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An efficient method to determine a numerical solution of a stochastic differential equation (SDE) driven by fractional Brownian
motion (FBM) with Hurst parameter 𝐻 ∈ (1/2, 1) and 𝑛 independent one-dimensional standard Brownian motion (SBM) is
proposed. The method is stated via a stochastic operational matrix based on the block pulse functions (BPFs). With using this
approach, the SDE is reduced to a stochastic linear system of𝑚 equations and𝑚 unknowns.Then, the error analysis is demonstrated
by some theorems and defnitions. Finally, the numerical examples demonstrate applicability and accuracy of this method.

1. Introduction

In many fields of science and engineering, there are a
large number of problems which are intrinsically involving
stochastic excitations of a Gaussian white noise type. Having
in mind a Gaussian white noise mathematically described as
a formal derivative of a Brownian motion process, all such
problems are mathematically modeled by stochastic differen-
tial equations. Most of them cannot be solved analytically, so
it is important to provide their numerical solutions.There has
been a growing interest in numerical solutions of stochastic
differential equations for the last years [1–10].

In the presented work, we consider SDE as follows:

𝑑𝑥 (𝑠) = 𝑘 (𝑠, 𝑡) 𝑥 (𝑠) 𝑑𝑠 +

𝑛

∑

𝑖=1

𝑡𝑖 (𝑠, 𝑡) 𝑥 (𝑠) 𝑑𝐵
𝑖
(𝑠)

+ 𝑟 (𝑠, 𝑡) 𝑥 (𝑠) 𝑑𝐵
𝐻

𝑠
, 𝑠 ∈ (0, 𝑇) , 𝑇 < 1,

𝑥 (0) = 𝑥
0
,

(1)

or

𝑥 (𝑡) = 𝑥
0
+ ∫

𝑡

0

𝑘 (𝑠, 𝑡) 𝑥 (𝑠) 𝑑𝑠

+

𝑛

∑

𝑖=1

∫

𝑡

0

𝑡𝑖 (𝑠, 𝑡) 𝑥 (𝑠) 𝑑𝐵
𝑖
(𝑠)

+ ∫

𝑡

0

𝑟 (𝑠, 𝑡) 𝑥 (𝑠) 𝑑𝐵
𝐻

𝑠
, 𝑡 ∈ (0, 𝑇) , 𝑇 < 1,

(2)

where 𝐵𝐻
𝑠

denotes the FBM with Hurst parameter 𝐻 ∈

((1/2), 1) on probability space (Ω, ϝ, 𝑃) and 𝐵
𝑖
(𝑠) (𝑖 =

1, 2, . . . , 𝑛) is 𝑛 independent one-dimensional SBM defined
on the same probability space. Also, 𝑘(𝑠, 𝑡), 𝑡

𝑖
(𝑠, 𝑡) : (0, 𝑇) ×

(0, 𝑇) → R (𝑖 = 1, 2, . . . , 𝑛) and 𝑥(𝑡) is the stochastic process
of unknown on the probability space.

Investigations concerning the SDE driven by the FBM
have been done by Zähle [11], Coutin [12], Decreusefond
and Üstünel [13], Nualart [4, 14], Lisei and Soós [15], and
other authors. Also, there exist several ways for solving
it, pathwise and related techniques, Dirichlet forms, Euler
approximations, Malliavin calculus, and Skorohod integral
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[1, 4, 15–17]; almost all methods have very poor numerical
convergence.

It is important to find approximate solutions of the
stochastic equations driven by the FBM, since these equations
cannot be solved analytically in most cases and have many
applications in models arising in physics, telecommunication
networks, and finance [18]. Also, we cannot use from the
classical Ito theory for their stochastic calculus, since these
processes are not Markovian and semimartingale. Hence, in
this work, we implement the stochastic operational matrix
based on the BPFs for solving (2). The benefits of this
method are lower cost of setting up the system of equations;
moreover, the computational cost of operations is low. Also,
convergence of this method is faster than other methods.
These advantages make the method easier to apply.

The rest of the paper is organized as follows. In Section 2,
some essential definitions and the following assumptions
on the coefficients of (2) are stated. Also, the necessary
properties of the block pulse functions (BPFs) are introduced.
In Section 3, first a theorem is proved; then (2) is reduced to
a stochastic linear system by using the properties of the BPFs.
In Section 4, the error analysis is demonstrated. Efficiency
of this method and good reasonable degree of accuracy are
confirmed by some numerical examples, in Section 5. Finally,
in Section 6, a brief conclusion is given.

2. Preliminaries

Definition 1. Let be the step 𝑟(𝑡) = ∑𝑚−1
𝑗=1

𝑑
𝑗
𝜒
[𝑡𝑗 ,𝑡𝑗+1(𝑡)]

function
and 𝜒 denotes the characteristic function on [0, 𝑝], 𝑑

𝑗
∈ R,

and 0 = 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑚
= 𝑝. Then, the wiener integral

with respect to the FBM is defined as

∫

𝑝

0

𝑟 (𝑡) 𝑑𝐵
𝐻

𝑡
=

𝑚−1

∑

𝑗=1

𝑑
𝑗
(𝐵
𝐻

𝑡𝑗+1
− 𝐵
𝐻

𝑡𝑗
) , (3)

where𝐻 ∈ ((1/2), 1) and 𝑝 > 0 (see [19]).

Definition 2. Let ] = ][𝛼, 𝜆] denote the class of function ℎ on
[𝛼, 𝜆] × Ω such that

(1) the function ℎ is 𝛽 × ϝmeasurable;

(2) the function ℎ is adapted to {ϝ
𝑡
}
𝑡≥0

;

(3) ∫𝜆
𝛼

∫
𝑠

𝛼

𝐸[ℎ
2

(𝑠)]|𝑠 − 𝑡|𝑑𝑡 𝑑𝑠 < ∞ and 𝑠, 𝑡 ∈ [𝛼, 𝜆].

Let us consider the following assumptions on the coeffi-
cients.

(A
1
) (𝑟(𝑠, 𝑡)𝑥(𝑠) is differentiable in 𝑥(𝑠) and there exist
constants 𝛼, 𝛽 ≤ 1 and𝐾

1
, 𝐾
2
, 𝐾
3
> 0 such that

󵄨󵄨󵄨󵄨𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑠, 𝑡) 𝑦 (𝑠)
󵄨󵄨󵄨󵄨

≤ 𝐾
1

󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)
󵄨󵄨󵄨󵄨 (Lipschitz continuity) ,

󵄨󵄨󵄨󵄨𝜕𝑥𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝜕𝑥𝑟 (𝑠, 𝑡) 𝑦 (𝑠)
󵄨󵄨󵄨󵄨

≤ 𝐾
2

󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)
󵄨󵄨󵄨󵄨

𝛼

(Holder continuity) ,

|𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑢, 𝑡) 𝑥 (𝑠)| +
󵄨󵄨󵄨󵄨𝜕𝑥𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝜕𝑥𝑟 (𝑢, 𝑡) 𝑥 (𝑠)

󵄨󵄨󵄨󵄨

≤ 𝐾
3
|𝑠 − 𝑢|

𝛽

.

