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We introduce and analyze a hybrid extragradient-like viscosity iterative algorithm for finding a common solution of a systems
of generalized equilibrium problems and a generalized mixed equilibrium problem with the constraints of two problems: a finite
family of variational inclusions for maximal monotone and inverse strongly monotone mappings and a fixed point problem of
infinitely many nonexpansive mappings in a real Hilbert space. Under some suitable conditions, we prove the strong convergence
of the sequence generated by the proposed algorithm to a common solution of these problems.

1. Introduction

Let H be a real Hilbert space with inner product (-,-) and
norm || - ||, C be a nonempty closed convex subset of H and
P be the metric projection of H onto C. Let S: C — H bea
nonlinear mapping on C. We denote by Fix(S) the set of fixed
points of S and by R the set of all real numbers. A mapping
V is called strongly positive on H if there exists a constant
Y € (0, 1] such that

(Vx,x) = Jllx|%  Vx € H. o)

A mapping S : C — H is called L-Lipschitz continuous if
there exists a constant L > 0 such that

ISx=Sy| <L|x-y|, Vx, yeC. )

In particular, if L = 1 then S is called a nonexpansive
mapping; if L € [0, 1) then A is called a contraction.

Let A : C — H be a nonlinear mapping on C. We
consider the following variational inequality problem (VIP)
[1] which is to find a point x € C such that

(Ax,y-x) >0, VyeC. 3)
The solution set of VIP (3) is denoted by VI(C, A).

Letgp : C — Rbeareal-valued function, A: H — H be
a nonlinear mapping and ® : CxC — R be a bifunction. In
2008, Peng and Yao [2] introduced the following generalized
mixed equilibrium problem (GMEP) of finding x € C such
that

Yy eC.
(4)

O(x,y)+¢(y) -9 (x)+(Ax,y —x) >0,

We denote the set of solutions of GMEP (4) by
GMEP(®, ¢, A). The system of equilibrium problems
or generalized equilibrium problems is a tool to study
Nash eequilibrium problems, see for example [3-8]. In
fact, the GMEP (4) is very general in the sense that it
includes, as special cases, optimization problems, variational
inequalities, minimax problems, Nash equilibrium problems
in noncooperative games and others. The GMEP is further
considered and studied; see for example, [9-15]. Here we also
consider a system of two generalized equilibrium problem
that could be usefull to study the Two players game problem,
see [16].

Throughout this paper, it is assumed as in [2] that ® : Cx
C — Ris a bifunction satisfying conditions (H1)-(H4) and
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¢ : C — Risalower semicontinuous and convex function
with restriction (H5), where

(H1) O(x,x) =0 forall x € C;
(H2) ® is monotone, that is, ®(x, y) + O(y, x) < 0 for any

x,y €GC;
(H3) © is upper-hemicontinuous, that is, for each x, y, z €
C)
limsup® (tz + (1 -t)x,y) <O (x,y); ()
t—0"

(H4) ©(x,-) is convex and lower semicontinuous for each
x €C;

(H5) for each x € H and r > 0, there exists a bounded
subset D, ¢ Cand y, € Csuchthatforanyz € C\D,,

®(Z»J’x)+<P(J’x)—<P(Z)+%(yx—z,z—x) <0. (6)

Given a positive number r > 0. Let S£®"”) :H — Cisthe
solution set of the auxiliary mixed equilibrium problem, that
is, for each x € H,

SO () = {y €C:0(2)+9() -9(»)

1 ! !
= <K (y)-K (x),z—y> >0,Vz € C}(.)
7

In particular, whenever K(x) = (1 /2)|x|* Vx € H, S£®"”) is
rewritten as T ®?.

Let ®,,0, : C x C — R be two bifunctions, and
A,A, : C — H be two nonlinear mappings. Consider

the following system of generalized equilibrium problems
(SGEP): find (x*, ¥*) € C x C such that

0, (x",2) + (A" x—x") + - (" —y"x-x7) 20,
V1
Vx € C,

* * * 1 * * *
0,y y)+ (A", y -y >+v—<y -xy-y") =0,
2
Vy eC,
(8

where v, > 0 and v, > 0 are two constants. It is introduced
and studied in [17]. Whenever ®, = ©®, = 0, the SGEP
reduces to a system of variational inequalities, which is
considered and studied in [18]. It is worth to mention that the
system of variational inequalities is a tool to solve the Nash
equilibrium problem for noncooperative games.

In 2010, Ceng and Yao [17] transformed the SGEP into a
fixed point problem in the following way.

Proposition CY (see [17]). Let ©®,,0, : Cx C — R be
two bifunctions satisfying conditions (HI1)-(H4) and let A, :

Abstract and Applied Analysis

C — H be {-inverse-strongly monotone for k = 1,2. Let
v € (0,20}) fork = 1,2. Then, (x*, y*) € C x C is a solution
of SGEP (8) if and only if x™ is a fixed point of the mapping
G : C — Cdefined by G = T (I = v AT, (I = 9,A,)
where y* = TEZ(I —v,A,)x". Here, we denote the fixed point
set of G by SGEP(G).

Let {T,}7°, be an infinite family of nonexpansive map-
pings on H and {A,}’? be a sequence of nonnegative
numbers in [0, 1]. For any n > 1, define a mapping W, on
H as follows:

U,

nntl = I,
Un,n = /\nTnUn,nH + (1 - )‘n) I,

Un,n—l = An—lTn—lUn,n + (1 - )‘n—l) I,

Ui = MTUper + (1= A4) L, ©)

Uppo1 = M T U + (1= A4 L

Uy, =A,TU, 5 + (1-1,)1
W, =U,, = A\, T\U,, +(1-A,) 1.

Such a mapping W, is called the W-mapping generated by
T,T, ..., Tyand A, A, ..., Ay

In 2011, for the case where C = H, Yao et al. [14] proposed
the following hybrid iterative algorithm

O (y2) +9 ()~ (y,)
1 ! !
+;<K (ya) -K'(x,),2-,) 20, zeH,

Xnt1 = &y (u + Yf (xn)) + ﬁnxn

+((1_Bn)1_“n(1+n"lv))wnyn> nz1,

(10)

where f : H — H be a contraction, K : H — Riis
differentiable and strongly convex, {«,},{f,} < (0,1) and
X4 € H are given, for finding a common element of the set
MEP(®, ¢) and the fixed point set N;>, Fix(T},) of an infinite
family of nonexpansive mappings {T,,}°, on H. They proved
the strong convergence of the sequence generated by the
hybrid iterative algorithm (10) to a point x* € N2, Fix(T},) N
MEP(0®, ¢) under some appropriate conditions. This point x*
also solves the following optimization problem:

I

1 2
i Vx,x) + —|lx—ull”" - h(x),
x€N2, Fix{li:lnl)rrl1MEP(®,(p)2 (V. x) 2||x ul (x) (OP0)

where h: H — Ris the potential function of yf.
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Let f : H — H be a contraction and V be a strongly
positive bounded linear operator on H. Assume that ¢ :
H — Ris alower semicontinuous and convex functional,
that ®,0,,0, : H x H — R satisfy conditions (H1)-
(H4), and that A,A,A, : H — H are inverse-strongly
monotone. Let the mapping G be defined as in Proposition
CY. Very recently, Ceng et al. [11] introduced the following
hybrid extragradient-like iterative algorithm

z, = Si?"") (x, —r,Ax,),

Xp+1 = Ky (u + Yf (xn)) + lsnxn (11)

+((1-B)I-a,(I+uV))W,Gz,, VYn=0,

for finding a common solution of GMEP (4), SGEP (8) and
the fixed point problem of an infinite family of nonexpansive
mappings {T,}>, on H, where {r,} ¢ (0,00),{a,},{B,} C
(0,1),. € (0,2{;),k = 1,2, and x5, u € H are given.
The authors proved the strong convergence of the sequence
generated by the hybrid iterative algorithm (11) to a point
x* e N2, Fix(T,) N GMEP(®, ¢, A) N SGEP(G) under some
suitable conditions. This point x* also solves the following
optimization problem:

min d (Vx, x)
x€en, Fix(T,)NGMEP(©,9,A)NSGEP(G) 2
(OP1)

1
+7lx - ul® = h(x),

where h: H — Ris the potential function of yf.

On the other hand, let B be a single-valued mapping of
C into H and R be a set-valued mapping with D(R) = C.
Consider the following variational inclusion: find a point x €
C such that

0 € Bx + Rx. (12)

We denote by I(B,R) the solution set of the variational
inclusion (12). In particular, if B = R = 0, then I(B,R) =
C. If B = 0, then problem (12) becomes the inclusion
problem introduced by Rockafellar [19]. It is known that
problem (12) provides a convenient framework for the unified
study of optimal solutions in many optimization related
areas including mathematical programming, complemen-
tarity problems, variational inequalities, optimal control,
mathematical economics, equilibria and game theory, and so
forth. Let a set-valued mapping R : D(R) ¢ H — 2" be
maximal monotone. We define the resolvent operator Jy, :

H — D(R) associated with R and A as follows:
Jra =+ AR)™', VxeH, 13)

where A is a positive number.

In this paper, we will introduce and analyze an iterative
algorithm by hybrid extragradient-like viscosity method for
finding a common solution of a systems of generalized
equilibrium problems and a generalized mixed equilibrium
problem with the constraints of two problems: a finite family
of variational inclusions for maximal monotone and inverse

strongly monotone mappings and a fixed point problem of
infinitely many nonexpansive mappings in a real Hilbert
space. Under some suitable conditions, we prove the strong
convergence of the sequence generated by the proposed algo-
rithm to a common solution of these problems. Such solution
also solves an optimization problem. Several special cases are
also discussed. The results presented in this paper are the
supplement, extension, improvement and generalization of
the previously known results in this area.

2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert
space whose inner product and norm are denoted by (., -)
and || - ||, respectively. Let C be a nonempty closed convex
subset of H. We write x,, — x to indicate that the sequence
{x,} converges weakly to x and x, — x to indicate that
the sequence {x,} converges strongly to x. Moreover, we use
w,(x,) to denote the weak w-limit set of the sequence {x,,},
that is,

ww(xn)::{er:xni—\x

(14)
for some subsequence {xni} of {xn}}.
Definition 1. A mapping A : C — H is called
(i) monotone if
(Ax—Ay,x—y) >0, Vx,y€eC, (15)

(ii) #-strongly monotone if there exists a constant # > 0
such that

(Ax—Ap,x-y) zy|x-y’, vxyeC, (16

(iii) {-inverse-strongly monotone if there exists a constant
{ > 0 such that

(Ax - Ay, x - y) =2 {|Ax - Ay|", Vx,yeC. (17)

It is easy to see that the projection P is 1-ism. Inverse
strongly monotone (also referred to as co-coercive) operators
have been applied widely in solving practical problems in
various fields.

Definition 2. A differentiable function K : H — Ris called:
(i) convex, if

K(y)—K(x)2<K’(x),y—x>, Vx,y € H,  (18)

where K'(x) is the Frechet derivative of K at x;
(ii) strongly convex, if there exists a constant o > 0 such
that

K()-K@ - (K (),y-x) 2 Z|x -y, vxyeH.
(19)

It is easy to see that if K : H — R is a differentiable
strongly convex function with constant ¢ > 0 then K' : H —
H is strongly monotone with constant ¢ > 0.



