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We consider a strong mixed vector equilibrium problem in topological vector spaces. Using generalized Fan-Browder fixed point
theorem (Takahashi 1976) and generalized pseudomonotonicity for multivalued mappings, we provide some existence results for
strong mixed vector equilibrium problem without using KKM-Fan theorem. The results in this paper generalize, improve, extend,
and unify some existence results in the literature. Some special cases are discussed and an example is constructed.

1. Introduction

Theminimax inequalities of Fan [1] are fundamental tools in
provingmany existence theorems in nonlinear analysis.Their
equivalence to the equilibrium problems was introduced by
Takahashi [2], Blum and Oettli [3], and Noor and Oettli [4].
The equilibrium theory provides a novel and unified treat-
ment of a wide class of problems which arises in economics,
finance, transportation, elasticity, optimization, and so forth.
The generalization of equilibrium problem for vector valued
mappings is known as vector equilibrium problem and has
been studied vastly by many authors; see, for example, [5–8].

Recently, Kum and Wong [9] considered a multivalued
version of generalized equilibrium problem which extends
the strong vector variational inequality studied by Fang and
Huang [10] in real Banach spaces. FromBrouwer’s fixed point
theorem and Fan-Browder fixed point theorem, they derived
existence results for generalized equilibrium problem with
and without monotonicity in general Hausdorff topological
vector spaces.

The main motivation of this paper is to establish some
existence results for strongmixed vector equilibriumproblem
which is combination of vector equilibrium problem and

a vector variational inequality. Proposition 3.3 of Ahmad
and Akram [11] related to the core of a set is extended for
multivalued mappings and used to prove an existence result
for strong mixed vector equilibrium problem. We also prove
our results with and without monotonicity assumptions.

2. Preliminaries

Throughout this paper, let 𝑋 and 𝑌 be the topological vector
spaces. Let𝐾 be a nonempty convex subset of𝑋 and 𝐶 ⊆ 𝑌 a
pointed closed convex cone with 𝑖𝑛𝑡𝐶 ̸= 0. Let 𝑓 : 𝐾 × 𝐾 →

2
𝑌 and 𝑇 : 𝐾 → 2

𝐿(𝑋,𝑌) be the multivalued mappings, where
𝐿(𝑋, 𝑌) is space of all continuous and boundedmappings.We
consider the following problem.

Find 𝑥 ∈ 𝐾, 𝑢 ∈ 𝑇(𝑥) such that, for all 𝑦 ∈ 𝐾,

𝑓 (𝑥, 𝑦) + ⟨𝑢, 𝑦 − 𝑥⟩ ̸⊆ −𝐶 \ {0} . (1)

We call problem (1) strongmixed vector equilibriumproblem
for multivalued mappings.
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2.1. Special Cases

(1) If 𝑇 ≡ 0, then problem (1) reduces to the problem of
finding 𝑥 ∈ 𝐾 such that

𝑓 (𝑥, 𝑦) ̸⊆ −𝐶 \ {0} , ∀𝑦 ∈ 𝐾. (2)

Problem (2) is called multivalued generalized system
and this problemwas considered and studied by Kum
andWong [9].

(2) If 𝑇 ≡ 0, 𝑌 = R, 𝐶 = R+, and 𝑓 is single-valued,
then problem (1) reduces to the classical equilibrium
problem introduced and studied by Blum and Oettli
[3] which is to find 𝑥 ∈ 𝐾 such that

𝑓 (𝑥, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐾. (3)

(3) If𝑓 and𝑇 are single-valued and𝑌 = R, 𝐶 = R+, then
problem (1) reduces to the generalized equilibrium
problem of finding 𝑥 ∈ 𝐾 such that

𝑓 (𝑥, 𝑦) + ⟨𝑇 (𝑥) , 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐾, (4)

which was studied by S. Takahashi and W. Takahashi
[12].

(4) If 𝑓 ≡ 0 and 𝑇 is single-valued, then (1) reduces to
strong vector variational inequality problem which is
to find 𝑥 ∈ 𝐾 such that

⟨𝑇 (𝑥) , 𝑦 − 𝑥⟩ ∉ −𝐶 \ {0} , ∀𝑦 ∈ 𝐾. (5)

Problem (5) was considered and studied by Fang and
Huang [10].

It is clear that the problem under consideration is much
more general than the other problems that exist in the
literature.

Let us recall some definitions and results that are needed
to prove the main results of this paper.