(4)

(A
2
) There exist constants 𝐾

4𝑖
, 𝐾
5𝑖
> 0 (𝑖 = 1, . . . , 𝑛) such

that
󵄨󵄨󵄨󵄨𝑡𝑖 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑡𝑖 (𝑠, 𝑡) 𝑦 (𝑠)

󵄨󵄨󵄨󵄨

≤ 𝐾
4𝑖

󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)
󵄨󵄨󵄨󵄨 (Lipschitz continuity) ,

|𝑡𝑖 (𝑠, 𝑡) 𝑥 (𝑠)| ≤ 𝐾
5𝑖
(1 + |𝑥 (𝑠)|) (Linear growth) .

(5)

(A
3
) There exist constants 𝐾

6
, 𝐾
7
> 0 (𝑖 = 1, . . . , 𝑛) such

that
󵄨󵄨󵄨󵄨𝑘 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑘 (𝑠, 𝑡) 𝑦 (𝑠)

󵄨󵄨󵄨󵄨

≤ 𝐾
6

󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)
󵄨󵄨󵄨󵄨 (Lipschitz continuity) ,

|𝑘 (𝑠, 𝑡) 𝑥 (𝑠)| ≤ 𝐾
7
(1 + |𝑥 (𝑠)|) (Linear growth) ,

(6)

for all 𝑡, 𝑠, 𝑢 ∈ (0, 𝑇).

Theorem 3. Let 𝑘(𝑠, 𝑡)𝑥(𝑠), 𝑡𝑖(𝑠, 𝑡)𝑥(𝑠) and 𝑟(𝑠, 𝑡)𝑥(𝑠) hold in
condition (A

1
), (A
2
), (A
3
), and 𝐻 < {(1/2), (𝛼/(𝛼 + 1)), 𝛽}.

Then, there exists a unique solution for (2).

Proof. See [18].

Now, we review the main properties of the BPFs which
are necessary for this paper. Note that the BPFs are discussed
in [7, 8].

(1)A function𝑝(𝑥) ∈ 𝐿2([0, 𝑇)) is approximated by using
properties of the BPFs as

𝑝 (𝑥) ≈ 𝑝 (𝑥) = 𝑃
𝑇

Ψ (𝑥) = Ψ
𝑇

(𝑥) 𝑃, (7)

where

Ψ (𝑥) = (Ψ
1
(𝑥) , Ψ

2
(𝑥) , . . . , Ψ

𝑖
(𝑥) , . . . , Ψ

𝑚
(𝑥))
𝑇

, (8)

with

Ψ
𝑖
(𝑥) =

{

{

{

1 (𝑖 − 1)
𝑇

𝑚
≤ 𝑥 < 𝑖

𝑇

𝑚
, 𝑖 = 1, . . . , 𝑚,

0 otherwise,
(9)

where Ψ
𝑖
(𝑥) denotes the BPFs and

𝑃 = (𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑖
, . . . , 𝑝

𝑚
)
𝑇

, (10)
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with

𝑝
𝑖
=
𝑚

𝑇
∫

𝑇

0

𝑝 (𝑥)Ψ
𝑖
(𝑥) 𝑑𝑥. (11)

(2) A function 𝑝(𝑥, 𝑦) ∈ 𝐿
2

([0, 𝑇) × [0, 𝑇)) is approxi-
mated as follows:

𝑝 (𝑥, 𝑦) ≈ 𝑝 (𝑥, 𝑦) = Ψ
𝑇

(𝑥) 𝑃Ψ (𝑦) = Ψ
𝑇

(𝑦) 𝑃
𝑇

Ψ (𝑥) ,

(12)

where

𝑃 = (𝑝
𝑖𝑗
)
𝑚×𝑚

,

𝑝
𝑖𝑗
=
𝑚
2

𝑇2
∬

𝑇

0

𝑝 (𝑥, 𝑦)Ψ
𝑖
(𝑥)Ψ
𝑗
(𝑦) 𝑑𝑥 𝑑𝑦,

𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑚.

(13)

(3) Consider

Ψ (𝑥)Ψ
𝑇

(𝑥)

=

(
(
(
(
(
(
(

(

Ψ
1
(𝑥) 0 0 ⋅ ⋅ ⋅ 0

0 Ψ
2
(𝑥) 0 ⋅ ⋅ ⋅ 0

0 0 Ψ
3
(𝑥) ⋅ ⋅ ⋅ 0

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ Ψ
𝑚
(𝑥)

)
)
)
)
)
)
)

)𝑚×𝑚

.

(14)

(4) Ψ(𝑥)Ψ
𝑇

(𝑥)𝐿 = 𝐿̂Ψ(𝑥), where

𝐿 = (𝑙
11
, 𝑙
21
, . . . , 𝑙
𝑚1
)
𝑇

,

𝐿̂ =

(
(
(
(
(
(
(

(

𝑙
11

0 0 ⋅ ⋅ ⋅ 0

0 𝑙
21

0 ⋅ ⋅ ⋅ 0

0 0 𝑙
31

⋅ ⋅ ⋅ 0

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 𝑙
𝑚1

)
)
)
)
)
)
)

)𝑚×𝑚

.

(15)

(5) In [8], it is proved that

(∫

𝑡

0

Ψ (𝑥)Ψ
𝑇

(𝑥) 𝑑𝑥)𝐴Ψ (𝑡) = 𝑅Ψ (𝑡) , (16)

where

𝐴 = (𝑎
𝑖𝑗
)
𝑚×𝑚

,

𝑅 =
𝑇

2𝑚

(
(
(
(
(
(
(

(

𝑎
11

2𝑎
12

2𝑎
13

⋅ ⋅ ⋅ 2𝑎
1𝑚

0 𝑎
22

2𝑎
23

⋅ ⋅ ⋅ 2𝑎
2𝑚

0 0 𝑎
33

⋅ ⋅ ⋅ 2𝑎
3𝑚

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 𝑎
𝑚𝑚

)
)
)
)
)
)
)

)𝑚×𝑚

.

(17)

(6) In [8], it is proved that

(∫

𝑡

0

Ψ (𝑥)Ψ
𝑇

(𝑥) 𝑑𝐵 (𝑥))𝐴Ψ (𝑡) = 𝐸Φ (𝑡) , (18)

where

𝐸 =

(
(
(
(
(
(
(
(
(
(
(
(

(

𝑎
11
𝐵(

ℎ

2
) 𝑎

12
𝐵 (ℎ) 𝑎

13
𝐵 (ℎ) ⋅ ⋅ ⋅ 𝑎

1𝑚
𝐵 (ℎ)

0 𝑎
22
(𝐵(

3ℎ

2
) − 𝐵 (ℎ)) 𝑎

23
(𝐵 (2ℎ) − 𝐵 (ℎ)) ⋅ ⋅ ⋅ 𝑎

2𝑚
(𝐵 (2ℎ) − 𝐵 (ℎ))

0 0 𝑎
33
(𝐵(

5ℎ

2
) − 𝐵 (2ℎ)) ⋅ ⋅ ⋅ 𝑎

3𝑚
(𝐵 (3ℎ) − 𝐵 (2ℎ))

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 𝑎
𝑚𝑚

(𝐵(
(2𝑚 − 1) ℎ

2
) − 𝐵 ((𝑚 − 1) ℎ))

)
)
)
)
)
)
)
)
)
)
)
)

)𝑚×𝑚

,

ℎ =
𝑇

𝑚
.

