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Based on a general Riemann theta function and Hirota’s bilinear forms, we devise a straightforward way to explicitly construct
double periodic wave solution of (2 + 1)-dimensional nonlinear partial differential equation. The resulting theory is applied to
the (2 + 1)-dimensional Sawada-Kotera equation, thereby yielding its double periodic wave solutions. The relations between the
periodic wave solutions and soliton solutions are rigorously established by a limiting procedure.

1. Introduction

It is always important to investigate the exact solutions
for nonlinear evolution equations, which play an important
role in the study of nonlinear models of natural and social
phenomena. Nonlinear wave phenomena appears in various
scientific and engineering areas, such as fluid mechanics,
theory of solitons, hydrodynamics, and theory of turbulence,
optical fibers, chaos theory, biology, and chemical physics. In
the last three decades, various powerful methods have been
presented, such as extended tanh method [1], homogeneous
balance method [2], Lie group method [3], Wronskian tech-
nique [4, 5], Darboux transformation method [6], Hirota’s
bilinear method [7–10], and algebro-geometrical approach
[11].

The Hirota’s bilinear method provides a powerful way
to derive soliton solutions to nonlinear integrable equa-
tions and its basis is the Hirota bilinear formulation. Once
the corresponding bilinear forms are obtained, multisoliton
solutions and rational solutions to nonlinear differential
equations can be computed in quite a systematic way. In
1980s, based on Hirota bilinear forms, Nakamura proposed a
comprehensive method to construct a kind of multiperiodic
solutions of nonlinear equations in his papers [12, 13], such
a method of solution does not need any Lax pairs and their
induced Riemann surfaces for the considered equations. The

advantage of the method is that it only relies on the existed
Hirota bilinear forms. Moreover, all parameters appearing in
Riemann matrices are completely arbitrary, whereas algebro-
geometric solutions involve specific Riemann constants,
which are usually difficult to compute.

In recent years, Hon et al. have extended this method to
investigate the discrete Toda lattice [14], (2 + 1)-dimensional
modified Bogoyavlenskii-Schiff equation [15], and the Super-
symmetric KdV-Sawada-Kotera-Ramani equation [16].Ma et
al. constructed one-periodic and two-periodic wave solutions
to a class of (2 + 1)-dimensional Hirota bilinear equations
[17]. Tian and Zhang gave the exact periodic solutions for
some evolution equations with the aid of the Hirota bilinear
method and theta functions identities [18, 19].

Our aim in the present work is to improve the main steps
of the existing methods of Fan and Chow in [15] into the case
of three dimensions. We propose a theorem, which actually
provides us a direct and unifying way for applying in a class
of (2+1)-dimensional nonlinear partial differential equations.
Once such an equation is written in a bilinear form, its double
periodic wave solutions can be directly obtained by using this
theorem.

The organization of this paper is as follows. In Section 2,
we briefly introduce the Hirota bilinear operator and the Rie-
mann theta function. In particular, we present a theorem for
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constructing periodic wave solutions for (2 + 1)-dimensional
nonlinear partial differential equations. As applications of
our method, in Section 3, we construct double periodic wave
solutions to the (2+1)-dimensional Sawada-Kotera equation.
In addition, it is rigorously shown that the double periodic
wave solutions tend to the soliton solutions under small
amplitude limits. Finally, some conclusions and discussions
are presented in Section 4.

2. Hirota Bilinear Operator and Riemann
Theta Function

In this section we briefly present the notation that will be
used in this paper. Here the bilinear operators 𝐷

𝑥
1

, 𝐷
𝑥
2

, . . .,
𝐷
𝑥
𝑁

, 𝐷
𝑡
are defined by

𝐷
𝑚

𝑥
1

𝐷
𝑛

𝑥
2

, . . . , 𝐷
𝑝

𝑥
𝑁

𝐷
𝑟

𝑡
𝑓 (𝑋, 𝑡) ⋅ 𝑔 (𝑋, 𝑡)

= (𝜕
𝑥
1

− 𝜕
𝑥
󸀠

1

)
𝑚

(𝜕
𝑥
2

− 𝜕
𝑥
󸀠

2

)
𝑛

, . . . , (𝜕
𝑥
𝑁

− 𝜕
𝑥
󸀠

𝑁

)
𝑝

× (𝜕
𝑡
− 𝜕
𝑡
󸀠)
𝑟

𝑓 (𝑋, 𝑡) ⋅ 𝑔 (𝑋
󸀠

, 𝑡
󸀠

) |
𝑋=𝑋
󸀠
,𝑡=𝑡
󸀠

(1)

with𝑋󸀠 = (𝑥󸀠
1
, 𝑥󸀠
2
, . . . , 𝑥󸀠

𝑁
).

