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A parallel multipopulation genetic algorithm (PMPGA) is proposed to optimize the train control strategy, which reduces the energy
consumption at a specified running time.The paper considered not only energy consumption, but also running time, security, and
riding comfort. Also an actual railway line (Beijing-Shanghai High-Speed Railway) parameter including the slop, tunnel, and curve
was applied for simulation. Train traction property and braking property was explored detailed to ensure the accuracy of running.
The PMPGA was also compared with the standard genetic algorithm (SGA); the influence of the fitness function representation
on the search results was also explored. By running a series of simulations, energy savings were found, both qualitatively and
quantitatively, which were affected by applying cursing and coasting running status. The paper compared the PMPGA with the
multiobjective fuzzy optimization algorithm and differential evolution based algorithm and showed that PMPGA has achieved
better result. The method can be widely applied to related high-speed train.

1. Introduction

Since October 1964 the world’s first high-speed railway, Japan
Tokaido Shinkansen, was born; high-speed railways started
the rapid development. Today, most European countries,
Russia, Japan, and China have constructed their complex
high-speed railways networks. Although the railway was
considered the most efficient way of travel, compared to
aircraft and auto vehicle, it still consumes large amount of
energy [1] in everyday running. Researches showed that it still
has large possibility tomake the train runmore efficiently [2–
4].The reduction of energy consumption is also seen as one of
the key objectives for the development of sustainablemobility
by use of high-speed train. Research will lead to a decrease of
huge energy consumption in everyday running of high-speed
trains. Many scholars have been engaged in it.

Yang et al. [5] from Tongji University proposed a new
energy conservation track profile based on trigonometric
function method in urban mass transit. Simulation results
showed that it was effective in comparison with actual track
profile. Bocharnikov et al. [6] applied a method for saving

energy consumption during a single-train journey by trading
off reductions in energy against increases in running time;
in Bocharnikov’s research, energy savings were found to be
affected by acceleration and braking rates and by running
a series of simulations in parallel with a genetic algorithm
search method. Chen et al. [7] employed genetic algorithms
to optimize train scheduling. The result showed that the
method can significantly reduce the maximum traction
power. Although these methods and algorithms were effec-
tive, they can only be applied inmass rapid transit (MRT) and
light rapid transit (LRT) systems. Usually, in MRT, distance
between two stations was short and the top running speed
was about 80–100 km/h. In this case, a train generally must
decelerate in preparation for reaching the next station before
it reaches the speed limit. In Milroy’s doctoral dissertation
[8], Aspects of Automatic Train Control, it was proved that for
short distance train control represents three different motion
regimes, including acceleration, coasting, and braking. But
later, in 1984, Howlett [9] proved that in long distance
train running, cruising was significant in minimizing energy
consumption. Due to the difference between MRT, LRT, and
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high-speed trains, these methods cannot be applied in high-
speed trains for energy optimization.

For high-speed trains, energy saving and trains control
optimization were also studied by scholars. Kawakami [10]
from Central Japan Railway Company presents a dynamic
power saving strategy for Shinkansen traffic control; the
author made conclusion that predictive simulations in every
layer and target shooting operation of trains are the basis
for energy control. With consideration of track gradient and
speed limits, Cheng [11] summarized train control problems
with two different models, tractionmechanical energymodel
(TMEM) and traction energy model (TEM), in a long-haul
train. Hwang [12] presented an approach to identify a fuzzy
control model for determining an economic running pattern
for a high-speed railway through an optimal compromise
between trip time and energy consumption.

In this paper, taking the Beijing-Shanghai High-Speed
Railway as a case, an improved PMPGA was applied to
find a perfect running with a specified running. In this
research, security, stop precision, and riding comfort were
considered and also the railway line parameter includes the
slop, tunnel, and curve. The result demonstrates that the
PMPGA improved algorithm was better with the SGA and
it has achieved conspicuous energy reduction.

