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Fuzzy graph theory is commonly used in computer science applications, particularly in database theory, data mining, neural
networks, expert systems, cluster analysis, control theory, and image capturing. A vague graph is a generalized structure of a fuzzy
graph that gives more precision, flexibility, and compatibility to a system when compared with systems that are designed using
fuzzy graphs. In this paper, we introduce the notion of vague line graphs, and certain types of vague line graphs and present some
of their properties. We also discuss an example application of vague digraphs.

1. Introduction

During the last twenty years, line graphs have received
considerable attention [1]. A line graph 𝐿(𝐺

∗

) of a graph
𝐺
∗

= (𝑉, 𝐸), the vertex set of 𝐿(𝐺∗) is 𝐸 and two vertices
in 𝐿(𝐺∗) are adjacent if and only if their corresponding edges
in 𝐺∗ are adjacent. Thus line graphs transform the adjacency
relation on edges to an adjacency relation on vertices and
thereby provide a mechanism for transferring problems and
results on edges to analogous problems and findings about
vertices. One of the major results on line graphs is Beineke’s
[2] characterization of line graphs by a set of nine forbidden
induced subgraphs. This approach of finding a forbidden
induced subgraph characterization is a popular method of
studying the structure of a graph family and has proven to be
especially useful for line graphs of various families of graphs.

In 1993, Gau and Buehrer [3] introduced the notion of
vague set theory as a generalization of Zadeh’s fuzzy set
theory. Vague sets are higher order fuzzy sets. Application
of higher order fuzzy sets makes the solution procedure
more complex, but if the complexity on computation time,
computation volume, or memory space is not a matter of
concern, then we can achieve better results. In a fuzzy
set, each element is associated with a point value selected

from the unit interval [0, 1], which is termed as the grade
of membership in the set. Instead of using point-based
membership as in fuzzy sets, interval-based membership is
used in a vague set. The interval-based membership in vague
sets is more expressive in capturing vagueness of data. There
are some interesting features for handling vague data that
are unique to vague sets. For example, vague sets allow for a
more intuitive graphical representation of vague data, which
facilitates significantly better analysis in data relationships,
incompleteness, and similarity measures.

In 1975, Rosenfeld [4] first discussed the concept of
fuzzy graphs whose basic idea was introduced by Kauffman
[5] in 1973. Rosenfeld also proposed the fuzzy relations
between fuzzy sets and developed the structure of fuzzy
graphs, obtaining analogs of several graph theoretical con-
cepts. Moreover, Bhattacharya [6] gave some remarks on
fuzzy graphs and Mordeson [7] introduced the notion of
fuzzy line graphs. Bhutani and Battou [8] introduced the
concept of 𝑀-strong fuzzy graphs and described some of
their properties. Akram and Dudek [9] discussed some
properties of the interval-valued fuzzy graphs. Ramakrishna
[10] introduced the concept of vague graphs and studied some
of their properties. In this paper, we introduce the notion of
vague line graphs and present some of their properties. We

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 525389, 10 pages
http://dx.doi.org/10.1155/2014/525389

http://dx.doi.org/10.1155/2014/525389


2 Abstract and Applied Analysis

introduce the concept of certain types of vague line graphs
and present some of their properties. We also describe an
example application of vague digraphs.

2. Preliminaries

By a graph, we mean a pair 𝐺∗ = (𝑉, 𝐸), where 𝑉 is the set
and 𝐸 is a relation on 𝑉. The elements of 𝑉 are vertices of
𝐺
∗ and the elements of 𝐸 are edges of 𝐺∗. We write 𝑥𝑦 ∈ 𝐸

to mean {𝑥, 𝑦} ∈ 𝐸, and if 𝑒 = 𝑥𝑦 ∈ 𝐸, we say 𝑥 and 𝑦 are
adjacent. Formally, given a graph 𝐺∗ = (𝑉, 𝐸), two vertices
𝑥, 𝑦 ∈ 𝑉 are said to be neighbors or adjacent nodes if 𝑥𝑦 ∈ 𝐸.
The neighbourhood of a vertex V in a graph 𝐺∗ is the induced
subgraph of 𝐺∗ consisting of all vertices adjacent to V and all
edges connecting two such vertices. The neighbourhood is
often denoted by 𝑁(V). The degree of vertex V deg(V) is the
number of edges incident on V. The set of neighbors, called
an open neighborhood 𝑁(V) for a vertex V in a graph 𝐺

∗,
consists of all vertices adjacent to V but not including V; that is,
𝑁(V) = {𝑢 ∈ 𝑉 | V𝑢 ∈ 𝐸}.When V is also included, it is called a
closed neighborhood𝑁[V]; that is,𝑁[V] = 𝑁(V)∪{V}. A regular
graph is a graph where each vertex has the same number
of neighbors; that is, all the vertices have the same closed
neighbourhood degree. An undirected graph 𝐺∗ is connected
if there is a path between each pair of distinct vertices. A
connected graph is an irregular graph if each of its vertices
is adjacent only to vertices with distinct degrees.

An isomorphism of graphs 𝐺
∗

1
and 𝐺

∗

2
is a bijection

between the vertex sets of 𝐺∗
1
and 𝐺

∗

2
such that any two

vertices V
1
and V
2
of𝐺∗
1
are adjacent in𝐺∗

1
if and only if 𝑓(V

1
)

and 𝑓(V
2
) are adjacent in 𝐺∗

2
. Isomorphic graphs are denoted

by 𝐺∗
1
≃ 𝐺
∗

2
.

By an intersection graph of a graph 𝐺∗ = (𝑉, 𝐸), we mean
a pair 𝑃(𝑆) = (𝑆, 𝑇), where 𝑆 = {𝑆

1
, 𝑆
2
, . . . , 𝑆

𝑛
} is a family

of distinct nonempty subsets of 𝑉 and 𝑇 = {𝑆
𝑖
𝑆
𝑗
| 𝑆
𝑖
, 𝑆
𝑗
∈

𝑆, 𝑆
𝑖
∩ 𝑆
𝑗
̸= 0, 𝑖 ̸= 𝑗}. It is well known that every graph is an

intersection graph. By a line graph of a graph 𝐺∗ = (𝑉, 𝐸), we
mean a pair 𝐿(𝐺∗) = (𝑍,𝑊), where 𝑍 = {{𝑥} ∪ {𝑢

𝑥
, V
𝑥
} | 𝑥 ∈

𝐸, 𝑢
𝑥
, V
𝑥
∈ 𝑉, 𝑥 = 𝑢

𝑥
V
𝑥
} and𝑊 = {𝑆

𝑥
𝑆
𝑦
| 𝑆
𝑥
∩ 𝑆
𝑦

̸= 0, 𝑥,𝑦 ∈

𝐸, 𝑥 ̸= 𝑦} and 𝑆
𝑥
= {𝑥} ∪ {𝑢

𝑥
, V
𝑥
}, 𝑥 ∈ 𝐸. It is reported in the

literature that the line graph is an intersection graph.

Proposition 1. If 𝐺∗ is regular of degree 𝑘, then the line graph
𝐿(𝐺
∗

) is regular of degree 2𝑘 − 2.

Definition 2 (see [11, 12]). A fuzzy subset 𝜇 on a set𝑋 is a map
𝜇 : 𝑋 → [0, 1]. A fuzzy binary relation on𝑋 is a fuzzy subset
𝜇 on 𝑋 × 𝑋. By a fuzzy relation one means a fuzzy binary
relation given by 𝜇 : 𝑋 × 𝑋 → [0, 1].

Definition 3 (see [3]). A vague set 𝐴 in the universe of
discourse 𝑋 is a pair (𝑡

𝐴
, 𝑓
𝐴
), where 𝑡

𝐴
: 𝑋 → [0, 1],

𝑓
𝐴
: 𝑋 → [0, 1] are true and false membership functions,

respectively, such that 𝑡
𝐴
(𝑥) + 𝑓

𝐴
(𝑥) ≤ 1 for all 𝑥 ∈ 𝑋.