Proposition 1. The Hirota bilinear operators 𝐷
𝑥
1

, 𝐷
𝑥
2

, . . .,
𝐷
𝑥
𝑁

, 𝐷
𝑡
have properties

𝐷
𝑚

𝑥
1

𝐷
𝑛

𝑥
2

, . . . , 𝐷
𝑝

𝑥
𝑁

𝐷
𝑟

𝑡
𝑒
𝜉
1 ⋅ 𝑒
𝜉
2

= (𝑘
1
− 𝑘
2
)
𝑚

(𝑙
1
− 𝑙
2
)
𝑛

, . . . , (𝜎
1
− 𝜎
2
)
𝑝

(𝜔
1
− 𝜔
2
)
𝑟

𝑒
𝜉
1
+𝜉
2 ,

(2)

where 𝜉
𝑖
= 𝑘
𝑖
𝑥
1
+ 𝑙
𝑖
𝑥
2
+ ⋅ ⋅ ⋅ + 𝜎

𝑖
𝑥
𝑁

+ 𝜔
𝑖
𝑡 + 𝜀
𝑖
, 𝑖 = 1, 2, with

𝑘
𝑖
, 𝑙
𝑖
, . . . , 𝜎

𝑖
, 𝜔
𝑖
, 𝜀
𝑖
being constants. More generally, one has

𝐹 (𝐷
𝑥
1

, 𝐷
𝑥
2

, . . . , 𝐷
𝑥
𝑁

, 𝐷
𝑡
) 𝑒
𝜉
1 ⋅ 𝑒
𝜉
2

= 𝐹 (𝑘
1
− 𝑘
2
, 𝑙
1
− 𝑙
2
, . . . , 𝜎

1
− 𝜎
2
, 𝜔
1
− 𝜔
2
) 𝑒
𝜉
1
+𝜉
2 ,

(3)

where 𝐹(𝐷
𝑥
1

, 𝐷
𝑥
2

, . . . , 𝐷
𝑥
𝑁

, 𝐷
𝑡
) is a polynomial about oper-

ators 𝐷
𝑥
1

, 𝐷
𝑥
2

, . . . , 𝐷
𝑥
𝑁

, 𝐷
𝑡
. These properties are useful in

deriving Hirota’s bilinear form and constructing periodic wave
solutions of nonlinear equations.

Then, one would like to consider a general Riemann theta
function and discuss its periodicity; the Riemann theta function
reads

𝜗 [
𝜀

𝑠
] (𝜉, 𝜏) = ∑

𝑚∈Z

exp {2𝜋𝑖 (𝜉 + 𝜀) (𝑚 + 𝑠) − 𝜋𝜏(𝑚 + 𝑠)
2

} ,

(4)

where𝑚 ∈ Z, complex parameter 𝑠, 𝜀 ∈ C, and complex phase
variables 𝜉 ∈ C, 𝜏 > 0 which is called the period matrix of the
Riemann theta function.

In the definition of the theta function (4), for the case 𝑠 =

𝜀 = 0, hereafter, one uses the notation of 𝜗(𝜉, 𝜏) = 𝜗 [ 0
0
] (𝜉, 𝜏),

for simplicity. Moreover, one has 𝜗 [ 𝜀
0
] (𝜉, 𝜏) = 𝜗(𝜉 + 𝜀, 𝜏).