2. Train Traction Module

2.1. Train Traction Property. Traction property curve is an
important curve demonstrating the relationship between
train traction effort and speed. It was the most significant
workwhen a trainwas designed. Figure 1 shows the schematic
diagram of traction property curve calculation.

In Figure 1, there are three curves; the top one is adhesion-
limited braking force 𝐹max = 𝑓(V), the middle one is traction
effort property 𝐹 = 𝑓(V), and the bottom one, denoted as W,
is the sum of resistances (e.g., bearing, rolling, air, and grade
resistance)𝑊 = 𝑓(V). Note that point A, the cross of 𝐹max =
𝑓(V) and𝑊 = 𝑓(V), correspond V

𝑎
, is greater than the Vmax.

Now, according to the curve, traction effort property𝐹 = 𝑓(V)
could be generated as

(𝐹V − 𝐹V0)

V
=
(𝐹V󸀠 − 𝐹V0)

V󸀠
0 ≤ V ≤ V󸀠

𝐹V ∗ V = 𝐹max ∗ 𝑉max V󸀠 ≤ V ≤ Vmax.

(1)

In the above formula, 𝐹V represents the traction force when
the speed is V.V󸀠 is the speed on the intersection point of
constantmoment segment and constant power segment.𝐹max
represents traction force limitation.

2.2. Train Resistance. To ensure that the TE was able to
drive the train with a speed, the total resistances, in this
paper, defined as𝑊, must be known. Total resistances include
basic resistance𝑊

0
(axle friction resistance, track resistance,

rolling resistance, journal resistance, air force resistance, and
vibration resistance) and extra resistance 𝑊

𝑗
. 𝑊
𝑗
includes

grade resistance (𝑊
𝑖
), curve resistance (𝑊

𝑟
), and tunnel

resistance (𝑊
𝑠
).
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Figure 1: Diagram of traction property curve calculation.

It [13] was found that speed was the main factor which
effects the basic resistance, and basis resistance can be
expressed by a quadratic equation formulated as follows:

𝜔
0
= 𝑎 + 𝑏V + 𝑐 ⋅ V2, (2)

where the coefficients 𝑎, 𝑏, and 𝑐 are dependent on axle load,
number of axles, cross-section of the train, and shape of the
train.

According to [14], considering the train as a multiparticle
object, we can have the 𝑤

𝑗
(𝑥) as the following function:

𝑤
𝑗
(𝑥) =

1

𝐿
[∑ 𝑖
𝑖
∗ 𝑙
𝑖
+ 600∑

𝑙
𝑟𝑖

𝑅
+∑(𝑤

𝑠
∗ 𝑙
𝑠
)] , (3)

where 𝐿 is the length of the train and 𝑖
𝑖
and 𝑙
𝑖
represent the

gradient and grade length. 𝑅, 𝑙
𝑟𝑖
are the curve radius and

length. 𝑤
𝑠𝑖
, 𝑙
𝑠𝑖
are the tunnel resistance and length.

Then, the motion equation and the 𝑎, V
𝑖
, and 𝑆

𝑖
were

formulated as below:

𝑎 =
𝑑V
𝑑𝑡
=
𝐹 − 𝐵 − (𝜔

𝑖
+ 𝜔
𝑟
+ 𝜔
𝑠
+ 𝜔
0
)

𝑀 (1 + 𝛾)

𝑉
𝑖
= 𝑎Δ𝑡 + 𝑉

𝑖−1

𝑆
𝑖
=
𝑉
𝑖
+ 𝑉
𝑖−1

2
Δ𝑡 + 𝑆

𝑖−1
,

(4)

where𝑉
𝑖
was the speed of currentmoment, V

𝑖−1
was the speed

of last moment, 𝑎 was the acceleration of current moment, 𝑠
𝑖

was the distance of currentmoment from the first station, and
𝑠
𝑖−1

was the distance of the last moment from the first station.