(19)



4 Abstract and Applied Analysis

3. Solving the SDE Driven by FBM and 𝑛
Independent One-Dimensional SBM

Theorem 4. Let Ψ(𝑡) denote the BPFs, ℎ = (𝑇/𝑚), and 𝑅 =

(𝑟
𝑖𝑗
)
𝑚×𝑚

, 𝑖, 𝑗 = 1, . . . , 𝑚; then

(∫

𝑡

0

Ψ (𝑠)Ψ
𝑇

(𝑠) 𝑑𝐵
𝐻

𝑠
)𝑅Ψ (𝑡) ≈ 𝐵Ψ (𝑡) , 𝑡 ∈ (0, 𝑇) , (20)

where

𝐵 =(

𝑟
11
𝐵
𝐻

ℎ/2
𝑟
12
𝐵
𝐻

ℎ
⋅ ⋅ ⋅ 𝑟

1𝑚
𝐵
𝐻

ℎ

0 𝑟
22
(𝐵
𝐻

3ℎ/2
− 𝐵
𝐻

ℎ
) ⋅ ⋅ ⋅ 𝑟

2𝑚
(𝐵
𝐻

2ℎ
− 𝐵
𝐻

ℎ
)

...
... d

...
0 0 ⋅ ⋅ ⋅ 𝑟

𝑚𝑚
(𝐵
𝐻

((2𝑚−1)ℎ/2)
− 𝐵
𝐻

(𝑚−1)ℎ
)

)

𝑚×𝑚

. (21)

Proof. First, we compute stochastic operationalmatrix driven
by the FBM based on the BPFs as follows.

(A1) If 0 ≤ 𝑡 < (𝑖 − 1)ℎ, then

∫

𝑡

0

Ψ
𝑖
(𝑠) 𝑑𝐵

𝐻

𝑠
= 0. (22)

(A2) If (𝑖 − 1)ℎ ≤ 𝑡 < 𝑖ℎ, the function Ψ
𝑖
(𝑠) is defined as

Ψ
𝑖
(𝑠) =

𝑚+1

∑

𝑘=1

𝑓
𝑖𝑘
𝜒
[𝑠𝑘−1 ,𝑠𝑘)

(𝑠) , 𝑖 = 1, . . . , 𝑚, (23)

where 𝜒 denotes the characteristic function and 0 = 𝑠
0
<

𝑠
1
< ⋅ ⋅ ⋅ < 𝑠

𝑖−1
≤ 𝑠
𝑖
= 𝑡 < 𝑠

𝑖+1
< ⋅ ⋅ ⋅ < 𝑠

𝑚+1
, where 𝑠

𝑘
= 𝑘ℎ

if 𝑘 = 0, 1, . . . , 𝑖 − 1 and 𝑠
𝑘
= (𝑘 − 1)ℎ if 𝑘 = 𝑖 + 1, . . . , 𝑚 + 1.

Also,

𝑓
𝑖𝑘
= {

1 𝑘 = 𝑖 ∨ 𝑘 = 𝑖 + 1,

0 otherwise.
(24)

Now, for computation ∫𝑡
0

Ψ
𝑖
(𝑠)𝑑𝐵
𝐻𝑖

𝑠
(𝑠 ∈ [0, 𝑡]), we can write

Ψ
𝑖
(𝑠) =

𝑖

∑

𝑘=1

𝑓
𝑖𝑘
𝜒
[𝑠𝑘−1 ,𝑠𝑘)

(𝑠) , 𝑖 = 1, . . . , 𝑚. (25)

Then by using Definition 1, we obtain

∫

𝑡

0

Ψ
𝑖
(𝑠) 𝑑𝐵

𝐻

𝑠
=

𝑖

∑

𝑘=1

𝑓
𝑖𝑘
(𝐵
𝐻

𝑠𝑘
− 𝐵
𝐻

𝑠𝑘−1
)

= 𝐵
𝐻

𝑡
− 𝐵
𝐻

(𝑖−1)ℎ
, 𝑖 = 1, 2, . . . , 𝑚.

(26)

(A3) If 𝑖ℎ ≤ 𝑡 < 𝑇, then

Ψ
𝑖
(𝑠) =

𝑚+1

∑

𝑘=1

𝑐
𝑖𝑘
𝜒
[𝑠𝑘−1 ,𝑠𝑘)

(𝑠) , 𝑖 = 1, . . . , 𝑚, (27)

where 0 = 𝑠
0
< 𝑠
1
< ⋅ ⋅ ⋅ < 𝑠

𝑖
≤ 𝑠
𝑖+1

= 𝑡 < 𝑠
𝑖+2

< ⋅ ⋅ ⋅ < 𝑠
𝑚+1

,
𝑠
𝑘
= 𝑘ℎ if 𝑘 = 0, 1, . . . , 𝑖, 𝑠

𝑘
= (𝑘 − 1)ℎ if 𝑘 = 𝑖 + 2, . . . , 𝑚 + 1,

and

𝑐
𝑖𝑘
= {

1 𝑘 = 𝑖,

0 𝑘 ̸= 𝑖.
(28)

For computation ∫𝑡
0

Ψ
𝑖
(𝑠)𝑑𝐵
𝐻𝑖

𝑠
(𝑠 ∈ [0, 𝑡]), we can write

Ψ
𝑖
(𝑠) =

𝑖+1

∑

𝑘=1

𝑐
𝑖𝑘
𝜒
[𝑠𝑘−1 ,𝑠𝑘)

(𝑠) , 𝑖 = 1, . . . , 𝑚, (29)

so, we get

∫

𝑡

0

Ψ
𝑖
(𝑠) 𝑑𝐵

𝐻

𝑠
=

𝑖+1

∑

𝑘=1

𝑐
𝑖𝑘
(𝐵
𝐻

𝑠𝑘
− 𝐵
𝐻

𝑠𝑘−1
)

= 𝐵
𝐻

𝑖ℎ
− 𝐵
𝐻

(𝑖−1)ℎ
, 𝑖 = 1, 2, . . . , 𝑚.

(30)

From (A1), (A2), and (A3), we get

∫

𝑡

0

Ψ
𝑖
(𝑠) 𝑑𝐵

𝐻

𝑠
=

{{{

{{{

{

0 0 ≤ 𝑡 < (𝑖 − 1) ℎ,

𝐵
𝐻

𝑡
− 𝐵
𝐻

(𝑖−1)ℎ
(𝑖 − 1) ℎ ≤ 𝑡 < 𝑖ℎ,

𝐵
𝐻

𝑖ℎ
− 𝐵
𝐻

(𝑖−1)ℎ
𝑖ℎ ≤ 𝑡 < 𝑇.