In the above definition, 𝑡
𝐴
(𝑥) is considered as the lower

bound for degree of membership of 𝑥 in 𝐴 (based on
evidence for), and 𝑓

𝐴
(𝑥) is the lower bound for negation

of membership of 𝑥 in 𝐴 (based on evidence against).

Therefore, the degree of membership of 𝑥 in the vague set
𝐴 is characterized by the interval [𝑡

𝐴
(𝑥), 1 − 𝑓

𝐴
(𝑥)]. So, a

vague set is a special case of interval-valued sets studied
by many mathematicians and applied in many branches of
mathematics (see, e.g., [9, 13, 14]). Vague sets also have many
applications (cf. [15–17]). The interval [𝑡

𝐴
(𝑥), 1 − 𝑓

𝐴
(𝑥)] is

called the vague value of 𝑥 in 𝐴 and is denoted by 𝑉
𝐴
(𝑥).

We denote zero vague and unit vague value by 0 = [0, 0] and
1 = [1, 1], respectively.

It is worthmentioning here that interval-valued fuzzy sets
are not vague sets. In interval-valued fuzzy sets, an interval-
valued membership value is assigned to each element of
the universe considering the “evidence for 𝑥” only, without
considering “evidence against 𝑥.” In vague sets both are
independently proposed by the decision maker. This makes
a major difference in the judgment about the grade of
membership.

A vague relation is a further generalization of a fuzzy
relation.

Definition 4. Let 𝑋 and 𝑌 be ordinary finite nonempty sets.
One can call a vague relation a vague subset of𝑋 × 𝑌, that is,
an expression 𝑅 defined by

𝑅 = {⟨(𝑥, 𝑦) , 𝑡
𝑅
(𝑥, 𝑦) , 𝑓

𝑅
(𝑥, 𝑦)⟩ | 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌} , (1)

where 𝑡
𝑅
: 𝑋 × 𝑌 → [0, 1] and 𝑓

𝑅
: 𝑋 × 𝑌 → [0, 1], which

satisfies the condition 0 ≤ 𝑡
𝑅
(𝑥, 𝑦) + 𝑓

𝑅
(𝑥, 𝑦) ≤ 1, for all

(𝑥, 𝑦) ∈ 𝑋 × 𝑌.

3. Vague Intersection Graphs and
Vague Line Graphs

Throughout this paper, 𝐺∗ will be a crisp graph (𝑉, 𝐸) and
𝐺 a vague graph (𝐴, 𝐵) (see Figures 2 and 4). Since an edge
𝑥𝑦 ∈ 𝐸 is identified with an ordered pair (𝑥, 𝑦) ∈ 𝑉 × 𝑉, a
vague relation on 𝐸 can be identified with a vague set on 𝐸.
This gives a possibility to define a vague graph as a pair of
vague sets.

Definition 5 (see [10]). A vague relation𝐵 on a set𝑉 is a vague
relation from𝑉 to𝑉. If𝐴 is a vague set on a set𝑉, then a vague
relation 𝐵 on 𝐴 is a vague relation which satisfies

𝑡
𝐵
(𝑥𝑦) ≤ min (𝑡

𝐴
(𝑥) , 𝑡
𝐴
(𝑦)) ,

𝑓
𝐵
(𝑥𝑦) ≥ max (𝑓

𝐴
(𝑥) , 𝑓

𝐴
(𝑦))

(2)

for all 𝑥, 𝑦 ∈ 𝑉.

Definition 6 (see [10]). Let 𝑉 be a nonempty set; members of
𝑉 are called nodes. A vague graph𝐺 = (𝐴, 𝐵)with𝑉 as the set
of nodes is a pair of functions𝐴 and 𝐵, where𝐴 is a vague set
of 𝑉 and 𝐵 is a vague relation on 𝑉.

We note that vague relation 𝐵 in vague digraph need not
be symmetric.

Example 7. Consider a graph 𝐺
∗

= (𝑉, 𝐸) such that 𝑉 =

{V
1
, V
2
, V
3
, V
4
} and𝐸 = {V

1
V
2
, V
2
V
3
, V
3
V
4
, V
4
V
1
}. Let𝐴 be a vague

set on𝑉, and let 𝐵 be a vague relation on𝑉 defined by Table 1.
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Table 1

(a)

V
1

V
2

V
3

V
4

𝑡
𝐴

0.4 0.6 0.5 0.5
𝑓
𝐴

0.1 0.2 0.1 0.2

(b)

V
1
V
2

V
2
V
3

V
3
V
4

V
4
V
1

𝑡
𝐵

0.1 0.2 0.3 0.4
𝑓
𝐵

0.6 0.7 0.6 0.6

(0.4, 0.6)

(0.4, 0.1)
(0.1, 0.6)

(0.6, 0.2)

(0.2, 0.7)

(0.5, 0.2) (0.5, 0.1)
(0.3, 0.6)

�1 �2

�3�4

Figure 1: Vague digraph.

By routine computations, it is easy to see from Figure 1
that 𝐺 = (𝐴, 𝐵) is a vague digraph.

Definition 8. Consider an intersection graph 𝑃(𝑆) = (𝑆, 𝑇)

of a crisp graph 𝐺
∗

= (𝑉, 𝐸). Let 𝐴
1
= (𝑡
𝐴
1

, 𝑓
𝐴
1

) and
𝐵
1
= (𝑡
𝐵
1

, 𝑓
𝐵
1

) be vague sets on 𝑉 and 𝐸 and 𝐴
2
= (𝑡
𝐴
2

, 𝑓
𝐴
2

)

and 𝐵
2
= (𝑡
𝐵
2

, 𝑓
𝐵
2

) on 𝑆 and 𝑇, respectively. Then a vague
intersection graph of the vague graph 𝐺 = (𝐴

1
, 𝐵
1
) is a vague

graph 𝑃(𝐺) = (𝐴
2
, 𝐵
2
) such that

(a) 𝑡
𝐴
2

(𝑆
𝑖
) = 𝑡
𝐴
1

(V
𝑖
), 𝑓
𝐴
2

(𝑆
𝑖
) = 𝑓
𝐴
1

(V
𝑖
),

(b) 𝑡
𝐵
2

(𝑆
𝑖
𝑆
𝑗
) = 𝑡
𝐵
1

(V
𝑖
V
𝑗
), 𝑓
𝐵
2

(𝑆
𝑖
𝑆
𝑗
) = 𝑓
𝐵
1

(V
𝑖
V
𝑗
)

for all 𝑆
𝑖
, 𝑆
𝑗
∈ 𝑆, 𝑆
𝑖
𝑆
𝑗
∈ 𝑇.

Example 9. Consider a graph 𝐺
∗

= (𝑉, 𝐸), where 𝑉 =

{V
1
, V
2
, V
3
} is the set of vertices and 𝐸 = {V

1
V
2
, V
2
V
3
, V
3
V
1
} is

the set of edges. Consider 𝐺 = (𝐴
1
, 𝐵
1
), where 𝐴

1
and 𝐵

1

are vague set and vague relation on𝑉, respectively. We define
Table 2.

By routine computations, it is easy to see from Figure 3
that𝐺 is a vague graph. Consider an intersection graph𝑃(𝑆) =
(𝑆, 𝑇) such that

𝑆 = {𝑆
1
= {V
1
, V
2
} , 𝑆
2
= {V
2
, V
3
} , 𝑆
3
= {V
1
, V
3
}} ,

𝑇 = {𝑆
1
𝑆
2
, 𝑆
2
𝑆
3
, 𝑆
3
𝑆
1
} .

(3)

(0.2, 0.3)

(0.1, 0.6) (0.1, 0.5)

(0.4, 0.5) (0.3, 0.4)
(0.2, 0.7)

�1

�2�3

Figure 2: Vague graph.