3. Traction Energy Module (TEM)

In order to achieve minimal energy consumption, generally,
train control for running between stations, including accel-
eration, cruising, coasting, and braking, should be applied at
appropriate time. Golovitcher [15] and Khmelnitsky [16] ana-
lyzed the trainmovement process with nonlinear constrained
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Figure 2: Diagram of different running status during one journey.

differential equations and concluded that a maximum eco-
nomic train running strategy should contain four statuses,
maximum traction, cursing, coasting, and maximum brak-
ing. For analyzing station-to-station travel time and distance
profile, it is essential to comprehend the description of
the motion statuses and their mathematical expressions. In
maximum traction, power is used to overcome gravity (if
climbing) and the dynamic resistance so as to accelerate.
When cruising, power is used to overcome the resistance
to maintain the train at the constant speed; at this time,
the acceleration is zero. When coasting, the running train
only suffers from the force of resistance. Applying coasting
when the train runs between stations as much as possible is
considered to be the most effective energy consumption way.
When braking, with regeneration technology fitted, energy
can be produced using the motor as a generator.

A train’s journey may have variables coast intervals
(Figure 2) to achieve an optimal solution. Figure 2 shows a
train’s status and changing point during a running between
two stations. In the figure, the points mean the following:
A: traction; B: cursing start point; C: coasting start point; D:
coasting; E: cursing; F: braking.

Now, the aim is to find an optimal control strategy for
minimal energy consumption in a round trip between two
stations. This problem can be seen as a double optimization
problem.

Traction energy module can be described as follows.
Make𝑋 the distance between two stations, and travel time

was fixed 𝑇; [0, 𝑇] can be divided as

0 = 𝑡
0
≤ 𝑡
1
≤ 𝑡
2
⋅ ⋅ ⋅ ≤ 𝑡

𝑛
≤ 𝑡
𝑛+1
= 𝑡, (5)

where 𝑡
0
is the initial time and 𝑡

𝑛+1
is the final time; in the

time space [𝑡
𝑘
− 𝑡
𝑘+1
] train travel distance is [𝑥

𝑘
− 𝑥
𝑘+1
] and

in [0, 𝑥]

0 = 𝑥
0
≤ 𝑥
1
≤ 𝑥
2
≤ ⋅ ⋅ ⋅ ≤ 𝑥

𝑛
≤ 𝑥
𝑛+1
= 𝑥. (6)

Total energy consumed by the train can be defined as follows:

min 𝐸 = ∫

𝑥
𝑓

𝑥
0

𝑢
𝑓
(𝑥) 𝑓 (V) 𝑑𝑥
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Figure 3: Train traction property and adhesion-limited braking
force.

𝑡 (𝑥
0
) = 0, 𝑡 (𝑥

𝑓
) = 𝑇, V (𝑥

0
) = 0, V (𝑥

𝑓
) = 0

V ≤ 𝑉 (𝑥) , 𝑢
𝑓
∈ [0, 1] , 𝑢

𝑏
∈ [0, 1] ,

(7)

where𝐸 is the energy consumption and𝑇 is a fixed timewhen
the train travels between two stations. 𝑡(𝑥

0
) is start time, 𝑡(𝑥

𝑓
)

is arrival time, and V(𝑥
0
) and V(𝑥

𝑓
) represent the start speed

and final speed; it was obvious that V(𝑥
0
) and V(𝑥

𝑓
) are equal

to 0. 𝑢
𝑓
and 𝑢
𝑏
were coefficient of traction power and braking.

Then the train control strategy set was 𝑆 = {𝑠𝑖} =

{traction(T), cursing(CR), coasting(C),Braking(B)} =

{T,CR,C,B}.
Finally, the train control matrix was defined as

𝐶 = [𝑐
0
, 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑖
, . . . , 𝑐

𝑛−1
, 𝑐
𝑛
] , (8)

where 𝑐
𝑖
= [𝑥
𝑖
, 𝑠
𝑖
], 𝑥
𝑖
is the position, and 𝑠

𝑖
is the control

strategy start at the position 𝑥
𝑖
. From Figure 2, we can see

that 𝑠
𝑖
∈ S. 𝑥

0
= 0 and 𝑥

𝑛
can be easily calculated by the

last braking process.