Definition 1 (see [13]). Let 𝑋 and 𝑌 be the topological vector
spaces, and let 𝑔 : 𝑋 → 2

𝑌 be a multivalued mapping. Then
one has the following:

(i) 𝑔 is said to be upper semicontinuous at 𝑥 ∈ 𝑋, if, for
each 𝑥 ∈ 𝑋 and each open set 𝑉 in 𝑌 with 𝑔(𝑥) ⊂ 𝑉,
there exists an open neighborhood 𝑈 of 𝑥 in 𝑋 such
that 𝑔(𝑦) ⊂ 𝑉, for each 𝑦 ∈ 𝑈;

(ii) 𝑔 is said to be lower semicontinuous at 𝑥 ∈ 𝑋, if, for
each𝑥 ∈ 𝑋 and each open set𝑉 in𝑌with𝑔(𝑥)∩𝑉 ̸= 0,
there exists an open neighborhood 𝑈 of 𝑥 in 𝑋 such
that 𝑔(𝑦) ∩ 𝑉 ̸= 0, for each 𝑦 ∈ 𝑈;

(iii) 𝑔 is said to be continuous on𝑋, if it is at the same time
upper semicontinuous and lower semicontinuous on
𝑋. It is also known that 𝑔 : 𝑋 → 2

𝑌 is lower
semicontinuous if and only if, for each closed set 𝑉
in 𝑌, the set {𝑥 ∈ 𝑋 : 𝑔(𝑥) ⊂ 𝑉} is closed in𝑋.

Definition 2. A multivalued mapping 𝑓 : 𝐾 × 𝐾 → 2
𝑌 is

said to be generalized𝐶-strongly pseudomonotone, if, for any
𝑥, 𝑦 ∈ 𝐾,

𝑓 (𝑥, 𝑦) ̸⊆ −𝐶 \ {0} implies 𝑓 (𝑦, 𝑥) ⊆ −𝐶. (6)

Definition 3. Amultivaluedmapping 𝑇 : 𝐾 → 2
𝐿(𝑋,𝑌) is said

to be

(i) generalized 𝐶-strongly pseudomonotone, if, for any
𝑥, 𝑦 ∈ 𝐾, there exists 𝑢 ∈ 𝑇(𝑥) such that

⟨𝑢, 𝑦 − 𝑥⟩ ̸⊆ −𝐶 \ {0} (7)

implies that there exists V ∈ 𝑇(𝑦) such that

⟨V, 𝑥 − 𝑦⟩ ⊆ −𝐶; (8)

(ii) generalized hemicontinuous, if, for any given 𝑥, 𝑦, 𝑧 ∈
𝐾 and for 𝜆 ∈ [0, 1], the mapping 𝜆 󳨃→ ⟨𝑇(𝑥 + 𝜆(𝑦 −

𝑧), 𝑧)⟩ is upper semicontinuous at 0+.

Definition 4 (see [9]). Let ℎ : 𝐾 → 2
𝑌 be a multivalued

mapping. Then ℎ is said to be

(i) 𝐶-convex, if, for all 𝑥, 𝑦 ∈ 𝐾 and for 𝜆 ∈ [0, 1],

ℎ (𝜆𝑥 + (1 − 𝜆) 𝑦) ⊆ 𝜆ℎ (𝑥) + (1 − 𝜆) ℎ (𝑦) − 𝐶; (9)

(ii) generalized hemicontinuous, if, for all 𝑥, 𝑦 ∈ 𝐾 and
for 𝜆 ∈ [0, 1], the mapping 𝜆 󳨃→ ℎ(𝑥 + 𝜆(𝑦 − 𝑥)) is
upper semicontinuous at 0+.

Definition 5 (see [14]). Let𝐴 : 𝑋 → 2
𝑌
∪{0} be amultivalued

mapping. Then 𝐴 is said to have local intersection property,
if, for each 𝑥 ∈ 𝑋 with 𝐴(𝑥) ̸= 0, there exists an open
neighborhood𝑁(𝑥) of 𝑥 such that⋂

𝑦∈𝑁(𝑥)
𝐴(𝑦) ̸= 0.

Lemma 6 (see [14]). Let 𝑋 and 𝑌 be the topological spaces
and 𝐴 : 𝑋 → 2

𝑌 a multivalued mapping. Then the following
conditions are equivalent:

(i) 𝐴 has the local intersection property;

(ii) there exists a multivalued mapping 𝐹 : 𝑋 → 2
𝑌 such

that 𝐹(𝑥) ⊂ 𝐴(𝑥), for each 𝑥 ∈ 𝑋; 𝐹−1(𝑥) is open in 𝑋
for each 𝑦 ∈ 𝑌 and 𝑋 ⊆ ⋃

𝑦∈𝑌
𝐹
−1
(𝑦).

Theorem 7 (Fan-Browder fixed point theorem [15]). Let 𝐾
be a nonempty, compact, and convex subset of a Hausdorff
topological vector space 𝑋 and let 𝐹 : 𝐾 → 2

𝐾 be a mapping
with nonempty convex values and open fibers (i.e., for 𝑦 ∈ 𝐾,
𝐹
−1
(𝑦) is called the fiber of 𝐹 on 𝑦). Then 𝐹 has a fixed point.