Definition 2. A function 𝑔(𝑡) on C is said to be quasiperi-
odic in 𝑡 with fundamental periods 𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑘
∈ C if

𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑘
being linearly dependent overZ and there exists

a function 𝐺(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
) in C𝑘, such that

𝐺(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑗
+ 𝑇
𝑗
, . . . , 𝑦

𝑘
)

= 𝐺 (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑗
, . . . , 𝑦

𝑘
) , ∀𝑦

𝑗
∈ C,

𝐺 (𝑡, 𝑡, . . . , 𝑡, . . . , 𝑡) = 𝑔 (𝑡) .

(5)

In particular, 𝑔(𝑡) is called double periodic as 𝑘 = 2, and
it becomes periodic with the period𝑇 if and only if𝑇

𝑗
= 𝑚
𝑗
𝑇.

Proposition 3. The theta function 𝜗(𝜉, 𝜏) has the periodic
properties:

𝜗 (𝜉 + 1 + 𝑖𝜏, 𝜏) = exp (−2𝜋𝑖𝜉 + 𝜋𝜏) 𝜗 (𝜉, 𝜏) . (6)

One regards the vectors 1 and 𝑖𝜏 as periods of the theta function
𝜗(𝜉, 𝜏) with multipliers 1 and exp(−2𝜋𝑖𝜉 + 𝜋𝜏), respectively.

Proposition 4. The meromorphic functions 𝑓(𝜉) on C is as
follows:

𝑓 (𝜉) = 𝜕
2

𝜉
ln 𝜗 (𝜉, 𝜏) , 𝜉 ∈ C; (7)

then it holds that

𝑓 (𝜉 + 1 + 𝑖𝜏) = 𝑓 (𝜉) , 𝜉 ∈ C; (8)

that is, 𝑓(𝜉) is a double periodic function with 1 and 𝑖𝜏.

Proof. By using (6), we easily know that

ln 𝜗 (𝜉 + 1 + 𝑖𝜏) = (−2𝜋𝑖𝜉 + 𝜋𝜏) ln 𝜗 (𝜉, 𝜏) ; (9)

then differentiating it with respective to 𝜉, we have

𝜕
𝜉
𝜗 (𝜉 + 1 + 𝑖𝜏, 𝜏)

𝜗 (𝜉 + 1 + 𝑖𝜏, 𝜏)
= −2𝜋𝑖 +

𝜕
𝜉
𝜗 (𝜉, 𝜏)

𝜗 (𝜉, 𝜏)
, (10)

which is equivalent to

𝜕
𝜉
ln 𝜗 (𝜉 + 1 + 𝑖𝜏, 𝜏) = −2𝜋𝑖 + 𝜕

𝜉
ln 𝜗 (𝜉, 𝜏) . (11)

Differentiating (11) with respective to 𝜉 again immediately
proves formula (8).

Theorem 5. Assuming that 𝜗 [ 𝜀
󸀠

0
] (𝜉, 𝜏) and 𝜗 [ 𝜀

0
] (𝜉, 𝜏) are

two Riemann theta functions with 𝜉 = 𝛼𝑥 + 𝛽𝑦 + 𝜔𝑡 + 𝜎, then
Hirota bilinear operators𝐷

𝑥
,𝐷
𝑦
, and𝐷

𝑡
exhibit the following

perfect properties when they act on a pair of theta functions:

𝐷
𝑥
𝜗 [

𝜀󸀠

0
] (𝜉, 𝜏) ⋅ 𝜗 [

𝜀

0
] (𝜉, 𝜏)

= ∑
𝜇=0,1

[𝜕
𝑥
𝜗[

𝜀
󸀠

− 𝜀

−
𝜇

2

] (2𝜉, 2𝜏) |
𝜉=0

]𝜗[
𝜀
󸀠

+ 𝜀
𝜇

2

] (2𝜉, 2𝜏) ,

(12)

where the notation ∑
𝜇=0,1

represents two different transforma-
tions corresponding to 𝜇 = 0, 1. The bilinear formulas for 𝑦, 𝑡
are the same as (12) by replacing 𝜕

𝑥
with 𝜕

𝑦
and 𝜕
𝑡
.
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In general, for a polynomial operator 𝐹(𝐷
𝑥
, 𝐷
𝑦
, 𝐷
𝑡
) with

respect to𝐷
𝑥
,𝐷
𝑦
, and𝐷

𝑡
, one has the following useful formula:

𝐹 (𝐷
𝑥
, 𝐷
𝑦
, 𝐷
𝑡
) 𝜗 [

𝜀󸀠

0
] (𝜉, 𝜏) ⋅ 𝜗 [

𝜀

0
] (𝜉, 𝜏)

= ∑
𝜇=0,1

𝐶 (𝜀
󸀠

, 𝜀, 𝜇) 𝜗 [
𝜀󸀠 + 𝜀
𝜇

2

] (2𝜉, 2𝜏) ,

(13)

where

𝐶 (𝜀
󸀠

, 𝜀, 𝜇) = ∑

𝑚∈Z𝑁

𝐹 (𝑀) exp [−2𝜋𝜏(𝑚 −
𝜇

2
)
2

+2𝜋𝑖 (𝑚 −
𝜇

2
) (𝜀
󸀠

− 𝜀) ] ,

(14)

and one denotes vector 𝑀 = (4𝜋𝑖(𝑚 − 𝜇/2)𝛼, 4𝜋𝑖(𝑚 −

𝜇/2)𝛽, 4𝜋𝑖(𝑚 − 𝜇/2)𝜔).

Proof. Making use of the formula (2), we obtain the relation

𝐷
𝑥
𝜗 [

𝜀󸀠

0
] (𝜉, 𝜏) ⋅ 𝜗 [

𝜀

0
] (𝜉, 𝜏)

= ∑

𝑚
󸀠
,𝑚∈Z

𝐷
𝑥
exp {2𝜋𝑖𝑚

󸀠

(𝜉 + 𝜀
󸀠

) − 𝜋𝑚
󸀠
2

𝜏}

× exp {2𝜋𝑖𝑚 (𝜉 + 𝜀) − 𝜋𝑚
2

𝜏}

= ∑

𝑚
󸀠
,𝑚∈Z

2𝜋𝑖𝛼 (𝑚
󸀠

− 𝑚)

× exp {2𝜋𝑖 (𝑚
󸀠

+ 𝑚) 𝜉 + 2𝜋𝑖 (𝑚
󸀠

𝜀
󸀠

+ 𝑚𝜀)

−𝜋𝜏 (𝑚
󸀠
2

+ 𝑚
2

)} .

(15)

Shifting summation index as𝑚 = 𝑙
󸀠

− 𝑚
󸀠, then

= ∑

𝑙
󸀠
,𝑚
󸀠

2𝜋𝑖𝛼 (2𝑚
󸀠

− 𝑙
󸀠

)

⋅ exp {2𝜋𝑖𝑙
󸀠

𝜉 + 2𝜋𝑖 [𝑚
󸀠

𝜀
󸀠

+ (𝑙
󸀠

− 𝑚
󸀠

) 𝜀]

− 𝜋𝜏 [𝑚
󸀠
2

+ (𝑙
󸀠

− 𝑚
󸀠

)
2

]}

𝑙
󸀠
=2𝑙+𝜇

= ∑
𝜇=0,1,

∑

𝑙,𝑚
󸀠
∈Z

2𝜋𝑖𝛼 (2𝑚
󸀠

− 2𝑙 − 𝜇)

⋅ exp {4𝜋𝑖𝜉 (𝑙 +
𝜇

2
) + 2𝜋𝑖 [𝑚

󸀠

𝜀
󸀠

− (𝑚
󸀠

− 2𝑙 − 𝜇) 𝜀]

− 𝜋𝜏 [𝑚
󸀠
2

+ (𝑚
󸀠

− 2𝑙 − 𝜇)
2

] }

𝑚
󸀠
=𝑘+𝑙

= ∑
𝜇=0,1

[∑
𝑘∈Z

4𝜋𝑖𝛼 (𝑘 −
𝜇

2
)

⋅ exp{2𝜋𝑖 (𝑘 −
𝜇

2
) (𝜀
󸀠

− 𝜀)

−2𝜋𝜏(𝑘 −
𝜇

2
)
2

}]

× [∑
𝑙∈𝑍

exp{2𝜋𝑖 (𝑙 +
𝜇

2
) (2𝜉 + 𝜀

󸀠

+ 𝜀)

−2𝜋𝜏(𝑙 +
𝜇

2
)
2

}]

= ∑
𝜇=0,1

[𝜕
𝑥
𝜗[

𝜀󸀠 − 𝜀

−
𝜇

2

] (2𝜉, 2𝜏) |
𝜉=0

] ⋅ 𝜗 [
𝜀󸀠 + 𝜀
𝜇

2

] (2𝜉, 2𝜏) .