(31)

Furthermore, we suppose that

𝐵
𝐻

𝑡
− 𝐵
𝐻

(𝑖−1)ℎ
≈ 𝐵
𝐻

(𝑖−0.5)ℎ
− 𝐵
𝐻

(𝑖−1)ℎ
, (𝑖 − 1) ℎ ≤ 𝑡 < 𝑖ℎ, (32)

so, we can write

∫

𝑡

0

Ψ
𝑖
(𝑠) 𝑑𝐵

𝐻

𝑠
≈ (0, . . . , 0, 𝐵

𝐻

(𝑖−0.5)ℎ
− 𝐵
𝐻

(𝑖−1)ℎ
,

𝐵
𝐻

𝑖ℎ
− 𝐵
𝐻

(𝑖−1)ℎ
, . . . , 𝐵

𝐻

𝑖ℎ
− 𝐵
𝐻

(𝑖−1)ℎ
)Ψ (𝑡) .

(33)

Hence, by using the relation (33), we can write

∫

𝑡

0

Ψ (𝑠) 𝑑𝐵
𝐻

𝑠
≈ 𝑃
𝐻
Ψ (𝑡) , (34)
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where

𝑃
𝐻
=

(
(
(
(
(
(
(
(

(

𝐵
𝐻

ℎ/2
𝐵
𝐻

ℎ
𝐵
𝐻

ℎ
⋅ ⋅ ⋅ 𝐵

𝐻

ℎ

0 𝐵
𝐻

3ℎ/2
− 𝐵
𝐻

ℎ
𝐵
𝐻

2ℎ
− 𝐵
𝐻

ℎ
⋅ ⋅ ⋅ 𝐵

𝐻

2ℎ
− 𝐵
𝐻

ℎ

0 0 𝐵
𝐻

5ℎ/2
− 𝐵
𝐻

2ℎ
⋅ ⋅ ⋅ 𝐵

𝐻

3ℎ
− 𝐵
𝐻

2ℎ

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 𝐵
𝐻

((2𝑚−1)ℎ/2)
− 𝐵
𝐻

(𝑚−1)ℎ

)
)
)
)
)
)
)
)

)𝑚×𝑚

. (35)

Now, let 𝐶
𝑅
𝑖 be the 𝑖th row of matrix 𝐶

𝑅
= Diag(𝑅), let

𝑃
𝑖

𝐻
be the ith row of the matrix 𝑃

𝐻
, and let 𝑅𝑖 be the ith row

of matrix 𝑅. We have

(∫

𝑡

0

Ψ (𝑠)Ψ
𝑇

(𝑠) 𝑑𝐵
𝐻

𝑠
)𝑅Ψ (𝑡)

≈

(
(
(

(

𝑃
1

𝐻
Ψ (𝑡) 𝑅

1

Ψ (𝑡)

𝑃
2

𝐻
Ψ (𝑡) 𝑅

2

Ψ (𝑡)

...

𝑃
𝑚

𝐻
Ψ (𝑡) 𝑅

𝑚

Ψ (𝑡)

)
)
)

)

≈

(
(
(

(

𝑃
1

𝐻
𝐶
𝑅
1

𝑃
2

𝐻
𝐶
𝑅
2

...

𝑃
𝑚

𝐻
𝐶
𝑅
𝑚

)
)
)

)

Ψ(𝑡)

≈ 𝐵Ψ (𝑡) ,

(36)

where 𝐵 is given by (21).

Let

𝑥 (𝑡) ≈ 𝑥
𝑇

Ψ (𝑡) = Ψ
𝑇

(𝑡) 𝑥,

𝑥
0
≈ 𝑥
𝑇

0
Ψ (𝑡) = Ψ

𝑇

(𝑡) 𝑥
0
,

𝑘 (𝑠, 𝑡) ≈ Ψ
𝑇

(𝑠) 𝐾Ψ (𝑡) = Ψ
𝑇

(𝑡) 𝐾
𝑇

Ψ (𝑠) ,

𝑟 (𝑠, 𝑡) ≈ Ψ
𝑇

(𝑠) 𝑅Ψ (𝑡) = Ψ
𝑇

(𝑡) 𝑅
𝑇

Ψ (𝑠) ,

𝑡𝑖 (𝑠, 𝑡) ≈ Ψ
𝑇

(𝑠) 𝑇𝑖Ψ (𝑡)

= Ψ
𝑇

(𝑡) 𝑇𝑖
𝑇

Ψ (𝑠) , 𝑖 = 1, 2, . . . , 𝑛,

(37)

where 𝑥 and 𝑥
0
are the block pulse coefficients vector and𝐾,

𝑅, and𝑇𝑖, 𝑖 = 1, . . . , 𝑛, are the block pulse coefficients matrix.

By substituting the relation (37) in (2), we get

𝑥
𝑇

Ψ (𝑡) ≈ 𝑥
𝑇

0
Ψ (𝑡) + 𝑥

𝑇

∫

𝑡

0

Ψ (𝑠)Ψ
𝑇

(𝑠) 𝐾Ψ (𝑡) 𝑑𝑠

+

𝑛

∑

𝑖=1

𝑥
𝑇

∫

𝑡

0

Ψ (𝑠)Ψ
𝑇

(𝑠) 𝑇𝑖Ψ (𝑡) 𝑑𝐵
𝑖
(𝑠)

+ 𝑥
𝑇

∫

𝑡

0

Ψ (𝑠)Ψ
𝑇

(𝑠) 𝑅Ψ (𝑡) 𝑑𝐵
𝐻

𝑠
,

(38)

or

𝑥
𝑇

Ψ (𝑡) ≈ 𝑥
𝑇

0
Ψ (𝑡) + 𝑥

𝑇

(∫

𝑡

0

Ψ (𝑠)Ψ
𝑇

(𝑠) 𝑑𝑠)𝐾Ψ (𝑡)

+ 𝑥
𝑇

𝑛

∑

𝑖=1

(∫

𝑡

0

Ψ (𝑠)Ψ
𝑇

(𝑠) 𝑑𝐵
𝑖
(𝑠))𝑇𝑖Ψ (𝑡)

+ 𝑥
𝑇

(∫

𝑡

0

Ψ (𝑠)Ψ
𝑇

(𝑠) 𝑑𝐵
𝐻

𝑠
)𝑅Ψ (𝑡) .