The generalization of the Fan-Browder fixed point theo-
rem [15] was derived by Balaj and Muresan [16] as follows.

Theorem 8. Let𝐾 be a nonempty, compact, and convex subset
of a topological vector space 𝑋 and let 𝐹 : 𝐾 → 2

𝐾

be a mapping with nonempty convex values having the local
intersection property. Then 𝐹 has a fixed point.

Definition 9 (see [3]). Let 𝐾 and 𝐷 be convex subsets of 𝑋
with𝐷 ⊂ 𝐾. The core of𝐷 relative to𝐾, denoted by core

𝐾
𝐷,

is the set defined by 𝑎 ∈ core
𝐾
𝐷 if and only if 𝑎 ∈ 𝐷 and

𝐷 ∩ (𝑎, 𝑦) ̸= 0, for all 𝑦 ∈ 𝐾 \ 𝐷.
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3. Existence Results

In this section, we prove some existence results for strong
mixed vector equilibriumproblem formultivaluedmappings.

Theorem 10. Let𝐾 be a nonempty compact convex subset of𝑋
and 𝐶 a closed convex pointed cone in 𝑌. Let 𝑓 : 𝐾 ×𝐾 → 2

𝑌

and 𝑇 : 𝐾 → 2
𝐿(𝑋,𝑌) be the multivalued mappings. Suppose

that the following conditions hold:

(i) for all 𝑥 ∈ 𝐾, 0 ∈ 𝑓(𝑥, 𝑥);
(ii) 𝑓 is generalized 𝐶-strongly pseudomonotone and 𝐶-

convex in the second argument;
(iii) 𝑓 is generalized hemicontinuous in the first argument

and lower semicontinuous;
(iv) 𝑇 is generalized 𝐶-strongly pseudomonotone and gen-

eralized hemicontinuous.

Then, there exists 𝑥 ∈ 𝐾, 𝑢 ∈ 𝑇(𝑥) such that

𝑓 (𝑥, 𝑦) + ⟨𝑢, 𝑦 − 𝑥⟩ ̸⊆ −𝐶 \ {0} , ∀𝑦 ∈ 𝐾. (10)

First, we prove the following lemma which is required
to prove Theorem 10 for which the assumptions remain the
same as inTheorem 10.

Lemma 11. The following two problems are equivalent.

(I) Find 𝑥 ∈ 𝐾, 𝑢 ∈ 𝑇(𝑥) such that 𝑓(𝑥, 𝑦) + ⟨𝑢, 𝑦 − 𝑥⟩ ̸⊆

−𝐶 \ {0}, for all 𝑦 ∈ 𝐾.
(II) Find 𝑥 ∈ 𝐾, V ∈ 𝑇(𝑦) such that 𝑓(𝑦, 𝑥) + ⟨V, 𝑥 − 𝑦⟩ ⊆

−𝐶, for all 𝑦 ∈ 𝐾.

Proof. Suppose (I) holds. Then by using generalized 𝐶-
strongly pseudomonotone of 𝑓 and 𝑇, (II) follows.

Conversely, assume that (II) holds; that is,

𝑓 (𝑦, 𝑥) + ⟨V, 𝑥 − 𝑦⟩ ⊆ −𝐶, ∀𝑦 ∈ 𝐾. (11)

For any 𝑦 ∈ 𝐾, set 𝑦
𝜆
= 𝜆𝑦+(1−𝜆)𝑥, for 𝜆 ∈ [0, 1]. Obviously

𝑦
𝜆
∈ 𝐾, and there exists V󸀠 ∈ 𝑇(𝑦

𝜆
) such that

𝑓 (𝑦
𝜆
, 𝑥) + ⟨V󸀠, 𝑥 − 𝑦

𝜆
⟩ ⊆ −𝐶. (12)

Since 𝑓 is 𝐶-convex in the second argument and 0 ∈ 𝑓(𝑥, 𝑥),
using (12) we have

0 ∈ 𝑓 (𝑦
𝜆
, 𝑦
𝜆
) + (1 − 𝜆) ⟨V󸀠, 𝑦𝜆 − 𝑦𝜆⟩

⊆ 𝜆𝑓 (𝑦
𝜆
, 𝑦) + (1 − 𝜆) 𝑓 (𝑦𝜆, 𝑥) + (1 − 𝜆) ⟨V

󸀠
, 𝑥 − 𝑦

𝜆
⟩

+ (1 − 𝜆) ⟨V󸀠, 𝑦𝜆 − 𝑥⟩ − 𝐶

= 𝜆𝑓 (𝑦
𝜆
, 𝑦) + 𝜆 (1 − 𝜆) ⟨V󸀠, 𝑦 − 𝑥⟩

+ (1 − 𝜆) {𝑓 (𝑦𝜆, 𝑥) + ⟨V
󸀠
, 𝑥 − 𝑦

𝜆
⟩} − 𝐶

⊆ 𝜆𝑓 (𝑦
𝜆
, 𝑦) + 𝜆 (1 − 𝜆) ⟨V󸀠, 𝑦 − 𝑥⟩ + (1 − 𝜆) (−𝐶) − 𝐶

⊆ 𝜆𝑓 (𝑦
𝜆
, 𝑦) + 𝜆 (1 − 𝜆) ⟨V󸀠, 𝑦 − 𝑥⟩ − 𝐶,

(13)