(16)

Formula (13) follows from (12). Formulas (13) and (14) imply
that if the following equations are satisfied

𝐶 (𝜀, 𝜀
󸀠

, 0) = 0, 𝐶 (𝜀, 𝜀
󸀠

, 1) = 0, (17)

then 𝜗 [ 𝜀
󸀠

0

] (𝜉, 𝜏) and 𝜗 [
𝜀

0
] (𝜉, 𝜏) are periodic wave solutions

of the bilinear equation:

𝐹 (𝐷
𝑥
, 𝐷
𝑦
, 𝐷
𝑡
) 𝜗 [

𝜀󸀠

0
] (𝜉, 𝜏) ⋅ 𝜗 [

𝜀

0
] (𝜉, 𝜏) = 0. (18)

Remark 6. Formula (17) actually provides us an unified
approach to construct periodic wave solutions for nonlinear
equations. Once an equation is written bilinear forms, then
its periodic wave solutions can be directly obtained by solving
system (17).

3. The (2 + 1)-Dimensional
Sawada-Kotera Equation

In this section, we will focus on the following (2 + 1)-dime-
nsional Sawada-Kotera ((2 + 1)DSK) model [20–22]:

𝑢
𝑡
− (𝑢
𝑥𝑥𝑥𝑥

+ 5𝑢𝑢
𝑥𝑥

+
5

3
𝑢
3

+ 5𝑢
𝑥𝑦
)
𝑥

− 5𝑢𝑢
𝑦

+5∫𝑢
𝑦𝑦
𝑑𝑥 − 5𝑢

𝑥
∫𝑢
𝑦
𝑑𝑥 = 0,

(19)

where 𝑢 is a function of the variables 𝑥, 𝑦 and 𝑡, 𝑢
𝑡
= 𝜕𝑢/𝜕𝑡

and the other quantities are similarly defined. It was widely
used in many branches of physics, such as conformal field
theory, two-dimensional quantum gravity gauge field, theory,
and nonlinear science Liuvill flow conservation equations.
When 𝑢(𝑥, 𝑦, 𝑡) = 𝑢(𝑥, 𝑡), (19) reduces to the Sawada-Kotera
equation [23]:

𝑢
𝑡
− (𝑢
𝑥𝑥𝑥𝑥

+ 5𝑢𝑢
𝑥𝑥

+
5

3
𝑢
3

)
𝑥

= 0. (20)

Equation (19), a B-type Kadomtsev-Petviashvili (KP) model,
has also been referred to BKP equation because it is associated
with a B-type group [24]. Through the truncated Painlevé
expansion andHirota bilinearmethod,multisoliton solutions
of (19) have been derived and graphically discussed in [25].
In the framework of Bell-polynomialmanipulations, the Bell-
polynomial expression and Bell-polynomial-typed BT for
(19) have been given in [26]. Here we construct its double
periodicwave solution and show that the one-soliton solution
can be obtained as limiting case of the double periodic wave
solution.
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3.1. Construct Double Periodic Wave Solutions of the (2 +
1)DSK Equation. We consider a variable transformation

𝑢 = 6(ln𝑓 (𝑥, 𝑦, 𝑡))
𝑥𝑥
. (21)

Substituting (21) into (19) and integrating with respect to 𝑥,
we then get the following Hirota’s bilinear form:

(𝐷
6

𝑥
− 𝐷
𝑥
𝐷
𝑡
+ 5𝐷
3

𝑥
𝐷
𝑦
− 5𝐷
2

𝑦
+ 𝑐) 𝑓 ⋅ 𝑓 = 0, (22)

where 𝑐 is an integration constant.