(39)

Therefore, by using properties of the BPFs andTheorem 4, we
can write

𝑥
𝑇

Ψ (𝑡) ≈ 𝑥
𝑇

0
Ψ (𝑡) + 𝑥

𝑇

𝐴Ψ (𝑡)

+ 𝑥
𝑇

𝑛

∑

𝑖=1

𝐶
𝑖
Ψ (𝑡) + 𝑥

𝑇

𝐵Ψ (𝑡) ,

(40)

where

𝐴 =
𝑇

2𝑚

(
(
(

(

𝑘
11

2𝑘
12

2𝑘
13

⋅ ⋅ ⋅ 2𝑘
1𝑚

0 𝑘
22

2𝑘
23

⋅ ⋅ ⋅ 2𝑘
2𝑚

0 0 𝑘
33

⋅ ⋅ ⋅ 2𝑘
3𝑚

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 𝑘
𝑚𝑚

)
)
)

)

, (41)

with
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𝑘
𝑖𝑗
=
𝑚
2

𝑇2
∬

𝑇

0

𝑘 (𝑠, 𝑡) Ψ
𝑖
(𝑠) Ψ
𝑗
(𝑡) 𝑑𝑠 𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑚,

𝐶
𝑖
=

(
(
(
(
(
(
(

(

𝑡𝑖
11
𝐵(

ℎ

2
) 𝑡𝑖

12
𝐵 (ℎ) 𝑡𝑖

13
𝐵 (ℎ) ⋅ ⋅ ⋅ 𝑡𝑖

1𝑚
𝐵 (ℎ)

0 𝑡𝑖
22
(𝐵(

3ℎ

2
) − 𝐵 (ℎ)) 𝑡𝑖

23
(𝐵 (2ℎ) − 𝐵 (ℎ)) ⋅ ⋅ ⋅ 𝑡𝑖

2𝑚
(𝐵 (2ℎ) − 𝐵 (ℎ))

0 0 𝑡𝑖
33
(𝐵(

5ℎ

2
) − 𝐵 (2ℎ)) ⋅ ⋅ ⋅ 𝑡𝑖

3𝑚
(𝐵 (3ℎ) − 𝐵 (2ℎ))

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 𝑡𝑖
𝑚𝑚

(𝐵(
(2𝑚 − 1) ℎ

2
) − 𝐵 ((𝑚 − 1) ℎ))

)
)
)
)
)
)
)

)
𝑚×𝑚

,

(42)

with

𝑡𝑖
𝑝𝑞
=
𝑚
2

𝑇2
∬

𝑇

0

𝑡𝑖 (𝑠, 𝑡) Ψ
𝑝
(𝑠) Ψ
𝑞
(𝑡) 𝑑𝑠 𝑑𝑡,

𝑝 = 1, 2, . . . , 𝑚, 𝑞 = 1, 2, . . . , 𝑚,

𝐵 = (

𝑟
11
𝐵
𝐻

ℎ/2
𝑟
12
𝐵
𝐻

ℎ
⋅ ⋅ ⋅ 𝑟

1𝑚
𝐵
𝐻

ℎ

0 𝑟
22
(𝐵
𝐻

3ℎ/2
− 𝐵
𝐻

ℎ
) ⋅ ⋅ ⋅ 𝑟

2𝑚
(𝐵
𝐻

2ℎ
− 𝐵
𝐻

ℎ
)

...
... d

...
0 0 ⋅ ⋅ ⋅ 𝑟

𝑚𝑚
(𝐵
𝐻

((2𝑚−1)ℎ/2)
− 𝐵
𝐻

(𝑚−1)ℎ
)

)

𝑚×𝑚

,

(43)

with

𝑟
𝑖𝑗
=
𝑚
2

𝑇2
∬

𝑇

0

𝑟 (𝑠, 𝑡) Ψ
𝑖
(𝑠) Ψ
𝑗
(𝑡) 𝑑𝑠 𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑚.

(44)

Now, with replacing ≈ by =, we have

𝑥
𝑇

(𝐼 − 𝐴 −

𝑛

∑

𝑖=1

𝐶
𝑖
− 𝐵)Ψ (𝑡) = 𝑥

𝑇

0
Ψ (𝑡) , (45)

or
𝑀𝑥 = 𝑥

0
, (46)

where𝑀 = (𝐼−𝐴−∑
𝑛

𝑖=1
𝐶
𝑖
−𝐵)
𝑇. Clearly, (46) is the stochastic

linear system of𝑚 equations and𝑚 unknowns.

4. Error Analysis

In [20], it is stated that if 𝑓(𝑡) ∈ ][𝛼, 𝛽] and (1/2) < 𝐻 < 1,
then

𝐸[(∫

𝛽

𝛼

𝑓 (𝑥) 𝑑𝐵
𝐻

𝑥
)

2

]

= ∫

𝛽

𝛼

𝐸 [(𝑓 (𝑥))
2

] (𝑑𝑥)
2𝐻

= 2𝐻 (2𝐻 − 1)

× ∫

𝛽

𝛼

∫

𝑦

𝛼

(𝑦 − 𝑥)
2𝐻−2

𝐸 [𝑓
2

(𝑥)] 𝑑𝑥 𝑑𝑦.

(47)

Theorem 5. Let 𝑟(𝑠) be an arbitrary bounded function on
[0, 1) and 𝑒(𝑠) = 𝑟(𝑠) − 𝑟(𝑠) such that 𝑟(𝑠) is the BPFs of 𝑟(𝑠).
Then,

|𝑒 (𝑠)|
2

≤ 𝑂 (ℎ
2

) , 0 ≤ 𝑠 < 1. (48)

Proof. See [7].

Theorem 6. Let 𝑟(𝑥, 𝑦) be an arbitrary bounded function on
𝐼 = [0, 1) × [0, 1) and 𝑒(𝑥, 𝑦) = 𝑟(𝑥, 𝑦) − 𝑟(𝑥, 𝑦) such that
𝑟(𝑥, 𝑦) is the BPFs of 𝑟(𝑥, 𝑦). Then,

󵄨󵄨󵄨󵄨𝑒 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨

2

≤ 𝑂 (ℎ
2

) , (𝑥, 𝑦) ∈ 𝐼. (49)

Proof. See [7].



Abstract and Applied Analysis 7

Let
𝑒 (𝑡) = 𝑥 (𝑡) − 𝑥 (𝑡) = 𝑥

0
− 𝑥
0

+ ∫

𝑡

0

(𝑘 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑘̂ (𝑠, 𝑡) 𝑥 (𝑠)) 𝑑𝑠

+

𝑛

∑

𝑖=1

∫

𝑡

0

(𝑡𝑖 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑡𝑖 (𝑠, 𝑡) 𝑥 (𝑠)) 𝑑𝐵
𝑖
(𝑠)

+ ∫

𝑡

0

(𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑠, 𝑡) 𝑥 (𝑠)) 𝑑𝐵
𝐻

𝑠
,

(50)

where 𝑥(𝑡) is the approximate solution of 𝑥(𝑡) defined in (46)
and 𝑥

0
, 𝑘̂(𝑠, 𝑡), 𝑡𝑖(𝑠, 𝑡), and 𝑟(𝑠, 𝑡) are approximated by using

properties of the BPFs.

Theorem 7. Let 𝑥(𝑡) be the approximate solution of (2) which
is the solution of (46), ‖𝑥(𝑡)‖2 ≤ 𝑁, ‖𝑘(𝑠, 𝑡)‖2 ≤ 𝑙

1
, ‖𝑡𝑖(𝑠, 𝑡)‖2 ≤

𝑙
2𝑖
, 𝑖 = 1, 2, . . . , 𝑛, and ‖𝑟(𝑠, 𝑡)‖2 ≤ 𝑙

3
, for all (𝑠, 𝑡) ∈ 𝐼 = [0, 1) ×

[0, 1). Then,
‖𝑥(𝑡) − 𝑥(𝑡)‖

2

≤ 𝑂 (ℎ
2

) , 𝑡 ∈ [0, 1) , (51)

where ‖𝑥‖ = (𝐸[𝑥2])1/2.