4. Minimize the Energy Consumption with
Parallel Multipopulation Genetic Algorithm

The genetic algorithm (GA) [9, 10] is a method for solving
both constrained and unconstrained optimization problems
based on natural selection, the process that drives biologi-
cal evolution. The genetic algorithm repeatedly modifies a
population of individual solutions [17]. At each step, the GA



4 Journal of Applied Mathematics

Table 1: Experiment of PMPGA with different subpopulation group and gene length.

Experiment 𝑁sp Gene length Group size 𝑃
𝑐

Generation 𝑃
𝑚

𝑃V

E1 3 50 100 0.7 300 0.068 0.2
E2 3 100 100 0.7 300 0.068 0.2
E3 6 50 100 0.7 150 0.068 0.2

selects individuals at random from the current population
to be parents and uses them to produce the children for the
next generation. Over successive generations, however, as we
all know, the standard GA has the premature convergence
phenomenon and slow searching process. In our research,
we apply PMPGA, which is a simulation of gene isolation
and gene migration in biological evolution process where
all populations are divided into many subpopulations with
different control. Because the subpopulations have different
gene patterns and their genetic processes are independent,
the global optimumand the fully search are guaranteed by the
difference in evolutionary direction.Theoptimal individual is
quoted by other subpopulations through migration operator.

Finally, considering the optimal object and the constraint
conditions, the PMPGA compute process can be described as
below.

4.1. Chromosome. Take the sequence of train control strategy,
which contains the sequence of train operating conditions
and the corresponding sequence of conversion locations for
the operation section, as a chromosome. The function is

𝐶 = [(𝑥
0
, 𝑠
0
) (𝑥
1
, 𝑠
1
) ⋅ ⋅ ⋅ (𝑥

𝑖
, 𝑠
𝑖
) ⋅ ⋅ ⋅ (𝑥

𝑙
, 𝑠
𝑙
)] , (9)

where 𝑐
𝑖
= [𝑥
𝑖
, 𝑠
𝑖
], 𝑥
𝑖
is the position, and 𝑠

𝑖
is the control

strategy start at the position 𝑥
𝑖
. 𝑠
𝑖
were discrete variables

which contain four control strategies [T,CR,C,B]; each
control strategy corresponds to one energy consumption
formula. 𝑥

𝑖
uses the real number encoding. 𝑙 is the length of

chromosome and it is also variable.

4.2. Initial Population. Population is constructed using chro-
mosomes; each chromosome represents a single solution
point in the problem space. In our research, donate individual
matric 𝑈(𝑈 ∈ 𝐶) was randomly created with different gene
length. Gene length means possible times of traction strategy
during a running. Consider the distance between two sta-
tions.We assign themaximum gene length as𝐺𝐿max. Each𝑈

󸀠

was a control matrix and all created Us compose 𝑁 subpop-
ulation group; each subpopulation group is denoted as 𝑃 =
{𝑝
1
, 𝑝
2
, 𝑝
3
, . . . , 𝑝

𝑘
}, and 𝑘 is the number of populations in a

subpopulation group. In our research𝑁sp assigned as number
of subpopulation groups will be computed in parallel.

4.3. Fitness Function. Applying the individual which means
the control matrix to the energy calculated formula, we can
get the object value. The fitness evaluation is based on the
minimization of the energy consumption, which is defined
as

Fit (𝑥) = 1

𝐶max + obj + 𝐶
. (10)

Considering the fastest running strategy, the maximum
energy consumption is about 4000 kwh; we make coefficient
𝐶max as 4000 and 𝑐 was 0.1.