which implies that

𝜆𝑓 (𝑦
𝜆
, 𝑦) + 𝜆 (1 − 𝜆) ⟨V󸀠, 𝑦 − 𝑥⟩ ⊆ 𝐶. (14)

As 𝐶 is a convex cone, we get from (14)

𝑓 (𝑦
𝜆
, 𝑦) + (1 − 𝜆) ⟨V󸀠, 𝑦 − 𝑥⟩ ⊆ 𝐶. (15)

Since 𝑓 is generalized hemicontinuous in the first argument
and 𝑇 is generalized hemicontinuous, therefore we have for
𝜆 → 0

+

𝑓 (𝑥, 𝑦) + ⟨𝑢, 𝑦 − 𝑥⟩ ⊆ 𝐶, 𝑢 ∈ 𝑇 (𝑥) . (16)

Therefore, we get 𝑥 ∈ 𝐾, 𝑢 ∈ 𝑇(𝑥) such that

𝑓 (𝑥, 𝑦) + ⟨𝑢, 𝑦 − 𝑥⟩ ̸⊆ −𝐶 \ {0} , ∀𝑦 ∈ 𝐾, (17)

and hence (I) follows.

Proof of Theorem 10. Consider the multivalued mappings
𝑀,𝑁 : 𝐾 → 2

𝐾 for any 𝑥 ∈ 𝐾 as follows:

𝑀(𝑥) = {𝑦 ∈ 𝐾 : 𝑓 (𝑦, 𝑥) + ⟨V, 𝑥 − 𝑦⟩ ̸⊆ −𝐶} ,

V ∈ 𝑇 (𝑦) ;

𝑁 (𝑥) = {𝑦 ∈ 𝐾 : 𝑓 (𝑥, 𝑦) + ⟨𝑢, 𝑦 − 𝑥⟩ ⊆ −𝐶 \ {0}}

𝑢 ∈ 𝑇 (𝑥) .

(18)

Clearly, 𝑀(𝑥) and 𝑁(𝑥) are nonempty sets as 𝑦 ∈ 𝐾. By
the generalized𝐶-strong pseudomonotonicity of𝑓 and𝑇, we
have𝑀(𝑥) ⊆ 𝑁(𝑥).

We claim that 𝑁(𝑥) is convex. Indeed, letting 𝑦
1
, 𝑦
2
∈

𝑁(𝑥), then we have

𝑓 (𝑥, 𝑦
𝑖
) + ⟨𝑢, 𝑦

𝑖
− 𝑥⟩ ⊆ −𝐶 \ {0} ; 𝑖 = 1, 2. (19)

Since 𝑓 is 𝐶-convex in the second argument, therefore, for
any 𝜆 ∈ [0, 1], we have

𝑓 (𝑥, 𝜆𝑦
1
+ (1 − 𝜆) 𝑦2) + ⟨𝑢, 𝜆𝑦1 + (1 − 𝜆) 𝑦2 − 𝑥⟩

= 𝑓 (𝑥, 𝜆𝑦
1
+ (1 − 𝜆) 𝑦2)

+ ⟨𝑢, 𝜆𝑦
1
+ (1 − 𝜆) 𝑦2 − 𝜆𝑥 − (1 − 𝜆) 𝑥⟩

⊆ 𝜆𝑓 (𝑥, 𝑦
1
) + (1 − 𝜆) 𝑓 (𝑥, 𝑦2) + 𝜆 ⟨𝑢, 𝑦1 − 𝑥⟩

+ (1 − 𝜆) ⟨𝑢, 𝑦2 − 𝑥⟩ − 𝐶

= 𝜆 {𝑓 (𝑥, 𝑦
1
) + ⟨𝑢, 𝑦

1
− 𝑥⟩}

+ (1 − 𝜆) {𝑓 (𝑥, 𝑦2) + ⟨𝑢, 𝑦2 − 𝑥⟩} − 𝐶

⊆ (−𝐶 \ {0}) − 𝐶

= −𝐶 \ {0} .