Proof. Consider
𝑒 (𝑡) = 𝑥 (𝑡) − 𝑥 (𝑡) = 𝑥

0
− 𝑥
0

+ ∫

𝑡

0

(𝑘 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑘̂ (𝑠, 𝑡) 𝑥 (𝑠)) 𝑑𝑠

+

𝑛

∑

𝑖=1

∫

𝑡

0

(𝑡𝑖 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑡𝑖 (𝑠, 𝑡) 𝑥 (𝑠)) 𝑑𝐵
𝑖
(𝑠)

+ ∫

𝑡

0

(𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑠, 𝑡) 𝑥 (𝑠)) 𝑑𝐵
𝐻

𝑠
;

(52)

by using (∑𝑛+3
𝑖=1

𝑥
𝑖
)
2

≤ (𝑛 + 3)(∑
𝑛+3

𝑖=1
𝑥
2

𝑖
), we can write

‖𝑥(𝑡) − 𝑥(𝑡)‖
2

≤ (𝑛 + 3) (
󵄩󵄩󵄩󵄩𝑥0 − 𝑥0

󵄩󵄩󵄩󵄩

2

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

(𝑘(𝑠, 𝑡)𝑥(𝑠) − 𝑘̂(𝑠, 𝑡)𝑥(𝑠))𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+

𝑛

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

(𝑡𝑖 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑡𝑖 (𝑠, 𝑡) 𝑥 (𝑠)) 𝑑𝐵
𝑖
(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

(𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑠, 𝑡) 𝑥 (𝑠)) 𝑑𝐵
𝐻

𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

) .

(53)

First, by using the relation (47), we can write

𝐸[(∫

𝑡

0

(𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑠, 𝑡) 𝑥 (𝑠)) 𝑑𝐵
𝐻

𝑠
)

2

]

= ∫

𝑡

0

𝐸 [(𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑠, 𝑡) 𝑥 (𝑠))
2

] (𝑑𝑠)
2𝐻

= 2𝐻 (2𝐻 − 1)

×∫

𝑡

0

∫

𝑝

0

(𝑝 − 𝑠)
2𝐻−2

× 𝐸 [(𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑠, 𝑡) 𝑥 (𝑠))
2

] 𝑑𝑠 𝑑𝑝

= 2𝐻 (2𝐻 − 1)

× ∫

𝑡

0

∫

𝑡

𝑠

(𝑝 − 𝑠)
2𝐻−2

× 𝐸 [(𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑠, 𝑡) 𝑥 (𝑠))
2

] 𝑑𝑝 𝑑𝑠

= 2𝐻 (2𝐻 − 1)∫

𝑡

0

𝐸 [(𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑠, 𝑡) 𝑥 (𝑠))
2

]

× ∫

𝑡

𝑠

(𝑝 − 𝑠)
2𝐻−2

𝑑𝑝𝑑𝑠

= 2𝐻∫

𝑡

0

𝐸 [(𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑠, 𝑡) 𝑥 (𝑠))
2

] (𝑡 − 𝑠)
2𝐻−1

𝑑𝑠.

(54)

Cleary, we have

0 < 𝑠 < 𝑡 < 1,

0 < 2𝐻 − 1 < 1,

(55)

and consequently,

0 < (𝑡 − 𝑠)
2𝐻−1

< 1. (56)

Hence,

𝐸[(∫

𝑡

0

𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑠, 𝑡) 𝑥 (𝑠) 𝑑𝐵
𝐻

𝑠
)

2

]

≤ 2∫

𝑡

0

𝐸 [(𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑠, 𝑡) 𝑥 (𝑠))
2

] 𝑑𝑠,

(57)

or
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

(𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑠, 𝑡) 𝑥 (𝑠)) 𝑑𝐵
𝐻

𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 2∫

𝑡

0

‖𝑟(𝑠, 𝑡)𝑥(𝑠) − 𝑟 (𝑠, 𝑡) 𝑥 (𝑠)‖
2

𝑑𝑠.

(58)

Now, by using the property of the Ito isometry for the SBM
defined in [21] and (𝑥 + 𝑦)2 ≤ 2(𝑥2 + 𝑦2), we get

‖𝑥(𝑡) − 𝑥(𝑡)‖
2

≤ (𝑛 + 3) (
󵄩󵄩󵄩󵄩𝑥0 − 𝑥0

󵄩󵄩󵄩󵄩

2

+ ∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑘 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑘̂ (𝑠, 𝑡) 𝑥 (𝑠)

󵄩󵄩󵄩󵄩󵄩

2

𝑑𝑠

+

𝑛

∑

𝑖=1

∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑡𝑖 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑡𝑖 (𝑠, 𝑡) 𝑥 (𝑠)

󵄩󵄩󵄩󵄩󵄩

2

𝑑𝑠

+2∫

𝑡

0

‖𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑠, 𝑡) 𝑥 (𝑠)‖
2

𝑑 (𝑠))
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Table 1: Mean, standard deviation, and confidence interval for error mean (𝑇 = 0.25,𝐻 = 2/3).

𝑡 𝑥 𝑠
%95 confidence interval for mean

Lower Upper
0.05 1.6470 × 10−4 1.0272 × 10−4 1.1968 × 10−4 2.0972 × 10−4

0.1 2.1125 × 10−4 1.3531 × 10−4 1.5195 × 10−4 2.7055 × 10−4

0.15 3.8495 × 10−4 3.2763 × 10−4 2.4135 × 10−4 5.2855 × 10−4

0.2 4.3880 × 10−4 2.7714 × 10−4 3.1734 × 10−4 5.6026 × 10−4

Table 2: Mean, standard deviation, and confidence interval for numerical solution mean (𝑇 = 0.25,𝐻 = 3/4).

𝑡 𝑥 𝑠
%95 confidence interval for mean

Lower Upper
0.05 1.9830 × 10−4 1.3868 × 10−4 1.1235 × 10−4 2.8425 × 10−4

0.1 1.8920 × 10−4 1.7302 × 10−4 8.196 × 10−5 2.9644 × 10−4

0.15 3.7490 × 10−4 1.9789 × 10−4 2.5225 × 10−4 4.9755 × 10−4

0.2 3.0940 × 10−4 2.8441 × 10−4 1.3312 × 10−4 4.8568 × 10−4

≤ 2 (𝑛 + 3) (
󵄩󵄩󵄩󵄩𝑥0 − 𝑥0

󵄩󵄩󵄩󵄩

2

+ ∫

𝑡

0

‖𝑘 (𝑠, 𝑡) (𝑥 (𝑠) − 𝑥 (𝑠))

+ (𝑘 (𝑠, 𝑡) − 𝑘̂ (𝑠, 𝑡))

×(𝑥(𝑠) − 𝑥(𝑠) + 𝑥(𝑠))‖
2

𝑑𝑠

+

𝑛

∑

𝑖=1

∫

𝑡

0

‖𝑡𝑖 (𝑠, 𝑡) (𝑥 (𝑠) − 𝑥 (𝑠))

+ (𝑡𝑖 (𝑠, 𝑡) − 𝑡𝑖 (𝑠, 𝑡))