The metric (or nearest point) projection from H onto C is
the mapping P : H — C which assigns to each point x € H
the unique point P-x € C satisfying the property

Rl =il -l =d 0. o

Some important properties of projections are gathered in
the following proposition.

Proposition 3. For given x € H and z € C:
()z=Pxe{(x-2,y-2)<0,VyeC
(i)) 2 = Pox & x — 2? < x = yI? ~ lly - 2l Vy € CG;
(iii) (Pox — Pey,x — y) = |Pox — Poyl’, Vy € H. (This

implies that P is nonexpansive and monotone.)

By using the technique of [20], we can readily obtain the
following elementary result.

Proposition 4 (see [11, Lemma 1 and Proposition 1]). Let C
be a nonempty closed convex subset of a real Hilbert space H
and let ¢ : C — R be a lower semicontinuous and convex
function. Let ® : C x C — R be a bifunction satisfying the
conditions (H1)-(H4). Assume that

(i) K : H — R is strongly convex with constant > 0
and the function x — (y — x, K'(x)) is weakly upper
semicontinuous for each y € H;

(ii) for each x € H andr > 0, there exists a bounded subset
D, c Cand y, € C such that forany z € C\ D,,

O (2 )+ (y) —9(2) + % (K'(2) =K' (x),y,—z) <0.
(1)

Then the following hold:

(a) for each x € H, S£®"P)(x) +0;
(b) 99 is single-valued;

@) S£®"”) is nonexpansive if K' is Lipschitz continuous with
constant v > 0 and

<K/ (x1) - K' (x,) 0y — “2>
> <K’ () - K' (uy) 1y — u2> , V(x;,x,) € HxH,
(22)
where u; = 89 (x;) fori = 1,2;
(d) forall s,t >0and x e H
<K' (S£®"P)x) -K (SEG)"P)x) , SEG"P)x - S£®’(P)x>

s—t <K' (S£®"P)x) -K' (%), S£®"P)x - S£®’¢)x> ;

(23)

<
N

(e) Fix($'®%)) = MEP(®, ¢);
(f) MEP(®, @) is closed and convex.
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In particular, whenever © CxC — Risa
bifunction satisfying the conditions (H1)-(H4) and K(x) =
(1/2)llx|1*, Vx € H, then that is, for any x, y € H,

S£®’¢)x B S£®’(p))/nz - <S£®,q))x _ Si(w)% X — y> (24)

(S£®"P) is firmly nonexpansive) and

5O _ 59 x“ - @ [s©x - ],

(25)
Vs,t >0, x¢€H.

In this case, S£®"P) is rewritten as Tr(®""). If, in addition, ¢ = 0,
then Tr(®"”) is rewritten as Tr@ .

Remark 5. Suppose K : H — R is strongly convex with
constanto > 0andK' : H — H is Lipschitz continuous with
constant v > 0. Then K’ : H — H is o-strongly monotone
and »-Lipschitz continuous with positive constants o, v > 0.
Utilizing Proposition 4 (d) we can show that for all s, > 0
and x € H,

Jsowx - so0x] < B2 2

p S£®"p)x - x” ) (26)

We need some facts and tools in a real Hilbert space H
which are listed as lemmas below.

Lemma 6. Let X be a real inner product space. Then there
holds the following inequality

I+ y|° < x> +2 (. x+y), VxyeX.  (27)

Lemma 7. Let H be a real Hilbert space. Then the following
hold:

@) llx = yI* = lxl* = IyI* - 2¢x — y, ) for all x, y € H;

(0) Ax + uyll® = Al +pllyI* = Aullx - yI forall x, y €
Hand A, p e [0, 1] withA +u=1;

(c) If {x,)} is a sequence in H such that x,, — x, it follows
that

lim sup||x,, - y"2 = lim sup||x,, — x“z +]|x - y||2, Vy e H.
n— 00 n— 00
(28)

We have the following crucial lemmas concerning the W-
mappings defined by (9).

Lemma 8 (see [21, Lemma 3.2]). Let {T,}2, be a sequence
of nonexpansive self-mappings on H such that n;? | Fix(T,,) # 0
and let {A,)} be a sequence in (0, b] for someb € (0, 1). Then, for
every x € H and k > 1 the limit lim, _, U, ,x exists, where
U, is defined by (9).

Remark 9 (see [22, Remark 3.1]). It can be known from
Lemma 8 that if D is a nonempty bounded subset of H, then
for € > 0 there exists 1, > k such that for all n > n,

sup ||Un’kx - ka" <e. (29)
xeD
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Remark 10 (see [22, Remark 3.2]). Utilizing Lemma 8, we
define a mapping W: H — H as follows:

Wx = lim W,x= lim U,,x, VxeH. (30)
n— o0 n— 00 >

Such a W is called the W-mapping generated by T}, T,, . . . and
Ay, Ay, ... Since W, is nonexpansive, W : H — H is also
nonexpansive. Indeed, observe that for each x, y € H

[wa = wy|| = lim [Wx =Wyl < x -yl @)
If {x,} is a bounded sequence in H, then we put D = {x,, :

n > 1}. Hence, it is clear from Remark 5 that for an arbitrary
€ > 0 there exists N, > 1 such that for alln > N,

[W,x, - Wx,|| = |U,.,x, — Uyx,|| < sug [Ux-Uyx| <e.
X€
(32)
This implies that
Jim [W,x, — Wx,| = 0. (33)

Lemma 11 (see [21, Lemma 3.3]). Let {T,};>, be a sequence of
nonexpansive self-mappings on H such that 02, Fix(T,) 0,
and let {A,} be a sequence in (0,b] for some b € (0, 1). Then,
Fix(W) = n;2, Fix(T,).

Lemma 12 (see [23, Demiclosedness principle]). Let C be a
nonempty closed convex subset of a real Hilbert space H. Let T
be a nonexpansive self-mapping on C. Then I -T is demiclosed.
That is, whenever {x,} is a sequence in C weakly converging to
some x € C and the sequence {(I — T)x,} strongly converges
to some y, it follows that (I — T)x = y. Here I is the identity
operator of H.

Lemma13. Let A : C — H be a monotone mapping. In the
context of the variational inequality problem the characteriza-
tion of the projection (see Proposition 3 (i)) implies
u e VI(C,A) & u=P-(u—-AAu), A>0. (34)
Lemma 14 (see [24]). Let {x,} and {w,} be bounded sequences
in a real Banach space X and {f3,} be a sequence in [0, 1] with
0 < liminf, _, B, <limsup, _, B, < 1. Suppose
Xne1 = ﬁnxn + (1 - ﬁn) W, Vn 2 0,
. (35)
lim sup ("wnﬂ - wn" - "xnﬂ - xn“) <0.
n—0oo
Then, lim,, _, . lw, — x, || = 0.
Lemma 15 (see [25]). Assume that {a,} is a sequence of
nonnegative real numbers such that
u1 < (1=9,) 8y + 0,7 V21, (36)
where {y,} is a sequence in [0, 1] and {o,} is a real sequence
such that

@) 2221 VYn = 005

(i) limsup,, _, ,,0, <0 0r Y2, |0y, < co.

Then lim,, _, . a, = 0.

Recall that a set-valued mapping T : D(T) ¢ H — 2"
is called monotone if for all x, y € D(T), f € Txand g € Ty

imply
(f-gx-y)=0 (37)

A set-valued mapping T is called maximal monotone if T is
monotone and (I + AT)D(T) = H for each A > 0, where I
is the identity mapping of H. We denote by G(T') the graph
of T. It is known that a monotone mapping T' is maximal if
and only if, for (x, f) € H x H,{f — g,x — y) > 0 for every
(y,9) € G(T) implies f € Tx. Next we provide an example to
illustrate the concept of maximal monotone mapping.

Let A: C — H be a monotone, k-Lipschitz-continuous
mapping and let Nv be the normal cone to C at v € C, that
is,

Nev={weH: {(v-u,w) >0,Yu € C}. (38)
Define
Ty = Av + Ngv, %f veC, (39)
0, if vé¢C.

Then, T is maximal monotone and 0 € Tvifand onlyif v €
VI(C, A); see [19].

Assume that R : D(R) ¢ H — 2 is a maximal
monotone mapping. Let A > 0. In terms of Huang [26] (see
also [27]), there holds the following property for the resolvent

operator Jp , : H — D(R).

Lemmal6. Jy, is single-valued and firmly nonexpansive, that
is,

(Jrpx = Jraysx—y) 2 “]R,/\x - ]R,U’HZ’ Vx,y € H.
(40)

Consequently, ], , is nonexpansive and monotone.

Lemma 17 (see [28]). Let R be a maximal monotone mapping
with D(R) = C. Then for any given A > 0,u € C is a solution
of problem (12) if and only ifu € C satisfies

u=Jp, (u—-ABu). (41)

Lemma 18 (see [27]). Let R be a maximal monotone mapping
with D(R) = C and let B: C — H be a strongly monotone,
continuous and single-valued mapping. Then for each z € H,
the equation z € (B+ AR)x has a unique solution x, for A > 0.

Lemma 19 (see [28]). Let R be a maximal monotone mapping
with D(R) = Cand B : C — H be a monotone, continuous
and single-valued mapping. Then (I + A(R+ B))C = H for each
A > 0. In this case, R + B is maximal monotone.

Lemma 20 (see [29]). Let C be a nonempty closed convex
subset of a real Hilbert space H, and g : C — R U +00 be



a proper lower semicontinuous differentiable convex function.
If x* is a solution the minimization problem

g(x") =infg(x), (42)
then,
<g'(x),x—x*> >0, VxeC. (43)
In particular, if x* solves (OP), then

(u+(pf-(I+puV))x",x—x") <0. (44)

3. Main Results

In this section, we introduce and analyze an iterative algo-
rithm by hybrid extragradient-like viscosity method for
finding a common solution of a systems of generalized
equilibrium problems and a generalized mixed equilibrium
problem with the constraints of two problems: a finite family
of variational inclusions for maximal monotone and inverse
strongly monotone mappings and a fixed point problem of
infinitely many nonexpansive mappings in a real Hilbert
space. Under appropriate conditions imposed on the param-
eter sequences we will prove strong convergence of the
proposed algorithm.