(20)

This implies that 𝜆𝑦
1
+ (1 − 𝜆)𝑦

2
∈ 𝑁(𝑥), and hence𝑁(𝑥) is

convex.
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By definition of 𝑁, we see that 𝑁 has no fixed point.
Indeed, suppose that there exists an 𝑥 ∈ 𝐾 such that 𝑥 ∈

𝑁(𝑥). Thus, we have

𝑓 (𝑥, 𝑥) + ⟨𝑢, 𝑥 − 𝑥⟩ = 𝑓 (𝑥, 𝑥) ⊆ −𝐶 \ {0} , (21)

which is a contradiction to hypothesis (i).
Next, we show that𝑀−1(𝑦) is open in 𝐾. For any 𝑦 ∈ 𝐾,

we denote the complement of𝑀−1(𝑦) by

[𝑀
−1
(𝑦)]
𝑐

= {𝑥 ∈ 𝐾 : 𝑓 (𝑦, 𝑥) + ⟨V, 𝑥 − 𝑦⟩ ⊆ −𝐶} ,

V ∈ 𝑇 (𝑦) .
(22)

Let {𝑥
𝛼
} be a net in [𝑀−1(𝑦)]𝑐 such that 𝑥

𝛼
→ 𝑥 ∈ 𝐾. Then

𝑓 (𝑦, 𝑥
𝛼
) + ⟨V, 𝑥

𝛼
− 𝑦⟩ ⊆ −𝐶. (23)

Since 𝑓 is lower semicontinuous and ⟨⋅, ⋅⟩ is continuous, we
get

𝑓 (𝑦, 𝑥
𝛼
) + ⟨V, 𝑥

𝛼
− 𝑦⟩ 󳨀→ 𝑓 (𝑦, 𝑥) + ⟨V, 𝑥 − 𝑦⟩ . (24)

Since (−𝐶)𝑐 is open, then there exists 𝛼
0
such that, for all 𝛼 ≥

𝛼
0
,

{𝑓 (𝑦, 𝑥
𝛼
) + ⟨V, 𝑥

𝛼
− 𝑦⟩} ∩ (−𝐶)

𝑐
̸= 0, (25)

which contradicts (23). Hence 𝑓(𝑦, 𝑥) + ⟨V, 𝑥 − 𝑦⟩ ⊆ −𝐶, for
V ∈ 𝑇(𝑦) and therefore 𝑥 ∈ [𝑀

−1
(𝑦)]
𝑐. Thus [𝑀−1(𝑦)]𝑐 is

closed and accordingly𝑀−1(𝑦) is open.
From the contrapositive of generalized Fan-Browder

fixed point theorem and Lemma 6, we have

𝐾 ̸⊆ ⋃

𝑦∈𝐾

𝑀
−1
(𝑦) . (26)

Hence, there exists 𝑥
0
∈ 𝐾 such that 𝑀(𝑥

0
) = 0 which

contradicts the fact that𝑀(𝑥) is nonempty and hence

𝑓 (𝑦, 𝑥
0
) + ⟨V, 𝑥

0
− 𝑦⟩ ⊆ −𝐶, V ∈ 𝑇 (𝑦) , ∀𝑦 ∈ 𝐾.

(27)

By applying Lemma 11, we get that there exists 𝑥
0
∈ 𝐾, 𝑢 ∈

𝑇(𝑥
0
) such that

𝑓 (𝑥
0
, 𝑦) + ⟨𝑢, 𝑦 − 𝑥

0
⟩ ̸⊆ −𝐶 \ {0} , ∀𝑦 ∈ 𝐾. (28)

This completes the proof.

Example 12. Let 𝑋 = 𝑌 = R, 𝐾 = [0, 1], and 𝐶 = {𝑥 ∈ R :

𝑥 ≥ 0}. Define 𝑓 : 𝐾 × 𝐾 → 2
𝑌 by

𝑓 (𝑥, 𝑦) = [0, 𝑥 − 𝑦] , ∀𝑥, 𝑦 ∈ 𝐾. (29)

Also 𝑇 : 𝐾 → 2
𝐿(𝑋,𝑌) is given by

𝑇 (𝑥) = [−𝑥, 0] , ∀𝑥 ∈ 𝐾. (30)

We see that𝑓 is generalized𝐶-strongly pseudomonotone.
Indeed, suppose that 𝑓(𝑥, 𝑦) ̸⊆ −𝐶 \ {0}. Therefore, [0, 𝑥 −
𝑦] ̸⊆ −𝐶 \ {0}, which implies that 𝑥 ≥ 𝑦. It follows that
𝑓(𝑦, 𝑥) = [0, 𝑦−𝑥] ⊆ −𝐶. Hence, 𝑓 is generalized𝐶-strongly
pseudomonotone.