S1

S2S3

(0.2, 0.3)

(0.1, 0.6) (0.1, 0.6)

(0.4, 0.5) (0.3, 0.4)
(0.1, 0.7)

Figure 3: Vague intersection graph.

Let𝐴
2
= (𝑡
𝐴
2

, 𝑓
𝐴
2

) and 𝐵
2
= (𝑡
𝐵
2

, 𝑓
𝐵
2

) be vague sets on 𝑆 and
𝑇, respectively. Then, by routine computations, we have

𝑡
𝐴
2

(𝑆
1
) = 𝑡
𝐴
1

(V
1
) = 0.2,

𝑡
𝐴
2

(𝑆
2
) = 𝑡
𝐴
1

(V
2
) = 0.3,

𝑡
𝐴
2

(𝑆
3
) = 𝑡
𝐴
1

(V
3
) = 0.4,

𝑓
𝐴
2

(𝑆
1
) = 𝑓
𝐴
1

(V
1
) = 0.3,

𝑓
𝐴
2

(𝑆
2
) = 𝑓
𝐴
1

(V
2
) = 0.4,

𝑓
𝐴
2

(𝑆
3
) = 𝑓
𝐴
1

(V
3
) = 0.5,

𝑡
𝐵
2

(𝑆
1
𝑆
2
) = 𝑡
𝐵
1

(V
1
V
2
) = 0.1,

𝑡
𝐵
2

(𝑆
2
𝑆
3
) = 𝑡
𝐵
1

(V
2
V
3
) = 0.1,

𝑡
𝐵
2

(𝑆
3
𝑆
1
) = 𝑡
𝐵
1

(V
3
V
1
) = 0.1,

𝑓
𝐵
2

(𝑆
1
𝑆
2
) = 𝑓
𝐵
1

(V
1
V
2
) = 0.6,

𝑓
𝐵
2

(𝑆
2
𝑆
3
) = 𝑓
𝐵
1

(V
2
V
3
) = 0.7,

𝑓
𝐵
2

(𝑆
3
𝑆
1
) = 𝑓
𝐵
1

(V
3
V
1
) = 0.6.

(4)

By routine computations, it is easy to see that 𝑃(𝐺) is a
vague intersection graph.
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Table 2

(a)

V
1

V
2

V
3

𝑡
𝐴1

0.2 0.3 0.4
𝑓
𝐴1

0.3 0.4 0.5

(b)

V
1
V
2

V
2
V
3

V
3
V
1

𝑡
𝐵1

0.1 0.2 0.1
𝑓
𝐵1

0.5 0.7 0.6

(0.1, 0.6)
(0.2, 0.5) (0.3, 0.4)

(0.1, 0.7) (0.2, 0.6)

(0.2, 0.3) (0.4, 0.5)
(0.1, 0.7)

�1 �2

�3�4

Figure 4: Vague graph.

Proposition 10. Let 𝐺 = (𝐴
1
, 𝐵
1
) be a vague graph of 𝐺∗ and

let𝑃(𝐺) = (𝐴
2
, 𝐵
2
) be a vague intersection graph of𝑃(𝑆).Then

(a) a vague intersection graph is a vague graph;
(b) a vague graph is isomorphic to a vague intersection

graph.

Proof. (a) From Definition 6, it follows that

𝑡
𝐵
2

(𝑆
𝑖
𝑆
𝑗
) = 𝑡
𝐵
1

(V
𝑖
V
𝑗
) ≤ min (𝑡

𝐴
1

(V
𝑖
) , 𝑡
𝐴
1

(V
𝑗
)) ,

𝑓
𝐵
2

(𝑆
𝑖
𝑆
𝑗
) = 𝑓
𝐵
1

(V
𝑖
V
𝑗
) ≥ max (𝑓

𝐴
1

(V
𝑖
) , 𝑓
𝐴
1

(V
𝑗
)) .

(5)

This shows that a vague intersection graph is a vague graph.
(b) Define 𝜑 : 𝑉 → 𝑆 by 𝜑(V

𝑖
) = 𝑠
𝑖
, for 𝑖 = 1, 2 . . . , 𝑛.

Clearly, 𝜑 is a one-to-one function of 𝑉 onto 𝑆. Now V
𝑖
V
𝑗
∈ 𝐸

if and only if 𝑠
𝑖
𝑠
𝑗
∈ 𝑇 and 𝑇 = {𝜑(V

𝑖
)𝜑(V
𝑗
) | V
𝑖
V
𝑗
∈ 𝐸}. Also

𝑡
𝐴
2

(𝜑 (V
𝑖
)) = 𝑡

𝐴
2

(𝑆
𝑖
) = 𝑡
𝐴
1

(V
𝑖
) ,

𝑓
𝐴
2

(𝜑 (V
𝑖
)) = 𝑓

𝐴
2

(𝑆
𝑖
) = 𝑓
𝐴
1

(V
𝑖
) ,

𝑡
𝐵
2

(𝜑 (V
𝑖
) 𝜑 (V
𝑗
)) = 𝑡

𝐵
2

(𝑆
𝑖
𝑆
𝑗
) = 𝑡
𝐵
1

(V
𝑖
V
𝑗
) ,

𝑓
𝐵
2

(𝜑 (V
𝑖
) 𝜑 (V
𝑗
)) = 𝑓

𝐵
2

(𝑆
𝑖
𝑆
𝑗
) = 𝑓
𝐵
1

(V
𝑖
V
𝑗
) .

(6)

Thus 𝜑 is an isomorphism of 𝐺 onto 𝑃(𝐺).

Definition 11. Let 𝐿(𝐺∗) = (𝑍,𝑊) be a line graph of a crisp
graph 𝐺∗ = (𝑉, 𝐸). Let 𝐴

1
= (𝑡
𝐴
1

, 𝑓
𝐴
1

) and 𝐵
1
= (𝑡
𝐵
1

, 𝑓
𝐵
1

) be

Table 3

(a)

V
1

V
2

V
3

V
4

𝑡
𝐴1

0.2 0.3 0.4 0.2
𝑓
𝐴1

0.5 0.4 0.5 0.3

(b)

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑡
𝐵1

0.1 0.2 0.1 0.1
𝑓
𝐵1

0.6 0.6 0.7 0.7

vague sets on𝑉 and 𝐸 and𝐴
2
= (𝑡
𝐴
2

, 𝑓
𝐴
2

) and 𝐵
2
= (𝑡
𝐵
2

, 𝑓
𝐵
2

)

on𝑍 and𝑊, respectively.Then a vague line graph of the vague
graph 𝐺 = (𝐴

1
, 𝐵
1
) is a vague graph 𝐿(𝐺) = (𝐴

2
, 𝐵
2
) such

that

(i) 𝑡
𝐴
2

(𝑆
𝑥
) = 𝑡
𝐵
1

(𝑥) = 𝑡
𝐵
1

(𝑢
𝑥
V
𝑥
),

(ii) 𝑓
𝐴
2

(𝑆
𝑥
) = 𝑓
𝐵
1

(𝑥) = 𝑓
𝐵
1

(𝑢
𝑥
V
𝑥
),

(iii) 𝑡
𝐵
2

(𝑆
𝑥
𝑆
𝑦
) = min(𝑡

𝐵
1

(𝑥), 𝑡
𝐵
1

(𝑦)),
(iv) 𝑓
𝐵
2

(𝑆
𝑥
𝑆
𝑦
) = max(𝑓

𝐵
1

(𝑥), 𝑓
𝐵
1

(𝑦))

for all 𝑆
𝑥
, 𝑆
𝑦
∈ 𝑍, 𝑆

𝑥
𝑆
𝑦
∈ 𝑊.