Theorem 21. Let C be a nonempty closed convex subset of
a real Hilbert space H. Let N be an integer. Let ©,0,,0,
be three bifunctions from C x C to R satisfying (HI1)-(H4)
and ¢ : C — R be a lower semicontinuous and convex
functional. Let R, : C — 2 be a maximal monotone
mapping and let A,A;, : H — Hand B; : C — H be (-
inverse strongly monotone, {j.-inverse strongly monotone and
n;-inverse strongly monotone, respectively, where k € {1,2} and
i € {1,2,...,N}. Let {T,,},, be a sequence of nonexpansive
mappings on H and {A,} be a sequence in (0,b] for some
b e (0,1). Let V be a y-strongly positive bounded linear
operator and f : H — H be an I-Lipschitzian mapping
with yl < (1 + u)y. Let W,, be the W-mapping defined by (9).
Assume that Q := N2, Fix(T,) NnGMEP(0, ¢, A)NSGEP(G)Nn
NN, I(B;, R;) # 0 where G is defined as in Proposition CY. Let
{a,},{B,,} and {3,} be three sequences in [0, 1]. Assume that:

(i) K : H — Risstrongly convex with constant o > 0 and
its derivative K' is Lipschitz continuous with constant
v > 0 such that the function x — (y — x, K'(x)) is
weakly upper semicontinuous for each y € H;

(ii) for each x € H, there exist a bounded subset D, c C
and z,. € C such that for any y ¢ D,,

O (y.z,) +o(z,) —o(y)
L , (45)
(K () =K' ()2 = y) < 0

(iii) lim,, , &, = 0, Y 0 a

o1 &, = 00, 0 < liminf, _, B,
limsup, _, B,

<
< land 0 < liminf 5, <

limsup, _, 0, < 1;

n— 00
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(IV) vk € (0) Z{k)’k € {1) 2}) Mi € (0) 2171)’1 € {1, 2) e N})
and {r,} c [0, 2{] satisfies

0< linnliorcl)frn < lirlgsolcl)p t, < 2C; (46)

(V) 1imn—>oo(|6n+l - 871' + |r1’l+1 - rrll) =0.

Given x, € H arbitrarily, then the sequence {x,} generated
iteratively by

u, = Si?’(") (I-r,A)x,
Zn = ]RN>HN (I - ”NBN) ]RN—I’.”N—I

x (I - #N—lBN—l)"']Rl,yl (I - B,)uy,
Yn = 8nGZn + (1 - 6n) ann’

(47)

Xn+1 = &y (u + Yf (xn)) + ﬁnxn
+ ((1 - ﬁn) I- %y (I + ‘LLV)) Wnyn’

converges strongly to x* € Q which solves the following
optimization problem provided S$®’¢) is firmly nonexpansive:

Vn>1,

in Lix - -
min® (Ax, x) + Sl - ul” —h (x), (OP2)

where h is the potential function of yf.

Proof. Since lim, , &, = 0and 0 < liminf, , B, <

limsup,_, B, < 1, we may assume, without loss of
generality, that o, < (1 - ,)(1 + [/l”V")_l. Since V is a y-
strongly positive bounded linear operator on H, we know that

IVIl = sup {(Vr,u) : u € H, |Jul| = 1}. (48)
Observe that
(=B -, (I+uV)) ) = 1= B, = o, = ot (Vi i)
21-B,—a,—oulV

>0
(49)

thatis, (1 - 8,)I — «,(I + V) is positive. It follows that

"(1 - ﬁn) I-a, (I + ["V)"
= sup {(((1 = B) I e, (I + pV))u,u) - u € H, fJull = 1}
=sup{l-B,-a,—au(Vu,u):uecH,|ul =1}

< l_lgn_(xn_“nf’l?'
(50)

Put
Al = ]Ri,‘ui (I - AuiBi) ]Rifl’!"ifl

X (I-p;yB;y)- TR (I-mB,)

(51)
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foralli € {1,2,...,N}, and A° = I, where I is the identity
mapping on H. Then we have that z, = ANu,
We divide the rest of the proof into several steps.

Step 1. We show that {x,} is bounded. Indeed, take p € Q
arbitrarily. Since p = Sin@"”)( p—r,Ap), Ais {-inverse strongly

monotone and 0 < r,, < 2, we have, for any n > 1,

i, = oI = 51 (1= r,0) %, =S (1 =1, 4) o

<1 rA) - (1= ) oI

= - ) =1 (A%, - 4D

= |x, - p|* - 21, (x, - p, Ax,, - Ap)

+ralAx, - Ap|*

< s = oI~ 2n, 8| Ax, — Ap|” + 3] Ax, - Ap|’

= lxu = pI* + 7 (s = 20) | Ax,, - Ap]

<%, - ol

(52)

Since p = Jg (I — B)p,A'p = p and B; is n;-inverse

strongly monotone, where y; € (0,2#;),i € {1,2,...,N}, by

Lemma 16 we deduce that for eachn > 1

e~ oI
= '|]RN,;4N (I - unBy) AN_I”n
R (I - pnBy) AY P"

< “(I — unBy) A M, = (I - uyBy) AN?IP“Z

= (™

Uy~ AN?IP) N (BNANilun - BNAI\HP)"2

[y~ A
+uy (i = 211N) "BNAI\H”n - BNAI\HP”Z

|

2
< |A%u, = A" = Jlu, - p|I*.
(53)
Combining (52) and (53), we have
|z = pll < % - £l (54)

Since p = Gp = T, (I = v AT, 2 (I = v,A,)p, Ay is §-
inverse-strongly monotone for k = 1,2, and 0 < v < 2 for
k = 1,2, we deduce that, for any n > 1,

|Gz, - pIf

” (I-nA,

)Ty (I-1,4,) 2,
T (1-,A) T (1-7,A,) p|
<|T=%A) T2 (1-7,4,)z,
—(I =, AT - v2A2)p||2
= " [TS2 (I-%4A,)z, - sz)z (I-74,) p]
T [A, T - vA )z, - AT - ANl
<791 - A5z, - T - v,4,)p|]
+; (v, = 20)
x A T = ,4,)z, — AT -9, A,)p|
< |19 - %,4,)z, - T - %,4,)p|
< |1 -%4,5)z, - (1 -%,4,)p|
= |z~ p) ~ 12(Asz, — Asp)|

Apl <z -l
(55)

< "Zn - P”Z + vy (v, = 20) ”AZZn -

(This shows that G is nonexpansive.) Thus, from (54), we get

1y, = pll = 18, (G2, — p) +(1-6,) W,z, - p)l
<4,[Gz, - p| +(
S(Sn”‘zn_p”'*'(1_611) ||Zn_p”

= "zn_p" < “xn_p"‘

1 - 5n) "ann - p"

SetV =1+ uV. Then from (47) we have

51 =
= Jlor, (u +vf (%)) + Buxs
+((1=B) I =, (I +uV)) Wy, - pl
o (vf () =Vp) + B (x,— )
+((1=B) =, V) (W3, — )|




<[(1-B)I-a,V][W,y, - pl
+ B lx.
<(1-B,-a, -
+ Bu %
<(1-ea, -

- p|| +a, ull + o,

) - Vo
a,47) [y = Pl
= |l + o Nl + e, [y (x,) = Vp|
ouiy) [, = pll + et lul
+ o, (YIf (=) = £ )+ |vf (p) - Vp|)
< (1= o, — i) [|x, = pf| + ot llul
+ o, (Y lx, = pll + |vf () - Vp|)
<[1-((1+w7y-y)a]|x, - pl
o, (|vf (p) = V| + lual)
=[1- (@ +w)y -y [lx, - pl + ((
s () = V| +

(1+u)y-yl
lvf (p) - Vp| + lul
< max Hxn - p|| > — .
(L+pw)y-yI
By induction, we get
b~ <o {1, LT
" (1+u)y-yl

Therefore, {x,} is bounded and so are the sequences

{f(x,)} and (W, y,}.

Step 2. We show that ||x,,,,
Indeed, define

{u, b Az, {yahs

-x,/l = 0asn — oo.

Xt :ﬁnxn+(1_ﬁn)wn, Vn > 1.

Then from the definition of w,,, we obtain

xn+2_ﬁn+1xn+1 _ Xp+1 ﬁn n

1- ﬁn+1 1- ﬁn
_ X1 (u + Yf (xn+1)) ((1 ﬂn+l)1 “n+l—)

1+u)y -
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Xnr1
= —— (u+7yf(x
FEE (411 (5y0)
(04
- 1 _nﬁ (” + Vf (xn)) + Wn+1yn+1 - Wnyn
o —
+ n VWn Y Xpi1 ;
1-8, — ﬁn+1 W1 Ynit
(04 —
- 1 _’;1 [u +Vf (Xpe1) = VWn+1yn+1]
n+1
o —
+ 1 _nﬁ [VWnyn —u- Vf (xn)]
+W+1yn+1 n+1yn +Wn+1yn _Wnyn'
(60)
It follows that
Yl) Xn “wn+1 - wn” - ||xn+1 - xn"
Ocn
= 1_2; ("u" + "Vf (xn+1 ” ||V +1yn+1||)
# g (W] + il + s Gl
+ “W""'ly""'l - Wn+1yn" + ||Wn+1yn - Wnyn"
(57) (61)
- ||xn+1 - 'xn”
“Vl
= 1_[;1 ("u" + "yf (xn+1 " "V n+1Vn+1 |)
}. 58) + 1 2 (T + il + s (o))
“ ne1Vn ~ nyn” + ||yn+1 - yn” - ||xn+1 - xn" .

From (9), since W,, T, and U, ; are all nonexpansive, we have

” wi1%n — Wz " = ”/\ T1U,1122, /\ITIUn,ZZn"
<A Upi1220 = Uz,
=\ ||/\ TU 132, — /\2T2Un,3zn"
(59)
<M U132, = Upaz|
< /\1/\ /‘ || n+1, n+lz Un,n+lzn"
< MH/\,.,
i=1
(62)
” nt1Vn — nJ’n" = ||/\ T'Up12)n — AlTlUn,Zyn"
n+1Vn+1

l_ﬁn+l
%y (l/l + Yf (xn)) + ((1 - ﬂn) I- (Xnv) Wnyn

l_ﬁfl

< /\ ” n+1 Zyn - Un,Zyn”
=\ ||/\2T2Un+1,3)’n - AZTZUH,3yn"

< /\1/\2 ||Un+1,3yn - Un,3yn||
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<MAy A0,

SMﬁA,.,
i=1

Un,n+1yn “

ntln+1Vn —

(62)'
where M is a constant such that

SUP U1 v 20 + [Un2zall} < M,

(63)
Sup ” n+1 n+1yn|| + ||Un,n+1yn"} < M

On the other hand, we estimate |y,,; — »,Il. Taking into
account that 0 < liminf,_ B, < limsup, B, <
1,0 < liminf, 6, < limsup, .6, < land 0 <
liminf, , 1, < limsup,_ 7, < 2(, we may assume,
without loss of generahty that {r,} ¢ [c,d] c (0,20) and

{B,.}:16,} c [G, d] c (0,1). Utilizing Remark 5 and Lemma 16,
we have

||Zn+1 - Zn||2

= "]RN,yN (I - #NBN) AN_lunJrl

N-1

Ry (I -unBy) A un“Z

-(I- .“NBN)AN_ Uy, ’

< "(I — unB)AY M,
A -2,
—HN (BNAN_lunH - BNAN_IMn)"2

N-1 N-1_ |12
S"A Uy — A un“

— _ 2

+ pn (e = 211) “BNAN "t4,1 = ByAY 1”n"
<AVt - ANy ?

b - o

2
< ||A0un+1 - Aoun“ = "un+1 - un"2’
"(I n+1 Xnr1 (I T A x ||
= "xn+1 ~Xn " Thy1 (Axn+1 - Axn) + (rn - rn+1) Axn"
< ”xn+1 ~Xn T Thl (Axn+1 - Axn)” + |rn+1 - rnl "Axn"
< "xn+1 - xn" + |rn+1 - rnl “Axn” >
(65)