Similarly, to show that 𝑇 is generalized 𝐶-strongly pseu-
domonotone, assume that ⟨𝑇(𝑥), 𝑦 − 𝑥⟩ = [−𝑥, 0](𝑦 − 𝑥) =

[𝑥(𝑥 − 𝑦), 0] ̸⊆ −𝐶 \ {0}, which implies that 𝑥 ≥ 𝑦. It follows
that ⟨𝑇(𝑦), 𝑥 − 𝑦⟩ = [−𝑦, 0](𝑥 − 𝑦) = [𝑦(𝑦 − 𝑥), 0] ⊆ −𝐶.
Therefore, 𝑇 is generalized 𝐶-strongly pseudomonotone.

Let 𝑥, 𝑦
1
, 𝑦
2
∈ 𝐾 and 0 ≤ 𝛼 ≤ 1. Then, we see that

𝑓 (𝑥, 𝛼𝑦
1
+ (1 − 𝛼) 𝑦2)

= [0, 𝑥 − (𝛼𝑦
1
+ (1 − 𝛼) 𝑦2)]

= [0, 𝛼 (𝑥 − 𝑦
1
) + (1 − 𝛼) (𝑥 − 𝑦2)] − 0

⊆ [0, 𝛼 (𝑥 − 𝑦
1
) + (1 − 𝛼) (𝑥 − 𝑦2)] − 𝐶

= 𝛼 [0, 𝑥 − 𝑦
1
] + (1 − 𝛼) [0, 𝑥 − 𝑦2] − 𝐶

= 𝛼𝑓 (𝑥, 𝑦
1
) + (1 − 𝛼) 𝑓 (𝑥, 𝑦2) − 𝐶.

(31)

So, 𝑓 is 𝐶-convex in the second argument.
It is clear that 𝑥 = 1 is a solution of strong mixed vector

equilibrium problem (1) as 𝑓(𝑥, 𝑦) + ⟨𝑇(𝑥), 𝑦 − 𝑥⟩ = [0, 1 −

𝑦] + [0, 𝑦 − 1] ̸⊆ −𝐶 \ {0}.
The following lemma is an extension of Proposition 3.3

[11] related to the core of a set for multivalued mappings.

Lemma 13. Let 𝐾 and 𝐷 be the convex subsets of 𝑋 with 𝐷 ⊂

𝐾. Let 𝜙 : 𝐾 → 2
𝑌 be 𝐶-convex, 𝑥

0
∈ 𝑐𝑜𝑟𝑒

𝐾
𝐷; 𝜙(𝑥

0
) ⊆ −𝐶,

and 𝜙(𝑦) ⊆ 𝐶, for all 𝑦 ∈ 𝐷. Then, 𝜙(𝑦) ⊆ 𝐶, for all 𝑦 ∈ 𝐾.

Proof. On the contrary, suppose that 𝜙(𝑦) ̸⊆ 𝐶, for some 𝑦 ∈
𝐾 \ 𝐷. Then, there is 𝑤 ∈ 𝜙(𝑦) such that 𝑤 ∉ 𝐶.

Since 𝜙(𝑥
0
) ⊆ −𝐶, then there exists 𝑢 ∈ 𝜙(𝑥

0
) such that

𝑢 ∈ −𝐶.
Suppose 𝜂 = 𝜆𝑥

0
+(1−𝜆)𝑦, for𝜆 ∈ (0, 1).Then 𝜂 ∈ (𝑥

0
, 𝑦).

By using 𝐶-convexity of 𝜙, we have

𝜆𝜙 (𝑥
0
) + (1 − 𝜆) 𝜙 (𝑦) − 𝜙 (𝜆𝑥0 + (1 − 𝜆) 𝑦) ⊆ 𝐶

󳨐⇒ 𝜆𝜙 (𝑥
0
) + (1 − 𝜆) 𝜙 (𝑦) − 𝜙 (𝜂) ⊆ 𝐶.

(32)

Then, there exists V ∈ 𝜙(𝜂) such that, for some 𝑐 ∈ 𝐶, we have

V = 𝜆𝑢 + (1 − 𝜆)𝑤 − 𝑐

∈ −𝐶 + (−𝐶) − 𝐶 = −𝐶.

(33)

Therefore,

𝜙 (𝜂) ⊆ −𝐶. (34)

Since 𝑥
0
∈ core

𝐾
𝐷, so we have a point 𝑧 ∈ 𝐷 ∩ (𝑥

0
, 𝑦). By

(34), we have 𝜙(𝑧) ⊆ −𝐶, a contradiction to the hypothesis.
Thus, 𝜙(𝑦) ⊆ 𝐶, for all 𝑦 ∈ 𝐾.