Remark 7. The constant 𝑐 may be taken to be zero in the
construction of soliton solutions. However, in our double
periodic wave case, the nonzero constant 𝑐 plays an important
role and cannot be dropped.

When 𝑐 = 0, (19) admits a one-soliton solution [21]

𝑢
1
= 6(ln (1 + 𝑒

𝜂

))
𝑥𝑥
, (23)

where phase variable 𝜂 = 𝑘𝑥+𝛾𝑦+ ((𝑘6 +5𝑘3𝛾−5𝛾2)/𝑘)𝑡 +ℎ,
and 𝑘, 𝛾, ℎ are constants. Next, we turn to see the periodicity
of the solution (23); the function𝑓 is chosen to be a Riemann
theta function; namely,

𝑓 (𝑥, 𝑦, 𝑡) = 𝜗 (𝜉, 𝜏) , (24)

where phase variable 𝜉 = 𝛼𝑥 + 𝛽𝑦 + 𝜔𝑡 + 𝜎. According to
Proposition 4, we refer to

𝑢 = 6(ln𝑓 (𝑥, 𝑦, 𝑡))
𝑥𝑥

= 6𝛼
2

𝜕
2

𝜉
ln 𝜗 (𝜉, 𝜏) , (25)

which shows that the solution 𝑢 is a double periodic function
with two fundamental periods 1 and 𝑖𝜏.

By introducing the notations as

𝜗
1
(𝜉, 𝜌) = 𝜗 (2𝜉, 2𝜏) = ∑

𝑚∈𝑍

𝜌
4𝑚
2

exp (4𝜋𝑖𝑚𝜉) ,

𝜗
2
(𝜉, 𝜌) = 𝜗[

0

−
1

2

] (2𝜉, 2𝜏)

= ∑
𝑚∈𝑍

𝜌
(2𝑚−1)

2

exp [2𝜋𝑖 (2𝑚 − 1) 𝜉] , 𝜌 = 𝑒
−𝜋𝜏/2

.

(26)

Substituting (24) into (22), using formulas (17) and (26), leads
to the following linear system:

− 𝜗
󸀠󸀠

1
(0, 𝜌) 𝛼𝜔 + 𝜗

(6)

1
(0, 𝜌) 𝛼

6

+ 5𝜗
(4)

1
(0, 𝜌) 𝛼

3

𝛽

− 5𝜗
󸀠󸀠

1
(0, 𝜌) 𝛽

2

+ 𝜗
1
(0, 𝜌) 𝑐 = 0,

− 𝜗
󸀠󸀠

2
(0, 𝜌) 𝛼𝜔 + 𝜗

(6)

2
(0, 𝜌) 𝛼

6

+ 5𝜗
(4)

2
(0, 𝜌) 𝛼

3

𝛽

− 5𝜗
󸀠󸀠

2
(0, 𝜌) 𝛽

2

+ 𝜗
2
(0, 𝜌) 𝑐 = 0,

(27)

where we have denoted by the notations

𝜗
(𝑘)

𝑗
(0, 𝜌) =

𝑑𝑘𝜗
𝑗
(𝜉, 𝜌)

𝑑𝜉𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜉=0

, 𝑗 = 1, 2; 𝑘 = 1, 2, 3, 4, 5, 6.

(28)

This system admits an explicit solution

𝜔 = (− (𝛼
6

𝜗
(6)

1
+ 5𝛼
3

𝛽𝜗
(4)

1
− 5𝛽
2

𝜗
󸀠󸀠

1
) 𝜗
2

+ (𝛼
6

𝜗
(6)

2
+ 5𝛼
3

𝛽𝜗
(4)

2
− 5𝛽
2

𝜗
󸀠󸀠

2
) 𝜗
1
)

× (−𝛼𝜗
󸀠󸀠

1
𝜗
2
+ 𝛼𝜗
󸀠󸀠

2
𝜗
1
)
−1

,

𝑐 = (𝜗
󸀠󸀠

1
(𝜗
(6)

2
𝛼
6

+ 5𝛼
3

𝛽𝜗
(4)

2
− 5𝜗
󸀠󸀠

2
𝛽
2

)

−𝜗
󸀠󸀠

2
(𝛼
6

𝜗
(6)