9
[Z—
= [0 (1= 1, 8) %01 = SO (1 -1, 4) x, |
— T A) Xy — Sﬁ?f) (I-r,A)x,
+ SO (1=1,4) x, = SO (1 =1, 4)
<SP (1 =1 2) s = S0P (1= 1,4)
)z, =S (1
< (I = 11 A) Xy = (1= 1,4) x|
—r,A) x, - SO (1
< e = 2l + [ = ral 1A%
+ S0 (1=, 4) 2, = SO (1-1,4) x,|
< B = 5l # s 1 B+ 222
]S (1= 1) 3, — (1= r,8) x|
< e = 2l + e =7l
<(lasd s Z 1587 (- rym - - )
< e =] + Irm - r,| My,
(66)
where sup,. {lAx,| + (/eSO ~ r,A)x, — (I -

r,A)x, I} < M, for some M, > 0.
Note that

Ynt1 = Vn

= 6n (Gzn+1 - Gzn) + (6n+1 - 6n) (Gzn+1 - Wn+lzn+1)
(1 -9 )( n+1%n+1 ~ ann)'

(67)

Since G is nonexpansive, from (62), (64) and (66) it follows
that

“yn+l - yn“

< 6 "Gzn+1 -Gz " + |6n+1 - 6n| "Gzn+1 - Wn+lzn+1“

1 -4 ) “ n+1%n+1 — ann"

< 6n ||Zn+1 - Zn" + |6n+1 - 6n| ||Gzn+1 - Wn+lzn+1||

+ (1 - 8n) (“Wn+lzn+l - Wn+lzn"
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+ ||Wn+lzn - ann")

< 8n ||Zn+1 - Zn" + |6n+1 - 6n| "Gzn+1 - Wn+lzn+1“

+(1-9,) <||Zn+l - z,| + MH":’)
i=1

< “zn+1 - Zn“ + |5n+1 - 5nl ||Gzn+l - Wn+lzn+1||

+ Mﬁ/\i
i=1

< “un+1 - un“ + |8n+1 - ‘Snl ||Gzn+1 -W, +lzn+1||

n
n
+ MH)Li
i=1

< “xn+1 - xn" + |rn+1 - rnlMl

n
+ |8n+1 - 8n| ||Gzn+1 - Wn+1zn+1” + MHAi'
i=1

(68)
Utilizing (61), (62)" and (68), we have

||wn+1 - wn" - "xn+1 - xn”

< 2 (ful + o (o)l + W3]
1 ﬁnJrl

Xn

1- ﬁn
+ "Wn+1yn - Wnyn" + ||yn+1 - yn" - "xn+1 - xn“

+

(IVWoya| + sl + llpf (1)

S 2 (Ol 19 o)+ [7Wor1 3]
+ = (VW] + hull + of (,)])

l_ﬁn
n

+ MH)H + ||anr1 - xn" + |rn+1 - rn|M1
i=1

+ |8n+1 - 8n| “Gzn+1 - Wn+lzn+1"

n
+ MHA‘I - "xn+1 - xn"
i=1

o, —
L (1l + e o)+ [P Wi 3

IN

)

K Q

= ([Wap ] + el + Dyf Gl

1-d

n
+ 2M] A + s — 1l M,

i=1

+ |8n+1 - 8n| “Gzn+1 - Wn+lzn+1"

Abstract and Applied Analysis

n
<M, <(xn+1 +a,+ H/\i
i=1

+ |rn+1 - rn| + |6n+1 - 6n| )
< MZ (‘xn+1 +a, + bn + |rn+1 - rn| + |6n+1 - 8n|) >
(69)
where sup, {(1/(1 =) ([ull + Iy f (x, ) + VW, y,]) + Gz,
Wzl + M, + 2M} < M, for some M, > 0. Since b €

(0,1),lim, _, . &, = 0andlim,, _, . (18,,,; =8,|+|r,.1—1,]) = 0,
we deduce from (69) that

lim sup (”wn+1 - wn" - ||xn+1 - xﬂ”) =0. (70)
n— 00

Since x,,,; = B,x,+ (1 - B,)w, foralln > 1, by Lemma 14 we
obtain from 0 < liminf, _, 3, <limsup,_, .3, < 1 that

lim |lw, - x,| =0, (71)

n— 00

which immediately yields

lim |x,,, —x,[] = lim (1-8,)|w,-x,] =0 (72)

n— oo n— oo

Step 3. |y, — Gz,| — Oasn — oo.
Indeed, utilizing Lemmas 6 and 7(b) we obtain from (47)
and (54) that
%51 - 2l
a, ((u+yf (x,)) - VW,,)
+6, (e, = p)+ (1= B,) Wy, - P ||
< (B, (x, = p)+ (1= B,) Wy, = I
+ 20, ((u+9f (%)) = VW, 20 X1 = P)
= Bullx, = pI” + (1= B) W3 - oI
= Bu (1= B) %0 = Wzl
(u+yf (%,)) = VW3,
< Bullxa = oI + (1= B Iy - 2l
=B (1= B) I = Wz’
(u+yf (%,)) - VW,
< Bullxa = oI + (1= B) I, - oI’
=B (1= B) I - W’
(u+yf (%,)) - VW,
= lxw = 2lI” = B, (1 = B) s = Wl

(Ll + Yf (xn)) - anyn

||xn+1 - P"

+ 2a,,

(73)

||xn+1 - P"

+ 2a,,

01 = £

+ 2a,,

s = £l

+ 2a,,
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which leads to

c(1-d) |x, - W’
< B, (1= B.) | = Wl
< = 2I° = [%es — 2l
+ 200, || (e + pf (%)) = VW3] %1 — 2
< I = X (I = 21+ %000 = 21

+ 20, "(u + Yf (xn)) - ‘_/Wnyn" "xn+1 - P“ :

(74)

Sincelim,, _, . llx,, — %, Il = 0and lim,,_, e, = 0, we deduce

from the boundedness of {x,}, {y,}, {f(x,)} and {W, y,} that

lim |x, - W,y,| = 0. (75)

Also, by Lemma 7(b) we deduce from (47) and (54) that
”yn - p"2 = 6n"Gzn - P“Z + (1 - 811) "ann - P"2
- 671 (1 - 5n) "Gzn - ann"2

< 8n||zn - p"2 * (1 - (Sn) ”Zn - p”2

(76)
=8, (1-8,) |Gz, ~ W,z
= llz. - plI” - 8, (1 - 8,) |Gz, - Wz, |
< %= ol = 8, (1-6,) |Gz, - Wiz, |
From (73) and (76) we get
%1 = I
< Ballxa = oI + (1= B) Iy - 2l
=B (1= B) [, = W
+ 200, || (e + pf (%)) = VW, 2] %1 - £
< Bullxa = oI + (1= By - 2l
+ 20, || (u+pf (%)) = VW %01 = Pl (77)

< ﬁn“'xn - P"2 + (1 - ﬁn)
X [“xn - p"2 - 8;1 (1 - 8n) “Gzn - annHZ]

+ 2a,,

(u + Yf (xn)) - ‘_/Wnynu "xnﬂ - p”
= “xn - P"2 - (1 - ﬁn) 6n (1 - an) ”Gzn - ann"2
(u+yf(x,)) -

+ 2«,, \_/Wn Vi

s = £l

1
which immediately implies that
~ 2
C(l - d) "Gzn - ann“2
< (1 - ﬁn) 8?1 (1 - (Sn) ||Gzn - ann“2
< N AT
b ol = v~ 1 o

(u + Yf (xn)) - VWnyn ||xn+1 - P“
< [l = 2| (12 = I + 2001 = 2l

+2ay "(I/l + yf (xn)) - ‘_/Wnyn" ||xn+1 - p” :

+ 2«,,

Sincelim,, , . &, = Oandlim,, _, lIx,.; —x, |l = 0, we deduce

from the boundedness of {x,,}, {y,}, { f(x,)} and {W, y,} that
nlLIIéO “Gzn - ann” =0. (79)
So, it follows that

nll»r%o “}’n - Gzn“ = nll{%o (1 - 871) "ann - Gzn“ =0.
(80)

Step 4. ||x, —u,| — 0,lu,-z,l — 0,1z, -Gz,| — 0and
lz, - Wz,| — 0asn — oo.
Indeed, for p € Q, we find that

Jut, - I
= 5@ (1 - r,4) x, - SO (1 - 1,,4) ||
< (7 =, A)x, — (I - r,4) p|’ (81)
= |x, - p—r, (Ax, - Ap)|*

< [l = oI + 7, (= 20) [ A, — Ap].

From (47), (53) and (81), we obtain

"yn - P"2 < 8n"Gzn - P”z + (1 - 871) ”ann - P"2
<z = pI* < Ju, - oI’ (82)

< ”xn - P"2 T (rn - 2() "Axn - AP"2’
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which together with (73), implies that <{(I-r,4)x, - (I-r,A) pu, - p)
1
=5 (I =rA) %, ~ (1 =1, 2) pI + s, ~ pIf
||xn+1 - p”2
S ﬁn"xn - p“2 + (1 - :Bn) ”yn - P"2

_”(I - rnA) Xn — (I - rnA) p- (un - P)"z]

: < > [l = 2l + s, - o
- ﬁn (1 - ﬁn) “xn - Wnyn"
- |, - u, -, (Ax, — Ap)|
200 |+ 1f () - W3, s - ] I = = (A, = AP
1
< Bl = plF + (1= 8.) - ol = 5 Wl o=l
+ 20, "(u + Yf (xn)) - ‘_/Wnyn" ”xnﬂ - p“ (83) +2r, <Axn - AP’ Xn — un> - ri“Axn - AP”2] >
2 (86)
< ﬂn"xn _p“ + (1 - ﬁn)
which implies that
X ["xn - p”Z T (rn - ZC) "Axn - Ap"2]
2 2 2
— — < — — —
20, |+ 31 () ~ W, s = I =PI == e = )
+ 27’n “Axn - Ap” “xn - un“ :
= "xn - pHZ + (1 - :Bn) Tn (rn - 2() "Axn - Ap"2
_ From (47) and (87), we have
+ 20, "(u + yf (xn)) - VWnyn" ”xnﬂ - P“ '
"yn - P||2 < 8n“Gzn - p"2 + (1 - 8n) ”erzn - P"2
So, it follows that <z, - 2l < |ua - 2’
(88)
2 2
< = ol =l —
(1-d)c (2 - d)|Ax, - Ap|’ 21, | Ax,, — Ap| [, — ]
<(1-B)r(28-r,) ||Axn - Ap “2 which together with (73), implies that

<l = I = Iaes - 21
+2a, ”(u + yf (xn)) - VWnyn" "xn+1 - p"

< [t = Xall (s = 2+ 60 = 1)