Example 12. Consider a crisp graph 𝐺∗ = (𝑉, 𝐸), where 𝑉 =

{V
1
, V
2
, V
3
, V
4
} is the set of vertices, and 𝐸 = {𝑥

1
= V
1
V
2
, 𝑥
2
=

V
2
V
3
, 𝑥
3
= V
3
V
4
, 𝑥
4
= V
4
V
1
} is the set of edges. Let 𝐴

1
be a

vague set on 𝑉 and let 𝐵
1
be vague relation on 𝑉 defined by

Table 3.
By routine computations, it is easy to see that𝐺 = (𝐴

1
, 𝐵
1
)

is a vague graph. Consider a line graph 𝐿(𝐺∗) = (𝑍,𝑊) such
that

𝑍 = {𝑆
𝑥
1

, 𝑆
𝑥
2

, 𝑆
𝑥
3

, 𝑆
𝑥
4

} ,

𝑊 = {𝑆
𝑥
1

𝑆
𝑥
2

, 𝑆
𝑥
2

𝑆
𝑥
3

, 𝑆
𝑥
3

𝑆
𝑥
4

, 𝑆
𝑥
4

𝑆
𝑥
1

} .

(7)

Let𝐴
2
= (𝑡
𝐴
2

, 𝑓
𝐴
2

) and 𝐵
2
= (𝑡
𝐵
2

, 𝑓
𝐵
2

) be vague sets on 𝑍
and𝑊, respectively. Then, by routine computations, we have

𝑡
𝐴
2

(𝑆
𝑥
1

) = 0.1, 𝑡
𝐴
2

(𝑆
𝑥
2

) = 0.2,

𝑡
𝐴
2

(𝑆
𝑥
3

) = 0.1, 𝑡
𝐴
2

(𝑆
𝑥
4

) = 0.1,

𝑓
𝐴
2

(𝑆
𝑥
1

) = 0.6, 𝑓
𝐴
2

(𝑆
𝑥
2

) = 0.6,

𝑓
𝐴
2

(𝑆
𝑥
3

) = 0.7, 𝑓
𝐴
2

(𝑆
𝑥
4

) = 0.7,

𝑡
𝐵
2

(𝑆
𝑥
1

𝑆
𝑥
2

) = 0.1, 𝑡
𝐵
2

(𝑆
𝑥
2

𝑆
𝑥
3

) = 0.1,

𝑡
𝐵
2

(𝑆
𝑥
3

𝑆
𝑥
4

) = 0.1, 𝑡
𝐵
2

(𝑆
𝑥
4

𝑆
𝑥
1

) = 0.1,

𝑓
𝐵
2

(𝑆
𝑥
1

𝑆
𝑥
2

) = 0.6, 𝑓
𝐵
2

(𝑆
𝑥
2

𝑆
𝑥
3

) = 0.7,

𝑓
𝐵
2

(𝑆
𝑥
3

𝑆
𝑥
4

) = 0.7, 𝑓
𝐵
2

(𝑆
𝑥
4

𝑆
𝑥
1

) = 0.7.

(8)

By routine computations, it is clear that 𝐿(𝐺) = (𝐴
2
, 𝐵
2
)

is a vague line graph (see Figure 5).
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(0.1, 0.6)

(0.2, 0.6)
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Sx1 Sx2

Sx3Sx4

Figure 5: Vague line graph.

Remark 13. 𝐿(𝐺) = (𝐴
2
, 𝐵
2
) is a vague line graph correspond-

ing to the vague graph 𝐺 = (𝐴
1
, 𝐵
1
).

Proposition 14. If 𝐿(𝐺) = (𝐴
2
, 𝐵
2
) is a vague line graph of

a vague graph 𝐺 = (𝐴
1
, 𝐵
1
), then 𝐿(𝐺∗) = (𝑍,𝑊) is the line

graph of 𝐺∗ = (𝑉, 𝐸).

Proposition 15. 𝐿(𝐺) = (𝐴
2
, 𝐵
2
) is a vague line graph of some

vague graph 𝐺 = (𝐴
1
, 𝐵
1
) if and only if

𝑡
𝐵
2

(𝑆
𝑥
𝑆
𝑦
) = min (𝑡

𝐴
2

(𝑆
𝑥
) , 𝑡
𝐴
2

(𝑆
𝑦
)) ,

𝑓
𝐵
2

(𝑆
𝑥
𝑆
𝑦
) = max (𝑓

𝐴
2

(𝑆
𝑥
) , 𝑓
𝐴
2

(𝑆
𝑦
))

(9)

for all 𝑆
𝑥
, 𝑆
𝑦
∈ 𝑊.

Proof. Assume that 𝑡
𝐵
2

(𝑆
𝑥
𝑆
𝑦
) = min(𝑡

𝐴
2

(𝑆
𝑥
), 𝑡
𝐴
2

(𝑆
𝑦
)) for all

𝑆
𝑥
, 𝑆
𝑦
∈ 𝑊. We define 𝑡

𝐴
1

(𝑥) = 𝑡
𝐴
2

(𝑆
𝑥
) for all 𝑥 ∈ 𝐸. Then

𝑡
𝐵
2

(𝑆
𝑥
𝑆
𝑦
) = min (𝑡

𝐴
2

(𝑆
𝑥
) , 𝑡
𝐴
2

(𝑆
𝑦
))

= min (𝑡
𝐴
1
(𝑥) , 𝑡
𝐴
1

(𝑦)) ,

𝑓
𝐵
2

(𝑆
𝑥
𝑆
𝑦
) = max (𝑓

𝐴
2

(𝑆
𝑥
) , 𝑓
𝐴
2

(𝑆
𝑦
))

= max (𝑓
𝐴
1
(𝑥) , 𝑓

𝐴
1

(𝑦)) .

(10)

A vague set 𝐴
1
= (𝑡
𝐴
1

, 𝑓
𝐴
1

) that yields the properties

𝑡
𝐵
1

(𝑥𝑦) ≤ min (𝑡
𝐴
1
(𝑥) , 𝑡
𝐴
1

(𝑦)) ,

𝑓
𝐵
1

(𝑥𝑦) ≥ max (𝑓
𝐴
1
(𝑥) , 𝑓

𝐴
1

(𝑦))

(11)

will suffice.
The converse part is obvious.

Another characterization of vague line graphs of vague
graphs is given by the following proposition.

Proposition 16. 𝐿(𝐺) = (𝐴
2
, 𝐵
2
) is a vague line graph of some

vague graph if and only if 𝐿(𝐺∗) = (𝑍,𝑊) is a line graph such
that

𝑡
𝐵
2
(𝑢V) = min (𝑡

𝐴
2
(𝑢) , 𝑡
𝐴
2
(V)) ,

𝑓
𝐵
2
(𝑢V) = max (𝑓

𝐴
2
(𝑢) , 𝑓

𝐴
2
(V))

(12)

for all 𝑢V ∈ 𝑊.

Definition 17. Let 𝐺
1
= (𝐴
1
, 𝐵
1
) and 𝐺

2
= (𝐴
2
, 𝐵
2
) be two

vague graphs. A homomorphism 𝜑 : 𝐺
1
→ 𝐺
2
is a mapping

𝜑 : 𝑉
1
→ 𝑉
2
such that

(a) 𝑡
𝐴
1

(𝑥
1
) ≤ 𝑡
𝐴
2

(𝜑(𝑥
1
)), 𝑓
𝐴
1

(𝑥
1
) ≥ 𝑓
𝐴
2

(𝜑(𝑥
1
)),

(b) 𝑡
𝐵
1

(𝑥
1
𝑦
1
) ≤ 𝑡

𝐵
2

(𝜑(𝑥
1
)𝜑(𝑦
1
)), 𝑓

𝐵
1

(𝑥
1
𝑦
1
) ≥

𝑓
𝐵
2

(𝜑(𝑥
1
)𝜑(𝑦
1
))

for all 𝑥
1
∈ 𝑉
1
, 𝑥
1
𝑦
1
∈ 𝐸
1
, and 𝜑(𝑥

1
𝑦
1
) ∈ 𝐸
2
.