1
+ 5𝛼
3

𝛽𝜗
(4)

1
− 5𝛽
2

𝜗
󸀠󸀠

1
))

× (−𝜗
󸀠󸀠

1
𝜗
2
+ 𝜗
󸀠󸀠

2
𝜗
1
)
−1

,

(29)

where we have omitted the notation (0, 𝜌) after 𝜗
1
, 𝜗
2
for

simplicity of formula (29).Therefore, we get a double periodic
wave solution of (19) which reads

𝑢 = 6(ln 𝜗 (𝜉, 𝜏))
𝑥𝑥

(30)

with the theta function 𝜗(𝜉, 𝜏) given by (4) for the case 𝑠 =

𝜀 = 0, and parameters 𝜔, 𝑐 by (29), while other parameters 𝛼,
𝛽, 𝜎 are free.

3.2. Feature and Asymptotic Property of Double Periodic
Waves. The double periodic wave solution (30) possesses a
simple characterization as follows.

(i) It has a single phase variable 𝜉; that is, it is one-
dimensional.

(ii) It has two fundamental periods 1 and 𝑖𝜏 in the phase
variable 𝜉.

(iii) The speed parameter of 𝜉 is given by

𝜔 = (− (𝛼
6

𝜗
(6)

1
+ 5𝛼
3

𝛽𝜗
(4)

1
− 5𝛽
2

𝜗
󸀠󸀠

1
) 𝜗
2

+ (𝛼
6

𝜗
(6)

2
+ 5𝛼
3

𝛽𝜗
(4)

2
− 5𝛽
2

𝜗
󸀠󸀠

2
) 𝜗
1
)

× (−𝛼𝜗
󸀠󸀠

1
𝜗
2
+ 𝛼𝜗
󸀠󸀠

2
𝜗
1
)
−1

.

(31)

(iv) It has only one wave pattern for all time and it can be
viewed as a parallel superposition of overlapping one-
soliton waves, placed one period apart.

Now, we further consider the asymptotic properties of
the double periodic wave solution. The relation between the
periodic wave solution (30) and the one-soliton solution (23)
can be established as follows.

Theorem8. If the vector (𝜔, 𝑐)𝑇 is a solution of the system (27)
and for the double periodic wave solution (30), we let

𝛼 =
𝑘

2𝜋𝑖
, 𝛽 =

𝛾

2𝜋𝑖
, 𝜎 =

ℎ + 𝜋𝜏

2𝜋𝑖
, (32)

where 𝑘, 𝛾, and ℎ are given in (23). Then one has the following
asymptotic properties

𝑐 󳨀→ 0, 𝜉 󳨀→
𝜂 + 𝜋𝜏

2𝜋𝑖
, 𝜗 (𝜉, 𝜏) 󳨀→ 1 + 𝑒

𝜂

,

when 𝜌 󳨀→ 0.

(33)
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It implies that the double periodic solution (30) tends to
the one-soliton solution (23) under a small amplitude limit. In
other words, the periodic solution (30) tends to a solution
under a small amplitude limit; namely

𝑢 󳨀→ 𝑢
1
= 6𝜕
2

𝑥
ln (1 + 𝑒

𝜂

) , as 𝜌 󳨀→ 0. (34)
Proof. We explicitly expand the coefficients of system (27) as
follows:

𝜗
1
(0, 𝜌) = 1 + 2𝜌

4

+ ⋅ ⋅ ⋅ ,

𝜗
󸀠󸀠

1
(0, 𝜌) = −32𝜋

2

𝜌
4

+ ⋅ ⋅ ⋅ ,

𝜗
(4)

1
(0, 𝜌) = 512𝜋

4

𝜌
4

+ ⋅ ⋅ ⋅ ,

𝜗
(6)

1
(0, 𝜌) = −8192𝜋

6

𝜌
4

+ ⋅ ⋅ ⋅ ,

𝜗
2
(0, 𝜌) = 2𝜌 + 2𝜌

9

+ ⋅ ⋅ ⋅ ,

𝜗
󸀠󸀠

2
(0, 𝜌) = −8𝜋

2

𝜌 + ⋅ ⋅ ⋅ ,

𝜗
(4)

2
(0, 𝜌) = 32𝜋

4

𝜌 + ⋅ ⋅ ⋅ ,

𝜗
(6)

2
(0, 𝜌) = −128𝜋

6

𝜌 + ⋅ ⋅ ⋅ .