× (𝑥 (𝑠) − 𝑥 (𝑠) + 𝑥 (𝑠))‖
2

𝑑𝑠

+ ∫

𝑡

0

‖𝑟 (𝑠, 𝑡) (𝑥 (𝑠) − 𝑥 (𝑠))

+ (𝑟 (𝑠, 𝑡) − 𝑟 (𝑠, 𝑡))

× (𝑥 (𝑠) − 𝑥 (𝑠) + 𝑥 (𝑠))‖
2

𝑑𝑠)

≤ 2 (𝑛 + 3) (
󵄩󵄩󵄩󵄩𝑥0 − 𝑥0

󵄩󵄩󵄩󵄩

2

+ 2∫

𝑡

0

‖𝑘 (𝑠, 𝑡)‖
2

× ‖𝑥 (𝑠) − 𝑥 (𝑠)‖
2

𝑑𝑠

+ 2∫

𝑡

0

(
󵄩󵄩󵄩󵄩󵄩
𝑘 (𝑠, 𝑡) − 𝑘̂ (𝑠, 𝑡)

󵄩󵄩󵄩󵄩󵄩

2

)

× (2 (‖𝑥 (𝑠) − 𝑥 (𝑠)‖
2

+ ‖𝑥 (𝑠)‖
2

)) 𝑑𝑠

+ 2

𝑛

∑

𝑖=1

∫

𝑡

0

‖𝑡𝑖(𝑠, 𝑡)‖
2

‖𝑥(𝑠) − 𝑥(𝑠)‖
2

𝑑𝑠

+ 2

𝑛

∑

𝑖=1

∫

𝑡

0

(
󵄩󵄩󵄩󵄩󵄩
𝑡𝑖(𝑠, 𝑡) − 𝑡𝑖(𝑠, 𝑡)

󵄩󵄩󵄩󵄩󵄩

2

)

× (2 (‖𝑥(𝑠) − 𝑥(𝑠)‖
2

+‖𝑥(𝑠)‖
2

)) 𝑑𝑠

+ 2∫

𝑡

0

‖𝑟(𝑠, 𝑡)‖
2

‖𝑥 (𝑠) − 𝑥 (𝑠)‖
2

𝑑𝑠

+ 2∫

𝑡

0

(‖𝑟 (𝑠, 𝑡) − 𝑟 (𝑠, 𝑡)‖
2

)

× (2 (‖𝑥(𝑠) − 𝑥 (𝑠)‖
2

+‖𝑥 (𝑠)‖
2

)) 𝑑𝑠)

≤ 8 (𝑛 + 3)

× (
󵄩󵄩󵄩󵄩𝑥0 − 𝑥0

󵄩󵄩󵄩󵄩

2

+ ∫

𝑡

0

‖𝑘(𝑠, 𝑡)‖
2

‖𝑥(𝑠) − 𝑥 (𝑠)‖
2

𝑑𝑠

+ ∫

𝑡

0

(
󵄩󵄩󵄩󵄩󵄩
𝑘 (𝑠, 𝑡) − 𝑘̂ (𝑠, 𝑡)

󵄩󵄩󵄩󵄩󵄩

2

)

× (‖𝑥 (𝑠) − 𝑥 (𝑠)‖
2

+ ‖𝑥 (𝑠)‖
2

) 𝑑𝑠

+

𝑛

∑

𝑖=1

∫

𝑡

0

‖𝑡𝑖(𝑠, 𝑡)‖
2

‖𝑥(𝑠) − 𝑥 (𝑠)‖
2

𝑑𝑠

+

𝑛

∑

𝑖=1

∫

𝑡

0

(
󵄩󵄩󵄩󵄩󵄩
𝑡𝑖 (𝑠, 𝑡) − 𝑡𝑖 (𝑠, 𝑡)

󵄩󵄩󵄩󵄩󵄩

2

)

× (‖𝑥 (𝑠) − 𝑥 (𝑠)‖
2

+ ‖𝑥 (𝑠)‖
2

) 𝑑𝑠

+ ∫

𝑡

0

‖𝑟 (𝑠, 𝑡)‖
2

‖𝑥 (𝑠) − 𝑥 (𝑠)‖
2

𝑑𝑠
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Table 3: Mean, standard deviation, and confidence interval for numerical solution mean (𝑇 = 0.25,𝐻 = 9/10).

𝑡 𝑥 𝑠
%95 confidence interval for mean

Lower Upper
0.05 1.9270 × 10−4 1.3065 × 10−4 1.1172 × 10−4 2.7368 × 10−4

0.1 1.7260 × 10−4 1.6552 × 10−4 7.001 × 10−5 2.7519 × 10−4

0.15 3.5330 × 10−4 2.1775 × 10−4 2.1834 × 10−5 4.8826 × 10−4

0.2 2.8700 × 10−4 2.6380 × 10−4 1.2349 × 10−4 4.5051 × 10−4

Table 4: Mean, standard deviation, and confidence interval for numerical solution mean (𝑇 = 0.25,𝐻 = 2/3).

𝑡 𝑥 𝑠
%95 confidence interval for mean

Lower Upper
0.05 4.1685 × 10−4 2.8249 × 10−4 2.9305 × 10−4 5.4065 × 10−4

0.1 4.8485 × 10−4 3.1651 × 10−4 3.4613 × 10−4 6.2357 × 10−4

0.15 5.7120 × 10−4 5.3911 × 10−4 3.3491 × 10−4 8.0749 × 10−4

0.2 7.3150 × 10−4 5.4920 × 10−4 4.9081 × 10−4 9.7219 × 10−4

+ ∫

𝑡

0

(‖𝑟 (𝑠, 𝑡) − 𝑟 (𝑠, 𝑡)‖
2

)

× (‖𝑥 (𝑠) − 𝑥 (𝑠)‖
2

+ ‖𝑥 (𝑠)‖
2

) 𝑑𝑠) .

(59)

By usingTheorems 5 and 6, we can write

󵄩󵄩󵄩󵄩𝑥0 − 𝑥0
󵄩󵄩󵄩󵄩

2

≤ 𝑘
1
ℎ
2

,

󵄩󵄩󵄩󵄩󵄩
𝑘(𝑠, 𝑡) − 𝑘̂ (𝑠, 𝑡)

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝑘
2
ℎ
2

,

󵄩󵄩󵄩󵄩󵄩
𝑡𝑖(𝑠, 𝑡) − 𝑡𝑖 (𝑠, 𝑡)

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝑘
3𝑖
ℎ
2

, 𝑖 = 1, . . . , 𝑛,

‖𝑟(𝑠, 𝑡) − 𝑟(𝑠, 𝑡)‖
2

≤ 𝑘
4
ℎ
2

.