A bijective homomorphism𝜑 : 𝐺
1
→ 𝐺
2
of vague graphs

is called a weak vertex-isomorphism if

(c) 𝑡
𝐴
1

(𝑥
1
) = 𝑡
𝐴
2

(𝜑(𝑥
1
)), 𝑓
𝐴
1

(𝑥
1
) = 𝑓
𝐴
2

(𝜑(𝑥
1
)),

for all 𝑥
1
∈ 𝑉
1
, and a weak line-isomorphism if

(d) 𝑡
𝐵
1

(𝑥
1
𝑦
1
) = 𝑡

𝐵
2

(𝜑(𝑥
1
)𝜑(𝑦
1
)), 𝑓

𝐵
1

(𝑥
1
𝑦
1
) =

𝑓
𝐵
2

(𝜑(𝑥
1
)𝜑(𝑦
1
)),

for all 𝑥
1
𝑦
1
∈ 𝐸
1
. A bijective homomorphism 𝜑 : 𝐺

1
→ 𝐺
2

satisfying (𝑐) and (𝑑) is called a weak isomorphism of vague
graphs𝐺

1
and𝐺

2
. Aweak isomorphismpreserves theweights

of the vertices but not necessarily the weights of the edges.

The following fact is obvious.

Proposition 18. A weak isomorphism of vague graphs 𝐺
1
and

𝐺
2
is an isomorphism of their crisp graphs 𝐺∗

1
and 𝐺∗

2
.

Theorem 19. Let 𝐿(𝐺) = (𝐴
2
, 𝐵
2
) be the vague line graph

corresponding to the vague graph 𝐺 = (𝐴
1
, 𝐵
1
). Suppose that

𝐺
∗

= (𝑉, 𝐸) is connected. Then one has the following.

(i) There exists a weak isomorphism of 𝐺 onto 𝐿(𝐺) if and
only if 𝐺∗ is a cycle and for all V ∈ 𝑉, 𝑥 ∈ 𝐸, 𝑡

𝐴
1

(V) =
𝑡
𝐵
1

(𝑥), 𝑓
𝐴
1

(V) = 𝑓
𝐵
1

(𝑥); that is, 𝐴
1
= (𝑡
𝐴
1

, 𝑓
𝐴
1

) and
𝐵
1
= (𝑡
𝐵
1

, 𝑓
𝐵
1

) are constant functions on 𝑉 and 𝐸,
respectively, taking on the same value.

(ii) If 𝜑 is a weak isomorphism of𝐺 onto 𝐿(𝐺), then 𝜑 is an
isomorphism.

Proof. Assume that 𝜑 is a weak isomorphism of 𝐺 onto 𝐿(𝐺).
From Proposition 15, it follows that 𝐺∗ = (𝑉, 𝐸) is a cycle [18,
Theorem 8.2, page 72]. Let 𝑉 = {V

1
, V
2
, . . . , V

𝑛
} and 𝐸 = {𝑥

1
=

V
1
V
2
, 𝑥
2
= V
2
V
3
, . . . , 𝑥

𝑛
= V
𝑛
V
1
}, where V

1
V
2
V
3
, . . . , V

𝑛
is a cycle.

Define vague sets

𝑡
𝐴
1

(V
𝑖
) = 𝑠
𝑖
, 𝑓

𝐴
1

(V
𝑖
) = 𝑠
󸀠

𝑖
,

𝑡
𝐵
1

(𝑥
𝑖
) = 𝑡
𝐵
1

(V
𝑖
V
𝑖+1
) = 𝑟
𝑖
, 𝑓

𝐵
1

(𝑥
𝑖
) = 𝑓
𝐵
1

(V
𝑖
V
𝑖+1
) = 𝑟
󸀠

𝑖
,

𝑖 = 1, 2, . . . , 𝑛, V
𝑛+1

= V
1
.

(13)
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Then for 𝑠
𝑛+1

= 𝑠
1
and 𝑠󸀠
𝑛+1

= 𝑠
󸀠

1
, we have

𝑟
𝑖
≤ min (𝑠

𝑖
, 𝑠
𝑖+1
) , 𝑟

󸀠

𝑖
≥ max (𝑠󸀠

𝑖
, 𝑠
󸀠

𝑖+1
) ,

𝑖 = 1, 2, . . . , 𝑛.

(14)

Now

𝑍 = {𝑆
𝑥
1

, 𝑆
𝑥
2

, 𝑆
𝑥
3

, . . . , 𝑆
𝑥
𝑛

} ,

𝑊 = {𝑆
𝑥
1

𝑆
𝑥
2

, 𝑆
𝑥
2

𝑆
𝑥
3

, . . . , 𝑆
𝑥
𝑛

𝑆
𝑥
1

} .

(15)

Thus for 𝑟
𝑛+1

= 𝑟
1
, we obtain

𝑡
𝐴
2

(𝑆
𝑥
𝑖

) = 𝑡
𝐵
1

(𝑥
𝑖
) = 𝑟
𝑖
, 𝑓

𝐴
2

(𝑆
𝑥
𝑖

) = 𝑓
𝐵
1

(𝑥
𝑖
) = 𝑟
󸀠

𝑖
,

𝑡
𝐵
2

(𝑆
𝑥
𝑖

𝑆
𝑥
𝑖+1

) = min (𝑡
𝐵
1

(𝑥
𝑖
) , 𝑡
𝐵
1

(𝑥
𝑖+1
)) = min (𝑟

𝑖
, 𝑟
𝑖+1
) ,

𝑓
𝐵
2

(𝑆
𝑥
𝑖

𝑆
𝑥
𝑖+1

) = max (𝑓
𝐵
1

(𝑥
𝑖
) , 𝑓
𝐵
1

(𝑥
𝑖+1
)) = max (𝑟󸀠

𝑖
, 𝑟
󸀠

𝑖+1
)

(16)

for 𝑖 = 1, 2, . . . , 𝑛, V
𝑛+1

= V
1
. Since 𝜑 is an isomorphism of 𝐺∗

onto 𝐿(𝐺∗), 𝜑 is a bijective map of𝑉 onto𝑍. Also 𝜑 preserves
adjacency. Hence 𝜑 induces a permutation 𝜋 of {1, 2, . . . , 𝑛}
such that

𝜑 (V
𝑖
) = 𝑆V

𝜋(𝑖)
V
𝜋(𝑖)+1

,

V
𝑖
V
𝑖+1

󳨀→ 𝜑 (V
𝑖
) 𝜑 (V
𝑖+1
) = 𝑆V

𝜋(𝑖)
V
𝜋(𝑖)+1

𝑆V
𝜋(𝑖+1)

V
𝜋(𝑖+1)+1

,

𝑖 = 1, 2, . . . , 𝑛 − 1.

(17)

Thus
𝑠
𝑖
= 𝑡
𝐴
1

(V
𝑖
) ≤ 𝑡
𝐴
2

(𝜑 (V
𝑖
))

= 𝑡
𝐴
2

(𝑆V
𝜋(𝑖)

V
𝜋(𝑖)+1

)

= 𝑡
𝐵
1

(V
𝜋(𝑖)

V
𝜋(𝑖)+1

) = 𝑟
𝜋(𝑖)
,

𝑠
󸀠

𝑖
= 𝑓
𝐴
1

(V
𝑖
) ≥ 𝑓
𝐴
2

(𝜑 (V
𝑖
)) = 𝑓

𝐴
2

(𝑆V
𝜋(𝑖)

V
𝜋(𝑖)+1

)

= 𝑓
𝐵
1

(V
𝜋(𝑖)

V
𝜋(𝑖)+1

) = 𝑟
󸀠

𝜋(𝑖)
,

𝑟
𝑖
= 𝑡
𝐵
1

(V
𝑖
V
𝑖+1
) ≤ 𝑡
𝐵
2

(𝜑 (V
𝑖
) 𝜑 (V
𝑖+1
))

= 𝑡
𝐵
2

(𝑆V
𝜋(𝑖)

V
𝜋(𝑖)+1

𝑆V
𝜋(𝑖+1)

V
𝜋(𝑖+1)+1

)

= min (𝑡
𝐵
1

(V
𝜋(𝑖)

V
𝜋(𝑖)+1

) , 𝑡
𝐵
1

(V
𝜋(𝑖+1)

V
𝜋(𝑖+1)+1

))

= min (𝑟
𝜋(𝑖)
, 𝑟
𝜋(𝑖+1)

) .