(84) (B P||2

< ﬁnnxn - P"2 + (1 - ﬁn) "yn - P“z

+ 2“1’! (u + Yf (xn)) - anyn "xn+1 - P”
+ 206” (u + Yf (xn)) - ‘_/Wnyn "xn - p" :
" < Bullxa - ol + (1= B.)
2 2
x ||x, — =%, —u,|l” + 2r, |Ax, — Ap| ||x, — u,
Since lim,, , &, = 0 and lim,,_, llx,, — x,.,; Il = 0, from the [“ oIl " “ il “]
boundedness of {x,},{y,}, {W,y,} and { f(x,)} we get +2a, |(u+yf (x,)) - VWn)’n "xn+1 - P”
< “xn - P"2 - (1 - ﬁn) "xn - un"2
lim ||Ax, — Ap|| = 0. 85
i, 4. 4ol ) ax, - apl -
+ 206,, (u + Yf (xn)) - anyn "xn+1 - P” :
Furthermore, from the firm nonexpansivity of Sif)"”), we have (89)
So, it follows that
2
e, - pll (1-d) %, - u

2
S0 (1= ra) x, =827 (1= 1,4) p < (L= B,) %,
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2 2
< [, = plI" = %1 - £
+2r, ||Axn - Ap|| ”xn - un”

+ Z(Xn “(u + Yf (xn)) - ‘_/Wnyn“ “xn+1 - p"

< e = sl (e = 21+ s = 21D
+2r, “Axn - AP” ”xn - ”n”
+ 20, "(u + yf (xn)) - ‘_/Wnyn“ “xn+l - P" :
(90)

Since lim,, _, . &, = 0 and lim,,_, Ilx,, — x,,,1 ]| = 0, from (85)
and the boundedness of {x,},{y,}, {W, y,} and { f (x,,)} we get

,,ILHAO ”xn - un" =0. (1)

Next we show that lim, _ [|A;A’u,
1,2,..., N. Observe that

%, - pf

Aipl =0, i =

= T (7= 4B N0, = T, (T = B) ||
<1 - ) A, = (1 - By) ||

< A, o+ o 20) [ BA B
< ouy = oI + 1 (= 20) B, — Bip

s "xn - P”z + i (p; = 21;) "Bi/\iilun - Bip"z'

(92)
From (47) and (92), we have
“yn - p”Z < SHHGZH - p"2 + (1 - 5n) "ann - PHZ
< lzw =l < |A'w, - p)

. )
BA"'u, - Bp|,
(93)

< |l = ol + o4 (s = 2) |
which together with (73), implies that
2
||xn+1 - p“
b Bn”xn - P"z +(1 - ﬁn) nyn - p||2
+ 20, “(u + Yf (xn)) - anyn
= ﬁn”xn - P"2 + (1 - ﬁn)
i 2
X [||xn = pl* + s (- 27) "BiA ', - Bil’” ]

+ 20, (u+yf (x,) = VW,

“xn+1 - P"

“xn+1 - P"
= |lx, - P||2 +(1=B,) wi (i = 2m;) ”BiAi_lun - BiPHZ

+ 20, “(u + )}f (xn)) - VWnyn“ ||xn+1 - p" :
(94)

13
So, it follows that
(1 - ‘;l) wi (21 = ;) "BiA i, ~ BiP"
i— 2
< (1= By)w (21 — ;) "BiA ', - BiP"
<l 9l = s - oI o
n (u + Yf (xn)) - anyn "xn+1 - P"
<l = el (e = 2l + s = )
+ 20, ”(u + Vf (xn)) - anyn" "xn+1 - p" :

Since p; € (0,2y;), i = 1,2,...,N,lim, ,«, = 0
and lim, _, . llx,, — x,.11 = 0, from the boundedness of

{x, 5y}, {W, y,} and { f(x,,)} we get
lim |BA'w, - Bip| =0, Vie{l,2,...,N}. (%)

By Lemmas 7 (a) and 16, we obtain

[x'w, ~ ol
= a7 = B N, = T, (1= B,) ||
< ((I - wB) A 'u, - (I - wB;) p,A'u, - p)
= ([0 BNy - )l [~
- ) A~ (- ) p - (M, - p)[)
<5 (A= ol + ', o
A, ~ A~ (BA - Bp)|)
< 5 (I, = oI + |4’ - pff
A", - A, - (BA - B, p)||2)
< 3 (=l + 4%, =

_.|Ai71un - Aiun - .ui(BiAiilu" - B’p)"z) >
(97)
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which implies that

T R
- A", = Ay - g (B, - Bip) [

= lu - ol — A, — A, 2

— yiz"BiAi_lun - Bip||2
+ 20 (A"w, = Nu,, BA™ u, - Byp)

<y — ol — A", ~ A, g

2|ty | B, B

From (47) and (98), we have

“yn - P"2 < 6n|len - P"2 + (1 - 6n) "ann - P“Z

<z, - p||2 < ||Aiun - p"2
(99)
<y = o - Ay - Al |

+2u | Ay, - A'u, || BA - Bip|,
which together with (73), implies that

%1 = I

< Bullxn = oI + (1= B Iy - 2l
(u+yf (30) = VW, 2] 01 = 2l
< Bllx, = pl" + (1-B,)

x ["xn - P”2 - “Ai_lun - Aiun"2

+ 2a,,

2 44 [N, — N | |BA w, - Bip] |
+ 20‘% “(u + yf (xn)) - vwnyn” len+l - p"

= ”xn _P"2 - (1 - ﬁn)

+ 24 HAHun - Aiun

i-1 i|?
A un—Aun"

BA'u, - Byp|

+ 20, “(u + )}f (xn)) - vwnyn” “xn-H - p" :
(100)
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So, it follows that

(1 - J) "Ai_lun - Aiun ?

<(1-p8,) “AHun - Aiunu2

o A

+ 240 | Ay — N | [ BAT B (101)

+ 200, | (e + pf (%)) = VW, 9] %01 - £
< "xn - xnﬂ“ (“xn - P" + "xnﬂ - P”)

o |t - N B, - ]

(u + Vf (xn)) - VWnyn "xn+1 - PH .

+2a,

Since lim,, _, . &, = 0 and lim,, , llx, — x,,,1 ] = 0, from (96)

and the boundedness of {x,,}, {y,}, (W, y,} and { f (x,,)} we get

Jim A, - A, =0, Vie{l,2..,N}. (102)
From (102) we get
”un - Zn" = “Aoun - AN”n

< “Aoun - Alun

+ "Alun - Azun”

(103)
+o “AN_lun - ANun"
— 0 asn— o00.
By (91) and (103), we have
"xn - zn” < "xn - un" + ”un - zn”
(104)

— 0 asn— o00.

On the other hand, for simplicity, we write p = TS 2(I -
V,A,)p, v, = TSZ(I—VZAZ)ZH andv, = Gz, = Tff‘(l—lel)vn
for alln > 1. Then

p=Gp= TS?I (I-vA)p
(105)
=T, (I-vA) T, (I-v,A,) p.
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We now show that lim,_, Gz, — 2z, = 0, that is,
lim, _, ¥, —z,ll = 0. As a matter of fact, for p € €, it follows
from (47), (54) and (55) that

I = pI” < 8.,1Gz, - pI + (1-8,) [Wyz, - oI
<87, - pI* + (1-8,) |z - oI
<8, [Iva = BI” + 7 (0 = 26) 41w, - 4,5
+(1-8,) |z, - oI’
<8, [llzn = pI* + 72 (v = 285) A2, = Asp|’
+v (0 =20,) A, - A, B
+(1-3,) |z, - oI’
= llzo = pI* + 8, (v, (v, = 28,) |42z, — A pl
(1= 20) A, - A5])
< %, - oI’
+9, (”2 (v, - 28,) |Azz, - AzP"2
1y (= 20) |4y, - A7),

(106)

which together with (73), implies that

%1 = I
< Bullxa - oI + (1= B Iy - 2l
(u+2f (%)) = VW] 01 = £
< Bulxu = pl* + (1-5,)
x [ ol
+9, (Vz (v, —20,) |Asz, - AzP”2
v (0 = 20) A, - A B[]

(u * Yf (xn)) - anyn" "xn+1 - p”

+ 2«

+ 2«

= %, - 2l
+ (1 - ﬁn) 0, (7’2 (7’2 - 2(2) "Azzn - AzP"2
(1= 20) A, - A7)

+2a, "(u + Vf (xn)) - v‘/Vnyn" "xn+1 - P“ :
(107)
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So, it follows that

(1 - (3) E(”z (28, -,) "AZZn - AzP"2
+v; (26, =) |A v, - A1i5||2)
< (1 - /jn) 8n (VZ (262 - VZ) "AZZn - A2p"2

+7, (28, - ;) ||A1Vn - A113||2)

(108)
< e = 2l = Jenes = I
+ 20, (u + Yf (xn)) - ‘_/Wnyn "xn+1 - P"
< “xn - xn+1" ("'xn - P” + “xn+1 - p")
+ 2“71 'l(u + Vf (xn)) - anyn" "xn+1 - P" :
Since v, € (0,2{;),k = 1,2, lim, &, = 0 and
lim, , lx, - x,4 = 0, from the boundedness of

{x, 5 Ay AW, y,} and { f(x,,)} we get
nli_)rrg() |Av, - A p| =0.
(109)

nleréo [A,z, — Asp| =0,

Also, in terms of the firm nonexpansivity of T+ and the -
k

inverse strong monotonicity of A, for k = 1,2, we obtain
from v, € (0,2{,),k € {1,2} and (54)-(55) that

Iv. - 3l

TSZ (I-%4,)z, - ng (I-7,4,) P"2

< (T =7,45) 2, ~ (1= %,4,) prv, ~ )

= (109402~ (1=, pIF + v, ~ B
T = %,40)z2, ~ (L =%,A,)p - (v, - D]

< 2 lzw- oI + I - B

Nz = ) = 7> (As2, = Asp) = (p - B)|]

< 2 (b p + 1= B - Nz~ v) = (o~ P

+27/2 <(Zn - Vn) - (P_ﬁ)’AZZn _A2p>

-4,z - Asp|’]
7, - ol
= T @ - A, - T~ n A DB
<{(I-7A)v,—(I-nA) PV, - p)
= LI a 0w, - @ -5 AR + -

| =vA DY, - T-nADE- @, - p)|]
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1 — _ — —
<[l BlI* + 17— 2I” - |0 =70 + (- DI
+2v, (A, - AP, (v, =9,) +(p- D))
_”ﬂlAl"n - A1ﬁ”2]

<

[l =2l + 170 = oI = 1 =7) + (0 - DI’

N | =

+2V1 <A1Vn - Alﬁ’ (Vn _vn) + (p - ﬁ))] :
(110)

Thus, we have

v = B < I, = 21 = (20 = ) = (0= DI
+27, (2, = v,) = (P = P), As2, — Ayp) (11D)
~3lAxz, ~ Aspl’,

7 = 21" < low = I =1 = %) + (P = DI

+2v; |Ayv, = AP (v, = 7) + (P - D) -
(112)

Consequently, from (47), (54), (55) and (111) it follows that

Iy, - oI
<68,|Gz, - pl + (1= 8,) W,z - pI
< 8l - pI” + (1-8,) |z - oI
< 8llva = BI” + (1-8,) |z - p°
<8, [, - plI* - Iz = v) - (2 - DI (113)
+293((2, = v,) = (P~ B) » A»2, — A, p)]
+(1-8,) %, - oI’
< %, - pl* = 8z = va) - (p - B)I

+ 21}2 ”(Zn - Vn) - (P - ?)” ”AZZn - AzP” >

which together with (73), implies that

%1 = I
< ﬁn”xn - p"2 + (1 - ﬁn) ||yn - P”z

Abstract and Applied Analysis

i1 = £

+ 20, (4 pf (x,)) = VW,p,

< ﬁn“xn - P"2 + (1 - ﬁn)
x [“xn - p"2 - ann(zn - Vn) - (P - ﬁ)uz

+21}2 ”(zn - Vn) - (P - ﬁ)" "AZZn - AzP”]

01 = £

+ 20, || (u + yf (x,)) - VW,,

< Jxe - oI = (1= B 8z = v) - (p - D)
+ 21/2 ”(Zn - Vn) - (P - ﬁ)" "AZZn - AzP"

+ 20, ”(u + Vf (xn)) - V‘/vnyn" "xn+1 - p" :

(114)
So, it follows that
(1-d) ez~ v) - (- P
<(1-B)8lz -v) - (p- DI’
<Jlxw = 21 = 1 = 2l
o) - (p- Pz - Awpl

+2ay ”(u + yf (xn)) - \_/Wnyn" "xn+1 - p"
< e = sl (e = 21+ nes = 21D
+ 20 [[(20 = va) = (P = D) 422, - Asp|

(u + Yf (xn)) - \_/Wnyn

"xn+1 - p" .