(60)

By substituting the relation (60) in (59), we get

‖𝑥(𝑡) − 𝑥(𝑡)‖
2

≤ 8 (𝑛 + 3)

× (𝑘
1
ℎ
2

+ 𝑙
1
∫

𝑡

0

‖𝑥(𝑠) − 𝑥(𝑠)‖
2

𝑑𝑠

+ 𝑘
2
ℎ
2

(∫

𝑡

0

‖𝑥 (𝑠) − 𝑥 (𝑠)‖
2

𝑑𝑠 + 𝑁)

+

𝑛

∑

𝑖=1

𝑙
2𝑖
∫

𝑡

0

‖𝑥(𝑠) − 𝑥 (𝑠)‖
2

𝑑𝑠

+

𝑛

∑

𝑖=1

𝑘
3𝑖
ℎ
2

(∫

𝑡

0

‖𝑥 (𝑠) − 𝑥 (𝑠)‖
2

𝑑𝑠 + 𝑁)

+ 𝑙
3
∫

𝑡

0

‖𝑥(𝑠) − 𝑥 (𝑠)‖
2

𝑑𝑠

+𝑘
4
ℎ
2

(∫

𝑡

0

‖𝑥 (𝑠) − 𝑥 (𝑠)‖
2

𝑑𝑠 + 𝑁)) ,

(61)

or

‖𝑥 (𝑡) − 𝑥 (𝑡)‖
2

≤ 𝜇 + 𝜆∫

𝑡

0

‖𝑥 (𝑠) − 𝑥 (𝑠)‖
2

𝑑𝑠, (62)

where 𝜇 = 8(𝑛+3)(𝑘
1
ℎ
2

+𝑘
2
ℎ
2

𝑁+∑
𝑛

𝑖=1
𝑘
3𝑖
ℎ
2

𝑁+𝑘
4
ℎ
2

𝑁) and
𝜆 = 8(𝑛 + 3)(𝑙

1
+ 𝑘
2
ℎ
2

+ ∑
𝑛

𝑖=1
𝑙
2𝑖
+ ∑
𝑛

𝑖=1
𝑘
3𝑖
ℎ
2

+ 𝑙
3
+ 𝑘
4
ℎ
2

). If
𝑓(𝑠) = ‖𝑥(𝑠) − 𝑥(𝑠)‖

2, we get

𝑓 (𝑡) ≤ 𝜇 + 𝜆∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠. (63)

Now, by using Gronwall inequality, we have

𝑓 (𝑡) ≤ 𝜇(1 + 𝜆∫

𝑡

0

exp (𝜆 (𝑡 − 𝑠)) 𝑑𝑠) , 𝑡 ∈ [0, 1) , (64)

or

‖𝑥(𝑡) − 𝑥 (𝑡)‖
2

≤ 𝑂 (ℎ
2

) . (65)

5. Numerical Examples

The SDE driven by the FBM

𝑆 (𝑡) = 𝑆
0
+ ∫

𝑡

0

𝜇 (𝑠) 𝑆 (𝑠) 𝑑𝑠

+

𝑛

∑

𝑖=1

∫

𝑡

0

𝜎𝑖 (𝑠) 𝑆 (𝑠) 𝑑𝐵
𝑖
(𝑠)

+ ∫

𝑡

0

𝛼 (𝑠) 𝑆 (𝑠) 𝑑𝐵
𝐻

𝑠
, 𝑡 ∈ (0, 𝑇) ,

(66)
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Table 5: Mean, standard deviation, and confidence interval for numerical solution mean (𝑇 = 0.25,𝐻 = 3/4).

𝑡 𝑥 𝑠
%95 confidence interval for mean

Lower Upper
0.05 5.0950 × 10−4 1.8639 × 10−4 3.9397 × 10−4 6.2503 × 10−4

0.1 5.0980 × 10−4 2.9898 × 10−4 3.2449 × 10−4 6.9511 × 10−4

0.15 4.0610 × 10−4 3.3768 × 10−4 1.9680 × 10−4 6.1540 × 10−4

0.2 4.9960 × 10−4 3.0343 × 10−4 3.1153 × 10−4 6.8767 × 10−4

Table 6: Mean, standard deviation, and confidence interval for numerical solution mean (𝑇 = 0.25,𝐻 = 9/10).

𝑡 𝑥 𝑠
%95 confidence interval for mean

Lower Upper
0.05 4.9780 × 10−4 2.0137 × 10−4 3.7299 × 10−4 6.2261 × 10−4

0.1 6.9850 × 10−4 3.4267 × 10−4 4.8611 × 10−4 9.1089 × 10−4

0.15 7.7470 × 10−4 5.1518 × 10−4 4.5537 × 10−4 1.0940 × 10−3

0.2 1.2516 × 10−3 6.3210 × 10−4 8.5982 × 10−4 1.6434 × 10−3

is applied in modeling the price 𝑆 of a stock with various
Hurst parameters (see [18]). Hence, we show applicability and
accuracy of this method in two numerical examples.

Example 1. Let us consider a SDE

𝑑𝑥 (𝑠) = −
1

5
𝑠
2

𝑥 (𝑠) 𝑑𝑠 −
1

10
𝑥 (𝑠) 𝑑𝐵

𝐻

𝑠

−
1

6
𝑥 (𝑠) 𝑑𝐵

1
(𝑠) −

1

30
𝑥 (𝑠) 𝑑𝐵

2
(𝑠) ,

𝑠 ∈ (0, 𝑇) , 𝑇 < 1,

𝑥 (0) =
1

30
,

(67)

with the exact solution 𝑥(𝑡) = (1/30) exp(−(1/10)𝐵𝐻
𝑡
−

(1/15)𝑡
3

−(1/200)× 𝑡
2𝐻

−(1/6)𝐵
1
(𝑡)− (1/72)𝑡− (1/30)𝐵

2
(𝑡)−

(1/1800)𝑡). The numerical results have been shown in Tables
1, 2, and 3 (with various Hurst parameters), where 𝑥 and 𝑠 are
error mean and standard deviation of error, respectively.

Example 2. Let us consider a SDE

𝑑𝑥 (𝑠) = −
1

6
𝑠
2

𝑥 (𝑠) 𝑑𝑠 −
1

30
𝑥 (𝑠) 𝑑𝐵

𝐻

𝑠

−
1

10 (1 − 𝑠)
𝑥 (𝑠) 𝑑𝐵

1
(𝑠) −

1

30
𝑥 (𝑠) 𝑑𝐵

2
(𝑠) ,

𝑠 ∈ (0, 𝑇) , 𝑇 < 1,

𝑥 (0) =
1

12
,

(68)

with the exact solution 𝑥(𝑡) = (1/12) exp(−(1/30)𝐵𝐻
𝑡
−

(1/18)𝑡
3

−(1/1800)𝑡
2𝐻

−∫
𝑡

0

(1/10(1−𝑠))𝑑𝐵
1
(𝑠)−(1/30)𝐵

2
(𝑡)−

(1/1800)𝑡+(1/(200(1−𝑠)))).The numerical results have been
shown in Tables 4, 5, and 6 (with various Hurst parameters),
where 𝑥 and 𝑠 are error mean and standard deviation of error,
respectively.

6. Conclusion

This paper presents a numerical comparison between the
approximation solution of the SDE driven by the FBM
with Hurst parameter 𝐻 ∈ ((1/2), 1) and 𝑛 independent
one-dimensional SBM and the exact solution of it. Also,
the method is applied with two examples to illustrate the
accuracy and implementation of the method.
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