(18)

Similarly,

𝑟
󸀠

𝑖
= 𝑓
𝐵
1

(V
𝑖
V
𝑖+1
)

≥ 𝑓
𝐵
2

(𝜑 (V
𝑖
) 𝜑 (V
𝑖+1
))

= 𝑓
𝐵
2

(𝑆V
𝜋(𝑖)

V
𝜋(𝑖)+1

𝑆V
𝜋(𝑖+1)

V
𝜋(𝑖+1)+1

)

= max (𝑓
𝐵
1

(V
𝜋(𝑖)

V
𝜋(𝑖)+1

) , 𝑓
𝐵
1

(V
𝜋(𝑖+1)

V
𝜋(𝑖+1)+1

))

= max (𝑟󸀠
𝜋(𝑖)
, 𝑟
󸀠

𝜋(𝑖+1)
)

(19)

for 𝑖 = 1, 2, . . . , 𝑛. That is,

𝑠
𝑖
≤ 𝑟
𝜋(𝑖)
, 𝑠

󸀠

𝑖
≥ 𝑟
󸀠

𝜋
(𝑖) , (20)

𝑟
𝑖
≤ min (𝑟

𝜋(𝑖)
, 𝑟
𝜋(𝑖+1)

) , 𝑟
󸀠

𝑖
≥ max (𝑟󸀠

𝜋(𝑖)
, 𝑟
󸀠

𝜋(𝑖+1)
) . (21)

Thus, 𝑟
𝑖
≤ 𝑟
𝜋(𝑖)

and 𝑟󸀠
𝑖
≥ 𝑟
󸀠

𝜋(𝑖)
and so 𝑟

𝜋(𝑖)
≤ 𝑟
𝜋(𝜋(𝑖))

and
𝑟
󸀠

𝜋(𝑖)
≥ 𝑟
󸀠

𝜋(𝜋(𝑖))
for all 𝑖 = 1, 2, . . . , 𝑛. Continuing, we obtain

𝑟
𝑖
≤ 𝑟
𝜋(𝑖)

≤ ⋅ ⋅ ⋅ ≤ 𝑟
𝜋
𝑗
(𝑖)
≤ 𝑟
𝑖
,

𝑟
󸀠

𝑖
≥ 𝑟
󸀠

𝜋(𝑖)
≥ ⋅ ⋅ ⋅ ≥ 𝑟

󸀠

𝜋
𝑗
(𝑖)
≥ 𝑟
󸀠

𝑖
,

(22)

where 𝜋𝑗+1 is the identity map. So, 𝑟
𝑖
= 𝑟
𝜋(𝑖)

and 𝑟󸀠
𝑖
= 𝑟
󸀠

𝜋(𝑖)
for

all 𝑖 = 1, 2, . . . , 𝑛. But, by (21), we also have 𝑟
𝑖
≤ 𝑟
𝜋(𝑖+1)

= 𝑟
𝑖+1

and 𝑟󸀠
𝑖
≥ 𝑟
󸀠

𝜋(𝑖+1)
= 𝑟
󸀠

𝑖+1
, which together with 𝑟

𝑛+1
= 𝑟
1
and

𝑟
󸀠

𝑛+1
= 𝑟
󸀠

1
imply 𝑟

𝑖
= 𝑟
1
and 𝑟󸀠
𝑖
= 𝑟
󸀠

1
for all 𝑖 = 1, 2, . . . , 𝑛. Hence

by (14) and (20), we get

𝑟
1
= ⋅ ⋅ ⋅ = 𝑟

𝑛
= 𝑠
1
= ⋅ ⋅ ⋅ = 𝑠

𝑛
,

𝑟
󸀠

1
= ⋅ ⋅ ⋅ = 𝑟

󸀠

𝑛
= 𝑠
󸀠

1
= ⋅ ⋅ ⋅ = 𝑠

󸀠

𝑛
.

(23)

Thus we have not only proven the conclusion about 𝐴
1
and

𝐵
1
being constant function, but also shown that (ii) holds.
The converse part of (i) is obvious.

We state the following theorem without proof.

Theorem 20. Let 𝐺 and 𝐻 be vague graphs of 𝐺∗ and 𝐻∗,
respectively, such that 𝐺∗ and 𝐻

∗ are connected. Let 𝐿(𝐺∗)
and 𝐿(𝐻

∗

) be the line graphs corresponding to 𝐺 and 𝐻,
respectively. Suppose that it is not the case that one of 𝐺∗ and
𝐻
∗ is complete graph 𝐾

3
and the other is bipartite complete

graph 𝐾
1,3
. If 𝐿(𝐺) and 𝐿(𝐻∗) are isomorphic, then 𝐺 and 𝐻

are line-isomorphic.

4. Regular Vague Intersection Graphs and
Vague Line Graphs

Definition 21. A vague graph 𝐺 is called complete if

𝑡
𝐵
(𝑥𝑦) = min (𝑡

𝐴
(𝑥) , 𝑡
𝐴
(𝑦)) ,

𝑓
𝐵
(𝑥𝑦) = max (𝑓

𝐴
(𝑥) , 𝑓

𝐴
(𝑦))

(24)

for each edge 𝑥𝑦 ∈ 𝐸.

Example 22. Consider a vague graph 𝐺.

Routine computations show that 𝐺 is complete (see
Figure 6).

Definition 23. Let𝐺 be a vague graph on𝐺∗. If all the vertices
have the same open neighbourhood degree𝑚, then𝐺 is called
a regular vague graph. The neighbourhood degree of a vertex
𝑥 in 𝐺 is defined by deg(𝑥) = (deg

𝑡
(𝑥), deg

𝑓
(𝑥)), where

deg
𝑡
(𝑥) = ∑

𝑦∈𝑁(𝑥)
𝑡
𝐴
(𝑦) and deg

𝑓
(𝑥) = ∑

𝑦∈𝑁(𝑥)
𝑓
𝐴
(𝑦).
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(a)(b)

(c) (d)

(0.1, 0.5)
(0.1, 0.4) (0.2, 0.5)

(0.1, 0.4) (0.2, 0.5)

(0.
1,
0.
5) (0.1, 0.5)

(0.1, 0.5)
(0.1, 0.4) (0.3, 0.5)

Figure 6: 𝐺 is complete.

Definition 24. Let 𝐺 be a vague graph. The closed neigh-
bourhood degree of a vertex 𝑥 is defined by deg[𝑥] =

(deg
𝑡
[𝑥], deg

𝑓
[𝑥]), where

deg
𝑡
[𝑥] = deg

𝑡
(𝑥) + 𝑡

𝐴
(𝑥) ,

deg
𝑓
[𝑥] = deg

𝑓
(𝑥) + 𝑓

𝐴
(𝑥) .

(25)

If each vertex of𝐺 has the same closed neighbourhood degree
𝑚, then 𝐺 is called a totally regular vague graph.