+ 2a,,

Sincelim,, , . &, = Oand lim, _, . llx,—x,.] = 0, from (109)
and the boundedness of {x,,}, {y,}, {W, y,} and { f (x,,)} we get

lim (2, - v,) - (p-p)| = 0. (116)
Furthermore, from (47), (54) and (112) it follows that
Iy = 2l < 8,1G2, = pI” + (1-6,) [W,z, - p|
<87, - pI* + (1=, |z - oI
<8, [Ix. - pI* - | =7 + (p - DI’
29, A, = A |(v - 7) + (P - B)]
+(1-8,) |x, - pl’

< [x =2l =8 (v = 7) + (0 - DI

+2v |[A v, = APl (v, = 7) + (P - D)
(117)
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which together with (73), implies that
%1 - I
< Ballx, - I + (1= By - 2l
+ 20, [+ 1 () - VW,
< Bullx, = pl* + (1= B,)

yn" "xn+1 - p”

X [“xn - p"2 - 8n||(vn - Vn) + (p - 1“)‘)”2
(118)
+2v, [|Ayw, = A | | (v, - %) + (P - P "]
+ Z(Xn n)) - VWn}’n" "xn+1 - P”
<%, - pI° - (1-B,)3, |I(V +(p-PI’
+2v | Ay, = Ap | (v, - (p Pl
+ Z(Xn n)) - VWn}’n" "xn+1 - P” .
So, it follows that
(1-d)el (v, -7) + (p-P)I
< (1 - IBn) 5n"(vn —7,,) + (p - ﬁ)”z
< % = 2l = I = £I°
+2v, A, —
AW, = A (v, " +(p-pl )
+2a,, "(u + Yf (xn)) - VWnyn" "xnﬂ - P“
£ "xn - an“ (“xn - P" + "xn+1 - P”)
+2v; Ay, = AP | (v, = 7,) + (p - P

+ 200, "(u * Yf (xn)) - ‘_/Wnyn" "xnﬂ - p“ :

Sincelim, _, &, = O andlim,, _, lIx,, —x,.. ]l = 0, from (109)

and the boundedness of {x,}, {y,}, {W, y,} and { f (x,,)} we get

Jim [[(v, -7,) +(p-p)| = (120)
Note that
"Zn_vn" < ”(Zn_vn)_(P_?)“+“(Vn_v (P P ”
(121)
Hence from (116) and (120) we get
lim o, =7 = lim e, -Gzl =0, (22)
which together with (79), implies that
Iz, = W,z|| < ||z, - Gz, + |Gz, — W,z
(123)
— 0 asn— oo0.
Also, observe that
"Zn - Wzn” < "zn - ann” + ”ann - Wzn” : (124)
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From (122), Remark 10 and the boundedness of {z,} we
immediately obtain

lim ||z, - Wz, = 0. (125)
Step 5. We show that
li -V)x",x,-x") <0,
im sup (u+(pf-V)x"x,-x") < (126)

where x* is a solution of (OP2).

Indeed, we note that V' is a y-strongly positive bounded
linear operator and f: H — H is an [-Lipschitzian mapping
with yl < (1 + u)y. Itis clear that

((Vx = (u+yf () - (Vy-

> ((L+w)y -9 |x -y

(w+yf (), x-y)
a

Vx,y € H.

27)

Hence we deduce that \_/x—(u+y f (x)) is ((1+u)y—yl)-strongly
monotone. In the meantime, it is easy to see that Vx — (u +
pf(x)) is (VI + yl)-Lipschitzian with constant VI + yl > 0.
Thus, there exists a unique solution x* in Q to the VIP

Vu € Q. (128)

<u+ (yf—\_/)x*,u—x*> <0,
Equivalently, x* € Q solves (OP2) (due to Lemma 20).
First, we observe that there exists a subsequence {xni} of
{x,,} such that

lim sup <u+ (yf —\_/) x", x, —x*>
e (129)
- llggo <u + (yf—V)x*,xni - x*> .

Since {x, } is bounded, there exists a subsequence {x, } of

{x,,} which converges weakly to some w. Without loss of
generality, we may assume that x,, — w. From (91) and (102)-
(104), we have that u, — w, A u, — wandz, — w,
where m € {1,2,. N }. By (122) and (125) we have that
Gz, — z,] — 0 and Wz, -z, — O0Oasn — oo.
Utilizing the similar arguments to "those of (55), we know
that G is nonexpansive. Hence, by Lemma 12 we obtain w €
Fix(G) = SGEP(G) and w € Fix(W) = N7, Fix(T,) (due
to Lemma 11). Next, we prove that w € NY_ I(B,,, R,,). As a
matter of fact, since B, is #,,-inverse strongly monotone, B,,
is a monotone and Lipschitz continuous mapping. It follows
from Lemma 19 that R,, + B,, is maximal monotone. Let
(v,g) € G(R,, + B,,), thatis, g — B,,v € R, v. Again, since
A", = Jg o (I = B )N "un = 1,m € {1,2,...,N},
we have

A", — p, B, A"y, €

(I+up,R,) A" u,. (130)

that is,

L (A"Hun -A"u,

— B, A" 0,) € R A0, (131)
7
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In terms of the monotonicity of R,,, we get

<v - A"u,,g- B,,v

—Mim (A" 'u, = A", - MmBmAm_lun)> (132)
>0,
and hence
(v—AN"u,, g)

> <v - A"u,,B,v

+‘uL (Am_lun - AN"u, - ymBmAm_lun)>

= <v - A"u,, B, v—B,AN"u, + B, A"u, — B, A" 'u,
1 m—1 m
+— (A u, - A un)
Hm
> <v - A"u,, B, A"u, - BmAmflun>

+ <v - AN"u,, L (Am_lun - Amun)> .

m

(133)
In particular,

<v - A"u,, g> > <v - A"u,, B, A"u, - BmAmfluni>

+ <v - AN"u,, [JL (Am_luni - Amuni)> .

" (134)

Since [A™u, — A" 'u,|| — 0 (due to (102)) and ||B,,A"'u,, —
B,,A"'u,| — 0 (due to the Lipschitz continuity of B,,),
we conclude from A™u, — wandy, € (0,2n,),m €
{1,2,..., N} that

lim (v=A"u,,g) = (v-w,g)20. (135

It follows from the maximal monotonicity of B,, + R,, that
0 € (R, + B,)w, thatis, w € I(B,,,R,,). Therefore, w €
nN_ 1(B,,, R,,).

Next, we show that w € GMEP(®, ¢, A). In fact, from
u, = S (I - r,A)x,, we know that

O (uy y) + o (¥) — 9 (u,) + (Ax,, y —u,)

P2 <K'(un)—K'(xn),y—un> >0, VyeC.
rn
(136)
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From (H2) it follows that

()~ () + (Ax,, y - u,)
+ rl <K, (un) - K’ (xn) Y = un> >0 (y’ un) > (137)

Vy € C.

Replacing n by n;, we have

o (») -9 (u,)+(Ax,,y - u,)

’ _ !
+<1< (us) - K <x""),y—un,.> 20 (y,u,),

Tni

Vy e C.
(138)

Putu, =ty + (1 -t)wforallt € (0,1] and y € C. Then, from
(138) we have

<ut - uni,Aut>
2 <”t - un,-’A“t> - ¢ (u,)

te (u"i) - <ut - u”i’Ax”i>

i <1<’ (,) - K’ (x""),ut —un,.> 0 (upu,)

T'ni

> <ut — U, Au, - A’/‘n,.>

+ <ut -y, Au,, — Axni> -¢o(u)+¢ (”n,.)

—<K,(uni)_K’(x"i) u, —u >+®(u u )
> 7t n; t>"n; )

r
(139)

n;

Since IIuni - X, | — O0asi — o0, we deduce from the
Lipschitz continuity of A and K " that IIAuni - Ax, I — 0
and IIK'(uni) - K'(xnl_)ll — 0asi — oo. Further, from the
monotonicity of A, we have (u, — u,, Au, — Au, )} > 0. So,
from (H4), the weakly lower semicontinuity of ¢, (K ’(“n,-) -
Kl(xn,.))/”n,. — 0and U, — w, we have

as i — 00.
(140)

(u — w, Auy) > —9 (1) + ¢ (W) + O (u, w),
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From (H1), (H4) and (140) we also have

0=0(u,u) +¢ () o)
<10 (1, y) + (1= 1) © (up, w) + 9 (y)
+(1-1) ¢ W)~ ¢ (u)
=t[0(upy) + 9 (y) -9 ()]
+ (1= [0 (4, w) + ¢ (W) — ¢ (W) — ¢ (u)]
<[ (upy) + ¢ () = ¢ ()] + (1= 1) (uy ~ w, Auy)

=t[@(upy) + () — @ (u)] + (1 - )t (y —w, Au,),

(141)
and hence
0<O(ny)+o(y)—ou)+1-1){y-w,Au,).
(142)
Lettingt — 0, we have, for each y € C,
00w, y)+9(y)-9w)+(Aw,y—w).  (143)

This implies that w € GMEP(®, ¢, A). Therefore, w ¢
N, Fix(T,)NGMEP(®, ¢, A)NSGEP(G)nnY, I(B,, R;) := Q.
This shows that w,(x,) ¢ Q. Consequently, from (128) and
(129) we have

limsup (u + (yf = V) x",x, - x*)

n— 00

- <u+(yf—7)x*,w—x*> <0.