4.4. Standard of Convergence. The convergence criterion is
whether the maximum evolutionary generation is reached
or the best individual remains unchanged among several
generations. If the algorithm is not convergent, then continue
to the next operations; otherwise, searching process ends.

Selection operation: Roulette wheel selection first cal-
culates each individual 𝑥

𝑖

󸀠 corresponding proportion of its
fitness value to the total fitness value of the whole population,
labeled as 𝑝

𝑖
, by

𝑝
𝑖
=

Fit (𝑥
𝑖
)

∑
𝑁

𝑗=1
Fit (𝑥

𝑗
)

, (11)

where 𝑖 = 1, 2, . . . , 𝑁 and 𝑁 is the size of population. Then
the operator repeats𝑁 times of selecting an individual from
the current population to generate the new population. In
each time, 𝑎 random real number 𝑞 uniformly scattered in
the range (0, 1) is generated, and the individual 𝑥

𝑘
where 𝑘

satisfies (20) is selected:

𝑘 = min{𝑗 |
𝑗−1

∑

𝑖=1

𝑝
𝑖
≤ 𝑞, 𝑗 = 1, 2, . . . , 𝑁} . (12)

It is obvious that, in the roulette wheel selection, the fitter
individuals have a greater chance of survival than the greater
ones.

Crossover. Uniform crossover operator: the crossover oper-
ator works as follows. After the two “parents” are drawn,
each corresponding pair of coordinates exchanges its values
independently, with the same probability 0 < 𝑟 < 1, as
follows:

𝑋
𝑡+1

1
= 𝑟𝑋
𝑡

1
+ (1 − 𝑟)𝑋

𝑡

2

𝑋
𝑡+1

2
= 𝑟𝑋
𝑡

2
+ (1 − 𝑟)𝑋

𝑡

1
.

(13)

In formula (13) 𝑋𝑡
1
, 𝑋
𝑡

2
represent the gene of parents and

𝑋
𝑡+1

1
, 𝑋
𝑡+1

2
represent the next generation.

Mutation Operator. Using random number generator to gen-
erate a number between 0 and 1, if it is less than the probability
ofmutation𝑝

𝑚
, chromosomes domutation. Severalmutation

positions are rolled randomly.
In order to find the best solution, we define different

gene length and different number of subpopulation groups
for confrontation. By SGA, the population size is 100, gene
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Figure 4: Evolutionary curve of standard GA (left) and PMPGA E1 (right).

Table 2: Basic train information.

Motor car/trailer/number of cars 14/2/16
Number of axles 64
Train weight 895.6 (t)
Outpower (kw) 615∗16
Voltage rating (v) 3000
Current rating (A) 230
Highest running speed (km/h) 380
Cursing speed (km/h) 350

length is 50, the maximum evolutionary generation is 300,
and Pc = 0.7, Pm = 0.068, and Pv = 0.2. The specified
running time is 20mins. The adjustment coefficient A of
running performance index function is 3.6. The update time
interval is 1 s for multiparticle train simulator (see Table 1).

By PMPGA, we try 3 groups of experiments as below, and
the update time interval is 1 s formultiparticle train simulator.

5. Case Study and Simulation

In this project, we use c# to develop a simulation envi-
ronment. Then the improved train control strategy can be
verified and compared with the previous one. The trains run
in the Beijing-Shanghai High-Speed Railway from Beijing
to Langfang; the line length is 1305.121 km and the distance
between Beijing and Langfang is 59.5 km. Reality line param-
eters including grade, tunnel, curve, and speed restriction are
all considered in the simulation.

Train traction property, basic train information, and
reality line parameters were showed in Figure 3, Table 2, and
Table 3.

From the simulation result, Figure 4 shows that, with
standard GA, themaximum fitness rises much faster after the
140th generation and even faster at the 220th generation; after
about the 240th generation, the fitness reaches the maximum

value and becomes stable after that. Compared with the E1,
the maximum fitness rises sharply at the 75th generation
and becomes stable from the 120th generation. The result
shows that the parallel multipopulation GA has the speed
of convergence and the precision is considerably improved;
also it avoids the premature convergence phenomenon of
single-population evolutionary algorithm and maintains the
evolutionary stability of the best individuals.