Example 25. Consider a graph 𝐺∗ such that 𝑉 = {V
1
, V
2
, V
3
}

and 𝐸 = {V
1
V
2
, V
2
V
3
, V
3
V
1
}. Let 𝐴 be a vague subset of 𝑉 and

let 𝐵 be a vague subset of 𝑉 defined by

𝑡
𝐴
(V
1
) = 0.4, 𝑡

𝐴
(V
2
) = 0.4, 𝑡

𝐴
(V
3
) = 0.4,

𝑓
𝐴
(V
1
) = 0.1, 𝑓

𝐴
(V
2
) = 0.1, 𝑓

𝐴
(V
3
) = 0.1,

𝑡
𝐵
(V
1
V
2
) = 0.3, 𝑡

𝐵
(V
2
V
3
) = 0.3, 𝑡

𝐵
(V
3
V
1
) = 0.3,

𝑓
𝐵
(V
1
V
2
) = 0.6, 𝑓

𝐵
(V
2
V
3
) = 0.6, 𝑓

𝐵
(V
3
V
1
) = 0.6.

(26)

Routine computations show that a vague graph 𝐺 is both
regular and totally regular.

Definition 26. If there is a vertex which is adjacent to vertices
with distinct open neighbourhood degrees, then 𝐺 is called
an irregular vague graph (see Figure 8). That is, deg(𝑥) ̸=𝑚

for all 𝑥 ∈ 𝑉. If there is a vertex which is adjacent to vertices
with distinct closed neighbourhood degrees, then 𝐺 is called
a totally irregular vague graph (see Figure 9).

Example 27. Consider a graph 𝐺∗ such that

𝑉 = {V
1
, V
2
, V
3
} , 𝐸 = {V

1
V
2
, V
2
V
3
, V
1
V
3
} . (27)

Let 𝐴 be a vague subset of 𝑉 and let 𝐵 be a vague subset of 𝑉
defined by Table 4.

By routine computations, we have deg(V
1
) = (0.5, 1.1),

deg(V
2
) = (0.5, 1.0), and deg(V

3
) = (0.4, 1.3). It is clear that 𝐺

is an irregular vague graph.

Table 4

(a)

V
1

V
2

V
3

𝑡
𝐴

0.2 0.2 0.3
𝑓
𝐴

0.6 0.7 0.4

(b)

V
1
V
2

V
1
V
3

V
2
V
3

𝑡
𝐵

0.1 0.1 0.2
𝑓
𝐵

0.2 0.2 0.3

Table 5

(a)

𝑎 𝑏 𝑐 𝑑

𝑡
𝐴

0.5 0.4 0.7 0.5
𝑓
𝐴

0.3 0.2 0.3 0.5

(b)

𝑎𝑏 𝑏𝑐 𝑐𝑑 𝑑𝑎

𝑡
𝐵

0.2 0.4 0.2 0.4
𝑓
𝐵

0.6 0.6 0.6 0.6

Example 28. Consider a graph 𝐺∗ such that 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑}

and 𝐸 = {𝑎𝑏, 𝑏𝑐, 𝑐𝑑, 𝑎𝑑}. Let 𝐴 be a vague subset of 𝑉 and let
𝐵 be a vague subset of 𝑉 defined by Table 5.

Routine computations show that a vague graph 𝐺 is both
irregular and totally irregular.

Remark 29. In classical (crisp) graph theory, any complete
graph 𝐾

𝑛
is regular, but a complete vague graph 𝐺 is not

regular, in general (see Figure 10).

Example 30. Consider a graph𝐺∗ such that𝑉 = {𝑥, 𝑦, 𝑧} and
𝐸 = {𝑥𝑦, 𝑦𝑧, 𝑧𝑥}. Let 𝐴 be a vague subset of 𝑉 and let 𝐵 be a
vague subset of 𝑉 defined by

𝑡
𝐴
(𝑥) = 0.5, 𝑡

𝐴
(𝑦) = 0.4, 𝑡

𝐴
(𝑧) = 0.3,

𝑓
𝐴
(𝑥) = 0.3, 𝑓

𝐴
(𝑦) = 0.4, 𝑓

𝐴
(𝑧) = 0.5,

𝑡
𝐵
(𝑥𝑦) = 0.4, 𝑡

𝐵
(𝑦𝑧) = 0.3, 𝑡

𝐵
(𝑧𝑥) = 0.3,

𝑓
𝐵
(𝑥𝑦) = 0.4, 𝑓

𝐵
(𝑦𝑧) = 0.5, 𝑓

𝐵
(𝑧𝑥) = 0.5.

(28)

Clearly, 𝐺 is a complete vague graph, but 𝐺 is not regular
since deg(𝑥) ̸= deg(𝑧).

Definition 31 (see [10]). The complement of a vague graph
𝐺 = (𝐴, 𝐵) of 𝐺∗ = (𝑉, 𝐸) is a vague graph 𝐺 = (𝐴, 𝐵) on
𝐺∗, where 𝐴 = (𝑡

𝐴
, 𝑓
𝐴
) and 𝐵 = (𝑡

𝐵
, 𝑓
𝐵
) are defined by

(i)

𝑉 = 𝑉, (29)

(ii)

𝑡
𝐴
(𝑥) = 𝑡

𝐴
(𝑥) , 𝑓

𝐴
(𝑥) = 𝑓

𝐴
(𝑥) ∀𝑥 ∈ 𝑉, (30)
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(0.3, 0.6) (0.3, 0.6)

(0.4, 0.1)

(0.3, 0.6)
(0.4, 0.1)(0.4, 0.1)

�1

�2�3

Figure 7: 𝐺 is regular and totally regular.

(0.2, 0.6)

(0.1, 0.2) (0.1, 0.2)

(0.3, 0.4) (0.2, 0.7)
(0.2, 0.3)

�1

�2�3

Figure 8: 𝐺 is irregular.

(iii)

𝑡
𝐵
(𝑥𝑦) = {

0 if 𝑡
𝐵
(𝑥𝑦) > 0,

min (𝑡
𝐴
(𝑥) , 𝑡
𝐴
(𝑦)) if 𝑡

𝐵
(𝑥𝑦) = 0,

𝑓
𝐵
(𝑥𝑦) = {

0 if 𝑓
𝐵
(𝑥𝑦) > 0,

max (𝑓
𝐴
(𝑥) , 𝑓

𝐴
(𝑦)) if 𝑓

𝐵
(𝑥𝑦) = 0.

(31)

Definition 32. A vague graph 𝐺 is called self-complementary
if 𝐺 ≈ 𝐺.

Example 33. Consider a vague graph 𝐺.

(1) Clearly, graph 𝐺 is not isomorphic to its complement
𝐺. Hence 𝐺 is not self-complementary.

(2) Routine calculations show that 𝐺 and 𝐺 are irregular
and totally irregular, respectively (see Figures 11 and
12).

Example 34. Consider a vague graph 𝐺.

(1) Clearly, 𝐺 is isomorphic to its complement 𝐺. Hence
𝐺 is self-complementary.

(2) Routine calculations show that 𝐺 and 𝐺 are irregular
and totally irregular, respectively.

(a) (b)

(c)(d)

(0.2, 0.6)
(0.4, 0.2)

(0.4, 0.6)

(0.7, 0.3)
(0.1, 0.4)

(0.5, 0.5)

(0.4, 0.6)

(0.5, 0.3)

Figure 9: 𝐺 is irregular and totally irregular.

x

y z

(0.3, 0.5)

(0.3, 0.5)

(0.3, 0.5)

(0.4, 0.4)

(0.4, 0.4)

(0.5, 0.3)

Figure 10: 𝐺 is complete but not regular.

Theorem 35. Let 𝐺 = (𝐴, 𝐵) be a vague graph of a graph 𝐺∗.
Then 𝐴 = (𝑡

𝐴
, 𝑓
𝐴
) is a constant function if and only if the

following are equivalent:
(a) 𝐺 is a regular vague graph,
(b) 𝐺 is a totally regular vague graph.