(144)

Step 6. Finally, we show that x, — x" € Qasn — oo.
Indeed, from (47) and (54), we have

|y, = x* ||2 <4,|Gz, - x* ||2 +(1-6,)|W,z, - x*”2
(145)

<z = x"1" < s - x|
In terms of Lemma 6 we have

s = "I
Xy (u + Yf(xn) _\_/x*) + ﬁn (xn - x*)
+((1 _/371)1_ an‘_/) (Wnyn —X*) ’
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ﬁn(xn - x*) + ((1 - ﬁn)l - (XHV) (Wnyn - X*)"2
+ 20, <u +9f (x,) = VX", x,0, — x*>

< [J(0 =BT =) Wy =) B s =] 2
20, (F (5) = £ (), % )

+ 2a, <u+ v (x7) = Vx*, x,0 —x*>

<

<[(1= By =, (14 @) |3 = X" + B, = <117
+ 20,1 [x, = x| 00 = X7
+ 20, (u+yf (x7) = Vx©, x,, — x7)

< (1= a1+ @) [x, - 27|
+ oyl (o, = [ + v = x°[7)

+ 20, <u+ v (x*) = Vx*, x,0 —x*> ,

(146)
which leads to
e = "I
1-20, (1+ @) 7+ (1 +p)’F + oyl
- 1-a,yl
xJx, = x|
Z(Xn 3 I7 ¥ *
+ agl <u+yf(x )= VX", x4, — X >
[, 2+ y -, "
S P20 e LY PR
nY
+M“ —x|P
1-a,yl "
206” 3 I7 ¥ *
+ agl <u+yf(x )= VX", x4, — X >
2((1 Y-
§ [1_ (L+w)y -y, I, -
1-a,yl
21+ W7-1Da,
1-a,yl
% ((xn(l"'[’l)Z?Z)MO + 1
2(M+w)y-vyD)  (Q+w)y-yl
x<u+yf(x*)—\_/x*,xn+1—x*>}
= (1 - Yn) ”'xn - x*HZ + 0, Vns
(147)
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where M, = sup{lx, - x> : n > 1}y, = 2((1 + Wy -
yha, /(1 — a,yl) and 0, = ((«,(1 +_[4)2?2)M0/2((1 + Uy -
YD)+ (1 /(1 +p)y-yD))u+yf(x*)-Vx™, x,,, —x*). Itis easy
to see that )2, y, = oo and limsup,_, . .0, < 0. Hence by
Lemma 15, we infer that the sequence {x,} converges strongly
to x*. This completes the proof. O

Corollary 22. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let N be an integer. Let ® be a bifunction
from C x C to R satisfying (Hl)-(H4) and ¢ : C — Rbea
lower semicontinuous and convex functional. LetR; : C — 2H
be a maximal monotone mapping and let A : H — H and
B; : C — H be (-inverse strongly monotone and »;-inverse
strongly monotone, respectively, where i € {1,2,...,N}. Let
{T,}72, be a sequence of nonexpansive mappings on H and
{A,} be a sequence in (0,b] for some b € (0,1). Let V be a
y-strongly positive bounded linear operator and f : H — H
be an I-Lipschitzian mapping with yl < (1 + u)y. Let W, be the
W-mapping defined by (9). Assume that Q := 0.2, Fix(T,) N
GMEP(®, ¢, A) N NN, I(B;, R;) # 0. Let {a,},{B,} and {8,} be
three sequences in [0, 1]. Assume that:

(i) K : H — Ris strongly convex with constant o > 0 and
its derivative K' is Lipschitz continuous with constant v > 0
such that the function x +— (y — x,K'(x)) is weakly upper
semicontinuous for each y € H;

(ii) for each x € H, there exist a bounded subset D, c C
and z,. € C such that forany y ¢ D,,

©(y.2) +9(2) —9(y)

L, , (148)

+ - <K (y)-K (x),zx—y> < 05
(iii) lim,, _, o006, = 0, Y02 o, = 00, 0 < liminf, _, B, <
limsup, , B, < 1 and 0 < liminf,_ 6, <

limsup, , 5, < 1;
(iv) w; € (0,2n;),i € {1,2,...,N}, and {r,} < [0,2(]
satisfies 0 < liminf, | r, <limsup, _, 7, < 2(;
(W) lim,, _, (18,1 = 8| + I,y —1,]) = 0.
Given x, € H arbitrarily, then the sequence {x,} generated
iteratively by
u, = Sﬁ?"p) (I-r,A)x

n n>

Zn = ]RN:MN (I - ‘uNBN) ]RN—I’.MN—I
X (I = ppn-1Byo1) - TR, (I - By)u,,
Yn = 6nzn + (1 - 6n) ann’

(149)

Xn+1 = %y (u + yf (xn)) + ﬂnxn
+ ((1 - /3n) I- Xn (I + [/lV)) Wnyn’

converges strongly to x*

Vn>1,

€ Q which solves the following

optimization problem provided S£®"”) is firmly nonexpansive:
min® (Ax, x) + Llx — ul — h (x) (OP3)
02 2 ’

where h is the potential function of yf.
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Proof. In'Theorem 21, putting®, = ®, = 0and A, = A, =0,
we get Gz,, = z, and SGEP(G) = C. Utilizing Theorem 21 we
derive the desired result. O

Corollary 23. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let ©®,®,, ®, be three bifunctions from
C x C to R satisfying (H1)-(H4) and ¢ : C — R be a lower
semicontinuous and convex functional. Let R; : C — 2H
be a maximal monotone mapping and let A,A, : H —
Hand B; : C — H be (-inverse strongly monotone, (-
inverse strongly monotone and n;-inverse strongly monotone,
respectively, fori = 1,2 and k = 1,2. Let {T,}> | be a sequence
of nonexpansive mappings on H and {A,} be a sequence in
(0,b] for someb € (0, 1). Let V be a’y-strongly positive bounded
linear operator and f : H — H be an I-Lipschitzian mapping
with yl < (1 + wu)y. Let W, be the W-mapping defined by
(9). Assume that Q = n2 Fix(T,) N GMEP(®,¢,A) N
SGEP(G) N I(B,, R,) N I(By, R,) #0 where G is defined as in
Proposition CY. Let {«,},{f,} and {3,} be three sequences in
[0, 1]. Assume that:

(i) K : H — Ris strongly convex with constant ¢ > 0 and
its derivative K' is Lipschitz continuous with constant v > 0
such that the function x +— (y — x,K'(x)) is weakly upper
semicontinuous for each y € H;

(ii) for each x € H, there exist a bounded subset D, c C
and z,. € C such that forany y ¢ D,,

®(y’zx)+¢(zx)_¢(y)
1, , (150)
+;<K (y)-K (x),Zx—y><0;

(iii) lim,, _, o006, = 0, Y02 e, = 00, 0 < liminf, , B, <
limsup, , B, < 1 and 0 < liminf 5, <
limsup, , 5, < 1;

(iv) v, € (0,20,), k = 1,2, y; € (0,2n;), i = 1,2, and
{r,} c [0,2{] satisfies 0 < lim inf, < limsup, _, 1, <
24

(v)lim,, _, oo (16,1 = S,,| + |y — 1]) = 0.

Given x, € H arbitrarily, then the sequence {x,} generated
iteratively by

n— 00

naoorn

u, = Sin@’@ (I-r,A)x,,
2, = TRy, (I -,B,) TR, (I - By)u,
v, =0,Gz, +(1-6,)W,z,, (151)
Xn+1 = &y (u + Yf ('xn)) + ﬁnxn
+((1_ﬁn)1_(xn (I+.MV))Wnyn’ Vn =1,

converges strongly to x* € Q which solves the following
optimization problem provided S$®‘q’) is firmly nonexpansive:

in# L upp -
1;16182 (Ax,x)+2||x ul|” - h(x), (OP4)

where h is the potential function of yf.
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Corollary 24. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let ©®, ®,, ©®, be three bifunctions from
C x C to R satisfying (H1)-(H4) and ¢ : C — R be a lower
semicontinuous and convex functional. Let R : C — 25 be a
maximal monotone mapping and let A, A, : H — Hand B:
C — H be (-inverse strongly monotone, (-inverse strongly
monotone and n-inverse strongly monotone, respectively, for
k =1,2. Let {T,};2, be a sequence of nonexpansive mappings
on H and {A,} be a sequence in (0,b] for some b € (0,1).
Let V be a y-strongly positive bounded linear operator and
f+H — H beanl-Lipschitzian mapping with yl < (1 + u)y.
Let W, be the W-mapping defined by (9). Assume that Q) :=
N2 Fix(T,) N GMEP(®, ¢, A) N SGEP(G) N I(B, R) # 0 where
G is defined as in Proposition CY. Let {«,}, {f,} and {5,} be
three sequences in [0, 1]. Assume that:

(i) K : H — Ris strongly convex with constant ¢ > 0 and
its derivative K' is Lipschitz continuous with constant v > 0
such that the function x +— (y — x,K'(x)) is weakly upper
semicontinuous for each y € H;

(ii) for each x € H, there exist a bounded subset D, c C
and z,. € C such that forany y ¢ D,,

O(y.z,) +¢(z.) —¢(»)

1, , (152)

+ (K () - K ()2, 7) <0
(iii) lim,, _, o006, = 0, Y02 o, = 00, 0 < liminf, , B, <
limsup, , B, < 1 and 0 < liminf,_ 65, <

limsup, , 5, < 1;

(iv) v, € (0,28,), k = 1,2, € (0,2%), and {r,}  [0,2(]
satisfies 0 < liminf, | r, <limsup, _, 7, < 2(;

(v) lim,, _, oo (18,11 = Ol + |70y —74l) = 0.

Given x, € H arbitrarily, then the sequence {x,} generated
iteratively by

u, = 807 (I -1,4) x,
Y =0,GJpa (I - AB) u,,
+(1-6,)W,Jgr I -AB)u,, (153)
Xpe1 = 0 (u+ f (x,)) + Box,
+((1=B) I =, (I+pV)) W,y

converges strongly to x* € € which solves the following
optimization problem provided S£®"") is firmly nonexpansive:

Vn>1,

in Lix— P -
min® (Ax, x) + ~flx —ul” ~h (), (OP5)

where h is the potential function of yf.

Corollary 25. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let N be an integer. Let ®, ®,, ©, be three
bifunctions from CxC to R satisfying (H1)-(H4) and ¢ : C —
R be a lower semicontinuous and convex functional. Let R; :
C — 2" be a maximal monotone mappingandlet A, : H —
H and B; : C — H be {i-inverse strongly monotone and ;-
inverse strongly monotone, respectively, where k € {1,2} and
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i € {1,2,...,N}. Let {T,};>, be a sequence of nonexpansive
mappings on H and {A,)} be a sequence in (0,b] for some b €
(0,1). Let V be a y-strongly positive bounded linear operator
and f : H — H be an I-Lipschitzian mapping with yl <
(1+w)y. Let W,, be the W-mapping defined by (9). Assume that
Q := N%, Fix(T,) N MEP(®, ¢) N SGEP(G) N NN, I(B;, R;) # 0
where G is defined as in Proposition CY. Let {«,,}, {3,,} and {5,;}
be three sequences in [0, 1]. Assume that:

(i) K : H — Ris strongly convex with constant ¢ > 0 and
its derivative K' is Lipschitz continuous with constant v > 0
such that the function x — (y — x, K'(x)) is weakly upper
semicontinuous for each y € H;

(ii) for each x € H, there exist a bounded subset D, c C
and z,. € C such that for any y ¢ D,,

O (y.z,) +o(z,) —o(y)
1, , (154)
+ (K () - K ()2~ ) <03

(iii) lim,, _, oo0, = 0, Y02 @, = 00, 0 < liminf|
limsup, , B, < 1 and 0 <
limsup, _, 0, < 1;

(i) ve € (0,20), k € {L,2L y; € (0,2), i
{1,2,..., N}, and {r,} is a bounded sequence in (0, 00) satis-
fyingliminf, | r, > 0;

(v)lim,, _, (16,11 =6, + 1,1 —1,1) = 0.