For experiment E1 (Figure 4, right) and E2 (Figure 5,
left), we can see that the gene length was extended to 100
which does not cause any improvement. Both curves reach
the maximum value and become stable at about the 120th
generation. From the result of E1, the gene length 50 is enough
for the control strategy between two stations.

For experiment E3, when 𝑁sp was extended from 3 to
6, gene length was set as 50 and generation was set as 150.
The speed of convergence was improved. At about the 85th
generation, the curves become stable and reach themaximum
value.

When applying the control strategy to the simulation
system, we got the following result.

From Figure 6 we can see that the running strategy was
applied to save energy consumption, and cursing and coast-
ing strategy were also applied in appropriate time. Running
results were compared in Table 4.

We can see that when running time from Beijing to
Langfang was 16󸀠32󸀠󸀠 when applying the fastest strategy,
energy consumption is 3957.7 kwh. When running time was
set extended to 20󸀠00󸀠󸀠, energy consumption was reduced
to about 3252.4 kwh and 3247.2 kwh, which save 17.82% and
17.95% compared with the fastest running time.

In order to verify the efficiency of the PMPGA, we
compared it with another optimal algorithm; one is from
YanXH who proposed an algorithm based on differential
evolution [18] and the other one is from WangDC who
proposed a multiobjective fuzzy optimization [19]. We set
up module, apply the algorithm at the same train and same
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Figure 5: Evolutionary curve of E2 (left) and E3 (right).
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Table 3: Railways line parameters and units.

Distance Gradient Altitude Slope
length

Curve
position

Curve
radius

Curve
length Station Speed

limit
Tunnel
position

Bridge
position Others

km ‰ m m km m m km km/h km km —

Table 4: Comparison of running results.

Rail line Section length Running strategy Time set Actual running time Energy consumption
Beijing-Langfang 59.5 km Fastest — 16min 32 s 3957.7 kwh
Beijing-Langfang with SGA 59.5 km Specified time 20min 00 s 19min 59 s 3252.4 kwh
Beijing-Langfang with PMPGA 59.5 km Specified time with GA 20min 00 s 20min 00 s 3247.2 kwh
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Table 5: Experiment confrontation with other algorithms.

Experiment Section length Running strategy Time set Actual running time Energy consumption
Beijing-Langfang with
PMPGA 59.5 km Specified time with GA 20min 00 s 20min 00 s 3247.2 kwh

Beijing-Langfang
E5 59.5 km Differential evolution 20min 00 s 20min 00 s 3362.9 kwh

Beijing-Langfang
E6 59.5 km Fuzzy optimization 20min 00 s 19min 59 s 3402.1 kwh

railway lines, and get the following results. In Table 5, we
define Yan’s experiment as E5 and Wang’s as E6. The result
shows that, with Yan’s algorithm, the train was run with a
better accuracy in time and E6 is worse. But E5 and E6’s
experiments show that the energy consumption was about
3.56% and 4.77% more than the PMPGA result. It is proved
that the PMPGA algorithm is better with the fuzzy control
optimization and algorithm based on differential evolution.

6. Conclusion

When a train running schedule is fixed, security, stop preci-
sion, and riding comfortmust be satisfied.We can save energy
consumption by optimizing the control strategy. In this paper,
a SGA and PMPGA were applied to find a perfect running
based on a specified time. By taking the Beijing-Shanghai
High-Speed Railway (Beijing-Langfang section) as a case, the
result demonstrates that the SGA and PMPGA were able to
reduce energy consumption, but the improved PMPGA has
higher speed to convergence and has achieved conspicuous
energy reduction; also, PMPGA has achieved better result
compared with the multiobjective fuzzy optimization algo-
rithm and differential evolution based algorithm.
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