(35)

Let the solution of the system (27) be in the form

𝜔 = 𝜔
0
+ 𝜔
1
𝜌 + 𝜔
2
𝜌
2

+ ⋅ ⋅ ⋅ = 𝜔
0
+ 𝑜 (𝜌) ,

𝑐 = 𝑐
0
+ 𝑐
1
𝜌 + 𝑐
2
𝜌
2

+ ⋅ ⋅ ⋅ = 𝑐
0
+ 𝑜 (𝜌) .

(36)

Substituting the expansions (35) and (36) into the system (27),
where the second equation is divided by𝜌, and letting𝜌 → 0,
we immediately obtain the following relations:

𝑐
0
= 0, −8𝜋

2

𝛼𝜔
0
− 128𝜋

6

𝛼
6

+ 160𝜋
4

𝛼
3

𝛽 + 40𝜋
2

𝛽
2

= 0,

(37)
which have a solution

𝑐
0
= 0, 𝜔

0
=

16𝜋4𝑎6 − 20𝜋2𝛼3𝛽 − 5𝛽2

𝛼
. (38)

Combining (32) and (38) leads to

𝑐 󳨀→ 0, 2𝜋𝑖𝜔 󳨀→
𝑘6 + 5𝑘3𝛾 − 5𝛾2

𝑘
, as 𝜌 󳨀→ 0.

(39)
Hence we conclude that

𝜉 = 2𝜋𝑖𝜉 − 𝜋𝜏 = 𝑘𝑥 + 𝛾𝑦

+ 2𝜋𝑖𝜔𝑡 + ℎ 󳨀→ 𝑘𝑥

+ 𝛾𝑦 +
𝑘6 + 5𝑘3𝛾 − 5𝛾2

𝑘
𝑡 + ℎ = 𝜂, as 𝜌 󳨀→ 0.

(40)

In the following, we consider asymptotic properties of the
double periodic wave solution (30) under the limit 𝜌 → 0.
For this purpose, we expand the Riemann theta function
𝜗(𝜉, 𝜏) and make use of the expression (40); it follows that

𝜗 (𝜉, 𝜏) = 1 + (𝑒
2𝜋𝑖𝜉

+ 𝑒
−2𝜋𝑖𝜉

) 𝜌
2

+ (𝑒
4𝜋𝑖𝜉

+ 𝑒
−4𝜋𝑖𝜉

) 𝜌
8

+ ⋅ ⋅ ⋅

= 1 + 𝑒
̂
𝜉

+ (𝑒
−
̂
𝜉

+ 𝑒
2
̂
𝜉

) 𝜌
4

+ (𝑒
−2
̂
𝜉

+ 𝑒
3
̂
𝜉

) 𝜌
12

+ ⋅ ⋅ ⋅ 󳨀→ 1 + 𝑒
̂
𝜉

󳨀→ 1 + 𝑒
𝜂

, as 𝜌 󳨀→ 0.

(41)

Therefore we conclude that the periodic solution (30) just
goes to the soliton solution (23) as the amplitude 𝜌 → 0.

4. Conclusions

In this paper, based on the Hirota’s bilinear method, combin-
ing the theory of a general Riemann theta function, we have
derived a method of constructing double periodic wave
solutions for (2 + 1)-dimensional nonlinear partial differen-
tial equations. As application of our method, we construct
double periodic wave solutions to the (2 + 1)-dimensional
Sawada-Kotera equation.The double periodic wave solutions
obtained in this paper are theta function series solutions. By
making a limiting procedure, we have analyzed asymptotic
behavior of the double periodic waves, obtaining the relations
between the periodic wave solutions and soliton solutions.
We note that this method can be generalized to the case of
𝑁 ⩾ 2 to construct 𝑁-periodic wave solutions. But more
constraint equations need to be satisfied, so the calculation
will be more complicated.
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