Given x, € H arbitrarily, then the sequence {x,} generated
iteratively by

n— OO[)’Vl
lim inf 1)

n—-oo-n

IAIN

m

© () +9 () =9 (0) + - (K () K (x,). - 1,)
>0, VyeC,
Zy = ]RN,yN (I - P‘NBN) ]RN_I,yN_l
X (I = py-1By-r) - TR (I - B,)
Yo =0,Gz, + (1-8,)W,z,,
Xpe1 = 0 (u+f (x,)) + B,

+((1_ﬁn)1_“n (I+A"1V))Wnyn’ Vn>1,

(155)

converges strongly to x* € Q which solves the following
optimization problem provided S$®‘(") is firmly nonexpansive:

in# LI
21;(1212 (Ax,x)+2||x ul|” - h(x), (OP6)

where h is the potential function of yf.

Proof. In Theorem 21, foralln > 1, u, = Sif)"”)(l —-r,A)x, is
equivalent to

O (u, y) + 9 (¥) — 9 (u,) + (Ax,, y —u,)

(156)
oL <k'(un)—k'(xn),y—un> >0, VyeC.
rn
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Put A = 0. Then it follows that

© (1,3) + 9 ()~ 9 4) + = (K () K (3,). - )

>0, VyeC.
(157)
Observe that for all { € (0, co)
(Ax— Ay, x - y) = {|Ax - Ay|", Vx,yeH. (158)

So, whenever 0 < liminf, , r, < limsup, .1, < 2¢
for some { € (0,00), we obtain the desired result by using
Theorem 21. O

Let T : H — H be a k-strictly pseudocontractive
mapping. For recent convergence result for strictly pseudo-
contractive mappings, we refer to [16]. Putting A = I — T, we
know that for all x, y € H

= A) x (T - A) y| < |x -y + x| ax - Ay (159)
Note that

I-A)x—T-Ay| =|x-y| +|Ax - Ay|
Y L e I LR A
-2{(Ax - Ay,x - y).

Hence we have forall x, y € H
1 —
2

Consequently, if T': H — H is a x-strictly pseudocontrac-
tive mapping, then the mapping A = I -T'is (1 —«)/2-inverse
strongly monotone.

(Ax - Ay,x—y) > £ Ax - Ay|. (161)

Corollary 26. Let C be a nonempty closed convex subset of
a real Hilbert space H. Let N be an integer. Let ©,0,,®, be
three bifunctions from C x C to R satisfying (H1)-(H4) and ¢ :
C — R be alower semicontinuous and convex functional. Let
R;: C — 2" be a maximal monotone mapping and let T, A, :
H — HandB; : C — H be k-strictly pseudocontractive, (-
inverse strongly monotone and w;-inverse strongly monotone,
respectively, where k € {1,2} and i € {1,2,...,N}. Let {T,},2,
be a sequence of nonexpansive mappings on H and {A,)} be a
sequence in (0,b] for some b € (0,1). Let V be a y-strongly
positive bounded linear operator and f : H — H be an I-
Lipschitzian mapping with yl < (1 + u)y. Let W,, be the W -
mapping defined by (9). Assume that Q = N2 Fix(T,) N
GMEP(®, ¢, A) N SGEP (G)NNY, I(B;, R;) # 0 where A = [-T
and G is defined as in Proposition CY. Let {«, },{8,} and {6,}
be three sequences in [0, 1]. Assume that:

(i) K : H — Ris strongly convex with constant o > 0 and
its derivative K' is Lipschitz continuous with constant v > 0
such that the function x +— (y — x,K'(x)) is weakly upper
semicontinuous for each y € H;

(ii) for each x € H, there exist a bounded subset D, c C
and z,, € C such that for any y ¢ D,,

O(y,z,) +9(z) —9(y)

) , (162)
+% (K'(y) - K'(x),2, - y) < 0;
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(iii) lim,, _, o006, = 0, Y02 e, = 00, 0 < liminf, , B, <
limsup, , B, < 1 and 0 < liminf,_ 65, <
limsup, _, 0, < 1;

() v € (0,2), k € {L,2L w € (0,2y),i €
{1,2,...,N}, and {r,} [0, 1 — «] satisfies

0< liznjg r, <limsupr, <1-x; (163)

(v)lim,, _, oo (16,51 = 6,,| + |1y — 1) = 0.
Given x, € H arbitrarily, then the sequence {x,} generated
iteratively by
U, = S£®)(P) ((1 - rn) Xp T rnTxn) >
Zn = ]RN>HN (I - MNBN) ]RNfI’”Nfl
X (I = pn_1By-1) TR (I - By u,,
Yn = 6nGZn + (1 - (Sn) ann’

(164)

Xne1 = Ky (u + Yf (xn)) + ﬁnxn
+ ((1 - ﬁn) I- Xn (I + ‘MV)) Wnyn’

converges strongly to x* € Q which solves the following
optimization problem provided S£®’¢) is firmly nonexpansive:

Vn=>1,

int L up -
rg(r)lz(Ax,tzllx ul” = h(x), (OP7)

where h is the potential function of yf.
Proof. Since T is a k-strictly pseudocontractive mapping, the
mapping A = I — T is (1 — x)/2-inverse strongly monotone.

In this case, put { = (1 — k)/2. Moreover, we obtain that

u, = Sif)"”) (I-r,A)x,

=899 (x, —r, (I-T)x,) (165)
o,
- Siﬂ D ((1-r,)x, +r,Tx,).
So, from Theorem 21, we obtain the desired result. O

Corollary 27. Let C be a nonempty closed convex subset of
a real Hilbert space H. Let N be an integer. Let ©,0,,®, be
three bifunctions from C x C to R satisfying (H1)-(H4) and ¢ :
C — R be a lower semicontinuous and convex functional. Let
R;: C — 2" be a maximal monotone mapping and let A, A, :
H — HandB,; : C — H be{-inverse strongly monotone, (-
inverse strongly monotone and w;-inverse strongly monotone,
respectively, where k € {1,2} andi € {1,2,...,N}. Let V be a
y-strongly positive bounded linear operator and f : H — H
be an I-Lipschitzian mapping with yl < (1 + u)y. Assume that
Q := GMEP(®, ¢, A) N SGEP(G) N NN, I(B,, R;) # 0 where G
is defined as in Proposition CY. Let {a, }, {8,,} and {6, } be three
sequences in [0, 1]. Assume that:

(i) K : H — Risstrongly convex with constant ¢ > 0 and
its derivative K' is Lipschitz continuous with constant v > 0
such that the function x +— (y — x,K'(x)) is weakly upper
semicontinuous for each y € H;
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(ii) for each x € H, there exist a bounded subset D, c C
and z,, € C such that for any y ¢ D,,

O(y.2z,) +9(z.) —o(y)
L, , (166)
+ (K () - K ()2, 7) <0

=0,)°, &, = 00,0 < liminf

1 and 0 < liminf,_

HHOO/';H

Op

(iii) lim,_, o,
limsup, , B, <
limsup, _, 8, < L;

(i) ve € (0,20), k € (L2}, u €
{1,2,...,N}, and {r,} c [0, 2{] satisfies

IAIN

(0,27;), i

m

0 < lim infr, <limsupr, < 205

n— 00

(167)

(V) limn—>oo(|6n+1 - 6n| + |rn+1 - ri’l|) =0.
Given x, € H arbitrarily, then the sequence {x,} generated
iteratively by

u, =07 (I-r,4) x,,
2y = ]RN,yN (I - P‘NBN) ]RN,I,M\H
X (I = pin_yByoy) -+ TR, (I - By)u, (168)
Yn = 6,Gz, +(1-0,) 2,
Xper = &, (4 pf (x,)) + B,
+((1=B) I =, (I+uV)) y,

converges strongly to x* € € which solves the following
optimization problem provided S£®"") is firmly nonexpansive:

Vn>1,

in# L —ul? -
21;{1212 (Ax,x)+2||x ul|” - h(x), (OP8)

where h is the potential function of yf.

Proof. Put T, x = x for all integers n > 1 and all x € H. Then,
the desired result follows from Theorem 21. O

Corollary 28. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let N be an integer. Let ®, and ©, be two
bifunctions from CxC to R satisfying (H1)-(H4). LetR; : C —
2" be a maximal monotone mapping and let A, : H — H
and B; : C — H be {-inverse strongly monotone and ;-
inverse strongly monotone, respectively, where k € {1,2} and
i € {1,2,...,N}. Let {T,,},, be a sequence of nonexpansive
mappings on H and {)A,)} be a sequence in (0,b] for some b €
(0,1). Let V be a y-strongly positive bounded linear operator
and f : H — H be an I-Lipschitzian mapping with yl <
(1 + w)y. Let W, be the W-mapping defined by (9). Assume
that O == N2, Fix(T,) N SGEP(G) N NY, I(B,, R;) # 0 where G
is defined as in Proposition CY. Let {e, },{3,,} and {0,} be three
sequences in [0, 1]. Assume that:

(lim,, _, o, = 0,32 &, = 00, 0 < liminf
limsup, , B, < 1 and 0 < liminf
limsup, , 5, < 1;

n—>ooﬁn

6,

INIA

n— 00

23
(”) vk € (O’ZCk)’k € {1’2}: [/lj € (0’2171')) l € {1)2)---’N})
and {r,} C [0,2(] satisfies

0 < liminf r, <limsupr, < 2(;
n— 00 n fl—>00p n C’

(169)

(iii) lim,, _, . (18,,,; = 6, + |1,y —1,1) = 0.
Given x, € C arbitrarily, then the sequence {x,} generated
iteratively by
Zn = ]RN:MN (I N ‘MNBN) ]RN—I’.MN—I

X (I = pin_1Byoy) TR (I - wB,)x,,
Yn = anGzn + (1 - 6n) ann’ (170)

Xnpl = Ky (u +yf (xn)) + BuXy
+ ((1 - ﬁn) I- &y (I + AMV)) Wnyn’

converges strongly to x* € Q which solves the following
optimization problem provided S£®"”) is firmly nonexpansive:

Vn>1,

int LT
2161512 (Ax,x)+2||x ul|” - h(x), (OPY)

where h is the potential function of yf.

Proof. Put O(x,y) = 0, p(x) = Oforallx,y € C,Ax =0
forall x € Handr, = 1. Take K(x) = (1/2)|1x|* for all

x € H. Thenwe getu, = x, in Theorem 21and the conclusion
follows. O
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