝑔

𝐿
= 0.1, 𝑔K = 2.

From Table 2, we can find the difference in equilibrium
point.

4.2.3. 𝑔
𝐿
= 1, 𝑔

𝐾
= 2. The bifurcation diagrams and the

stability of equilibrium points are obtained in Figure 8. The
limit cycles emerging from uH at 𝐼 = −13.971904 and
𝐼 = −9.406580 are given in Figures 9 and 10, respectively.
The bifurcation points found by the Matcont software are
presented in Table 3 for 𝑔

𝐿
= 1, 𝑔K = 2.

4.2.4. 𝑔
𝐿
= 2, 𝑔

𝐾
= 20. The bifurcation diagrams and the

stability of equilibrium points are obtained in Figure 11. The
limit cycle emerging from uH at 𝐼 = 7.131765 and sH at
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Table 4: Bifurcation analysis results derived by the Matcont soft-
ware.

Parameter Equilibrium
points 𝐼 Type of condition

𝑔
𝐿
= 2

𝑔K = 20

𝑉 = 9.688168

𝑚 = 0.153228

ℎ = 0.271065

𝑛 = 0.470616

𝐼 = 7.131765 uH

𝑉 = 24.842866

𝑚 = 0.496500

ℎ = 0.051294

𝑛 = 0.676858

𝐼 = 115.224276 sH

𝐼 = 115.224276 is given in Figure 12. They both are the same.
The bifurcation points found by the Matcont software are
presented in Table 4 for 𝑔

𝐿
= 2, 𝑔K = 20.

5. Conclusion

In this paper we present the equilibrium point bifurcation
and singularity analysis of HH model with constraints. We
investigate the effect of constraints and parameters on the
type of equilibrium point bifurcation. We find that if we
restrict 𝑉 > 0, then there are new transition sets, and new
bifurcation type constrating to the nonconstraint case. The
Matcont toolbox software environment was used for analysis
of the bifurcation points in conjunction withMatlab. We give
four different parameters of 𝑔

𝐿
, 𝑔K. In each case, we give

equilibrium point bifurcation and also illustrate the stability
of the equilibriumpoints.This study increases our knowledge
of HH model.
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