Proof. Let 𝐴 = (𝑡
𝐴
, 𝑓
𝐴
) be a constant function. To prove

that (a) and (b) are equivalent, suppose that 𝑡
𝐴
(𝑥) = 𝑐

1
and

𝑓
𝐴
(𝑥) = 𝑐

2
for all 𝑥 ∈ 𝑉.

(a) ⇒ (b): If a vague graph 𝐺 is 𝑛-regular, then deg
𝑡
(𝑥) =

𝑛
1
and deg

𝑓
(𝑥) = 𝑛

2
for all 𝑥 ∈ 𝑉. So

deg
𝑡
[𝑥] = deg

𝑡
(𝑥) + 𝑡

𝐴
(𝑥) ,

deg
𝑓
[𝑥] = deg

𝑓
(𝑥) + 𝑓

𝐴
(𝑥)

∀𝑥 ∈ 𝑉.

(32)

Thus
deg
𝑡
[𝑥] = 𝑛

1
+ 𝑐
1
,

deg
𝑓
[𝑥] = 𝑛

2
+ 𝑐
2

∀𝑥 ∈ 𝑉.

(33)

Hence, 𝐺 is totally regular.
(b) ⇒ (a): Suppose that 𝐺 is totally regular. Then for all

𝑥 ∈ 𝑉, we have

𝑘
1
= deg

𝑡
[𝑥] = deg

𝑡
(𝑥) + 𝑡

𝐴
(𝑥) = deg

𝑡
(𝑥) + 𝑐

1
. (34)
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(a) (a)

(b) (c) (b) (c)

(0.1, 0.4)
(0.1, 0.5)

(0.2, 0.3)

(0.1, 0.6)

(0.3, 0.4)

(0.1, 0.4)

G

(0.1, 0.4)

(0.2, 0.3)

(0.3, 0.4)

G

Figure 11: 𝐺 and 𝐺 are irregular and totally irregular.

Hence,

deg
𝑡
(𝑥) = 𝑘

1
− 𝑐
1

for every 𝑥 ∈ 𝑉. (35)

Similarly we obtain deg
𝑓
(𝑥) = 𝑘

2
− 𝑐
2
for every 𝑥 ∈ 𝑉, where

𝑘
2
= deg

𝑓
[𝑥]. This means that 𝐺 is regular (see Figure 7).

Hence (a) and (b) are equivalent.
The converse part is obvious.

Example 36. Consider a graph 𝐺∗ such that 𝑉 = {V
1
, V
2
, V
3
}

and 𝐸 = {V
1
V
2
, V
1
V
3
}. Let𝐴 and 𝐵 be vague subsets defined by

𝑡
𝐴
(V
1
) = 𝑡
𝐴
(V
2
) = 𝑡
𝐴
(V
3
) = 0.4,

𝑓
𝐴
(V
1
) = 𝑓
𝐴
(V
2
) = 𝑓
𝐴
(V
3
) = 0.1,

𝑡
𝐵
(V
1
V
2
) = 0.2, 𝑡

𝐵
(V
1
V
3
) = 0.1,

𝑓
𝐵
(V
1
V
2
) = 0.2, 𝑓

𝐵
(V
1
V
3
) = 0.2.

(36)

Clearly, 𝐴 = (𝑡
𝐴
, 𝑓
𝐴
) is constant and 𝐺 is both regular and

totally regular.

Finally, we consider examples of vague intersection graph
and vague line graph.

Example 37. Consider vague intersection graph which is
given in Example 9. Routine calculations show that 𝑃(𝐺) is
an irregular vague intersection graph, but it is totally regular
vague intersection graph.

Example 38. Consider vague line graph which is given in
Example 12. Routine calculations show that 𝐿(𝐺) is both
irregular and totally irregular vague line graph.

5. Application Example of Vague Digraphs

Graph models find wide application in many areas of mathe-
matics, computer science, and the natural and social sciences.
Often these models need to incorporate more structure than
simply the adjacencies between vertices. In studies of group
behavior, it is observed that certain people can influence
thinking of others. A directed graph, called an influence
graph, can be used to model this behavior. Each person of

(a)(a)

(d)(d)

(b)(b)

(c)(c)

(0.1, 0.4)

(0.1, 0.4)(0.1, 0.4)

(0.
1,
0.
5)

(0.1, 0.5)

(0.1, 0.5)

(0.1, 0.5)

(0.2, 0.5)(0.2, 0.5)

(0.1, 0.6)

(0.1, 0.6)

(0.3, 0.5)(0.3, 0.5)

(0.1, 0.4)

G G

Figure 12: 𝐺 and 𝐺 are irregular and totally irregular.

a group is represented by a vertex. There is a directed edge
from vertex 𝑥 to vertex 𝑦, when the person represented by
vertex 𝑥 influences the person represented by vertex 𝑦. This
graph does not contain loops and it does not containmultiple
directed edges.

We now explore vague influence graph model to find
out the influential person within a social group. In influence
graph, the vertex (node) represents a power (authority) of a
person and the edge represents the influence of a person on
another person in the social group.

Consider a vague influence graph of a social group. In
Figure 13, vague influence graph, the degree of power of a
person is defined in terms of its trueness and falseness. The
node of the vague influence graph shows the authority a
person possesses in the group; for example, Tanzel has 60%
authority in the group, but he does not have 20% power,
and 20% power is not decided, whereas the edges show the
influence of a person on another in a group; for example,
Tanzel can influence Amir 30%, but he cannot convince him
60%, and remaining 10% is hesitation part.

The degree of a vertex and edge in a vague influence graph
is also characterized by an interval [𝑡

𝐴
(𝑥), 1 − 𝑓

𝐴
(𝑥)]. It is

worthmentioning here that interval-valued fuzzy sets are not
vague sets. In interval-valued fuzzy sets, an interval-valued
membership value is assigned to each element of the universe
considering the “evidence for 𝑥” only, without considering
“evidence against 𝑥.” In vague sets both are independently
proposed by the decision maker. Thus the vague influence
graph can be interpreted in the form of interval-valued
membership. The node of the vague influence graph shows
the likelihood of power a person possesses in the group; for
example, Tanzel posseses 𝑡

𝐴
= 60% to 1 − 𝑓

𝐴
= 80% power,

whereas the edges show the interval of influence a person has
on another person in a social group. Tanzel has 𝑡

𝐴
= 30% to

1 − 𝑓
𝐴
= 40% influence on Amir and Amir has 𝑡

𝐴
= 40% to

1 − 𝑓
𝐴
= 40% influence on Rajab.

6. Conclusions

In 1965, Zadeh introduced the concept of fuzzy sets by
extending the range of Eigenfunction of classical sets from
{0, 1} to a closed interval [0, 1]. However, the membership
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Azhar
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(0.7, 0.1)
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(0.6, 0.2)

Rajab
(0.7, 0.2)

(0.5, 0.7)

(0.4, 0.6)

(0.3, 0.6)

(0
.4

, 0
.5

)(0.3, 0.6)

(0.2, 0.5)

(0
.4

, 0
.5

)

(0.3, 0.4)

(0.8, 0.1)

Figure 13: Vague influence graph.

function of a fuzzy set is a single-valued function, which
cannot express either the evidence for 𝑥 ∈ 𝑋 or the evidence
against 𝑥 ∈ 𝑋. For overcoming the shortcoming, Gau and
Buehrer proposed the concept of a vague set in 1993, which is
a generalization of the fuzzy set. Essentially, in a fuzzy set each
element is associated with a point-value selected from the
unit interval [0, 1], which is termed the grade of membership
in the set. Instead of using point-based membership as in
fuzzy sets, interval-based membership is used in a vague
set. The interval-based membership in vague sets is more
expressive in capturing vagueness of data. We investigate
the concepts of vague line and develop the vague influence
graph of a social group. The natural extension of this work
is exploration of the applications of vague graphs in database
theory, expert systems, and neural networks.
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