Theorem 14. Let 𝐾 be a nonempty convex subset of 𝑋 and 𝐶
a closed convex pointed cone in 𝑌. Let 𝑓 : 𝐾 × 𝐾 → 2

𝑌 and
𝑇 : 𝐾 → 2

𝐿(𝑋,𝑌) be the mappings satisfying the conditions
which are the same as inTheorem 10. In addition, suppose that
the following condition holds: there exists a nonempty convex
compact subset 𝐷 of 𝐾 such that for 𝑥 ∈ 𝐷 \ 𝑐𝑜𝑟𝑒

𝐾
𝐷 and 𝑧 ∈

𝑐𝑜𝑟𝑒
𝐾
𝐷,

𝑓 (𝑥, 𝑧) + ⟨𝑢, 𝑧 − 𝑥⟩ ⊆ −𝐶; 𝑢 ∈ 𝑇 (𝑥) . (35)
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Then, there exists a point 𝑥 ∈ 𝐷 such that, for all 𝑦 ∈ 𝐾,

𝑓 (𝑥, 𝑦) + ⟨𝑢, 𝑦 − 𝑥⟩ ̸⊆ −𝐶 \ {0} ; 𝑢 ∈ 𝑇 (𝑥) . (36)

Proof. By Theorem 10, it follows that there exists 𝑥 ∈ 𝐷, 𝑢 ∈

𝑇(𝑥) such that

𝑓 (𝑥, 𝑦) + ⟨𝑢, 𝑦 − 𝑥⟩ ̸⊆ −𝐶 \ {0} , ∀𝑦 ∈ 𝐷. (37)

Set 𝜙(𝑦) = 𝑓(𝑥, 𝑦) + ⟨𝑢, 𝑦 − 𝑥⟩. Then 𝜙(𝑦) is 𝐶-convex and
𝜙(𝑦) ⊆ 𝐶, for all 𝑦 ∈ 𝐷.

If 𝑥 ∈ core
𝐾
𝐷, then choose 𝑥

0
= 𝑥. If 𝑥 ∈ 𝐷 \ core

𝐾
𝐷,

then choose 𝑥
0
= 𝑧, where 𝑧 is the same as in the hypothesis.

In both cases, 𝑥
0
∈ core

𝐾
𝐷 and 𝜙(𝑥

0
) ⊆ −𝐶. Hence by

Lemma 13, it follows that 𝜙(𝑦) ⊆ 𝐶, for all 𝑦 ∈ 𝐾, which
implies that

𝑓 (𝑥, 𝑦) + ⟨𝑢, 𝑦 − 𝑥⟩ ⊆ 𝐶, 𝑦 ∈ 𝐾. (38)

Thus, there exists at least one 𝑥 ∈ 𝐷 and 𝑢 ∈ 𝑇(𝑥) such that

𝑓 (𝑥, 𝑦) + ⟨𝑢, 𝑦 − 𝑥⟩ ̸⊆ −𝐶 \ {0} , ∀𝑦 ∈ 𝐾. (39)

This completes the proof.

Now, we prove the existence results for strong mixed vec-
tor equilibrium problem for multivalued mappings without
monotonicity.

Theorem 15. Let 𝐾 be a nonempty compact convex subset of
𝑋. Let 𝑓 : 𝐾 × 𝐾 → 2

𝑌 and 𝑇 : 𝐾 → 2
𝐿(𝑋,𝑌) be the

mappings such that 𝑓 is 𝐶-convex in the second argument and
0 ∈ 𝑓(𝑥, 𝑥). Assume that, for each 𝑦 ∈ 𝐾, the set {𝑥 ∈ 𝐾 :

𝑓(𝑥, 𝑦) + ⟨𝑢, 𝑦 − 𝑥⟩ ⊆ −𝐶 \ {0}, 𝑢 ∈ 𝑇(𝑥)} is open. Then the
strong mixed vector equilibrium problem (1) has a solution.

Proof. Using the same assertions in Kum and Wong [9], one
can easily prove this theorem.

Theorem 16. Let𝐾 be a nonempty convex subset of𝑋. Let 𝑓 :
𝐾 ×𝐾 → 2

𝑌 and 𝑇 : 𝐾 → 2
𝐿(𝑋,𝑌) be the mappings such that

𝑓 is 𝐶-convex in the second argument and 0 ∈ 𝑓(𝑥, 𝑥). Also,
assume that

(i) 𝐾 is locally compact and there is an 𝛾 > 0 and 𝑥
0
∈

𝐾, ‖𝑥
0
‖ < 𝛾 such that, for all 𝑦 ∈ 𝐾, ‖𝑦‖ = 𝛾, and

𝑓(𝑦, 𝑥
0
) + ⟨V, 𝑥

0
− 𝑦⟩ ⊆ −𝐶, for V ∈ 𝑇(𝑦);

(ii) for each 𝑦 ∈ 𝐾, the set {𝑥 ∈ 𝐾 : 𝑓(𝑥, 𝑦) + ⟨𝑢, 𝑦 − 𝑥⟩ ⊆

−𝐶 \ {0}, 𝑢 ∈ 𝑇(𝑥)} is open.

Then, there exists 𝑥 ∈ 𝐾, 𝑢 ∈ 𝑇(𝑥) such that

𝑓 (𝑥, 𝑦) + ⟨𝑢, 𝑦 − 𝑥⟩ ̸⊆ −𝐶 \ {0} , ∀𝑦 ∈ 𝐾. (40)

Proof. Let𝐾
𝛾
= {𝑥 ∈ 𝐾 : ‖𝑥‖ ≤ 𝛾}. Since𝐾 is locally compact,

therefore𝐾
𝛾
is compact. By applyingTheorem 10, we can see

that there exists 𝑥 ∈ 𝐾
𝛾
and 𝑢 ∈ 𝑇(𝑥) such that

𝑓 (𝑥, 𝑦) + ⟨𝑢, 𝑦 − 𝑥⟩ ̸⊆ −𝐶 \ {0} , ∀𝑦 ∈ 𝐾. (41)

To show that 𝑥 is the solution of problem (41), consider the
following two cases.

(I) If ‖𝑥‖ = 𝛾, then, by assumption (i), we have, for 𝑢 ∈

𝑇(𝑥),

𝑓 (𝑥, 𝑥
0
) + ⟨𝑢, 𝑥

0
− 𝑥⟩ ⊆ −𝐶. (42)

Now, for any 𝑦 ∈ 𝐾, set 𝑦
𝜆
= 𝜆𝑦 + (1 − 𝜆)𝑥

0
, for

𝜆 ∈ [0, 1]. Obviously, 𝑦
𝜆
∈ 𝐾
𝛾
and it follows that for

𝑢 ∈ 𝑇(𝑥)

𝑓 (𝑥, 𝑦
𝜆
) + ⟨𝑢, 𝑦

𝜆
− 𝑥⟩ ̸⊆ −𝐶 \ {0} . (43)

Since 𝑓 is 𝐶-convex in the second argument, we have

𝑓 (𝑥, 𝑦
𝜆
) + ⟨𝑢, 𝑦

𝜆
− 𝑥⟩

= 𝑓 (𝑥, 𝜆𝑦 + (1 − 𝜆) 𝑥0)

+ ⟨𝑢, 𝜆𝑦 + (1 − 𝜆) 𝑥0 − 𝜆𝑥 − (1 − 𝜆) 𝑥⟩

⊆ 𝜆 {𝑓 (𝑥, 𝑦) + ⟨𝑢, 𝑦 − 𝑥⟩}

+ (1 − 𝜆) {𝑓 (𝑥, 𝑥0) + ⟨𝑢, 𝑥0 − 𝑥⟩} − 𝐶.

(44)

Therefore, using (42) we conclude that

𝜆 {𝑓 (𝑥, 𝑦) + ⟨𝑢, 𝑦 − 𝑥⟩}

⊆ [𝑌 \ (−𝐶 \ {0})] + (1 − 𝜆) 𝐶 + 𝐶

⊆ 𝑌 \ (−𝐶 \ {0}) ,

(45)

which implies that

𝑓 (𝑥, 𝑦) + ⟨𝑢, 𝑦 − 𝑥⟩ ̸⊆ −𝐶 \ {0} , ∀𝑦 ∈ 𝐾. (46)

(II) If ‖𝑥‖ < 𝛾, then, for any 𝑦 ∈ 𝐾, set 𝑦
𝜆
= 𝜆𝑦+ (1−𝜆)𝑥,

for 𝜆 ∈ [0, 1]. Clearly, 𝑦
𝜆
∈ 𝐾
𝛾
and it follows that for

𝑢 ∈ 𝑇(𝑥)

𝑓 (𝑥, 𝑦
𝜆
) + ⟨𝑢, 𝑦

𝜆
− 𝑥⟩ ̸⊆ −𝐶 \ {0} . (47)

Using 𝐶-convexity of 𝑓 in the second argument and
0 ∈ 𝑓(𝑥, 𝑥), we have

𝑓 (𝑥, 𝑦
𝜆
) + ⟨𝑢, 𝑦

𝜆
− 𝑥⟩

⊆ 𝜆𝑓 (𝑥, 𝑦) + (1 − 𝜆) 𝑓 (𝑥, 𝑥) + 𝜆 ⟨𝑢, 𝑦 − 𝑥⟩ − 𝐶

⊆ 𝜆 {𝑓 (𝑥, 𝑦) + ⟨𝑢, 𝑦 − 𝑥⟩} − 𝐶,

(48)

which implies that, for 𝑢 ∈ 𝑇(𝑥), we have

𝑓 (𝑥, 𝑦) + ⟨𝑢, 𝑦 − 𝑥⟩ ̸⊆ −𝐶 \ {0} , ∀𝑦 ∈ 𝐾. (49)

This completes the proof.
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