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This study proposes a class of super-twisting-algorithm-based (STA-based) terminal sliding mode control (TSMC) for a bioreactor
system with second-order type dynamics. TSMC not only can retain the advantages of conventional sliding mode control (CSMC),
including easy implementation, robustness to disturbances, and fast response, but also can make the system states converge to the
equivalent point in a finite amount of time after the system states intersect the sliding surface.The chattering phenomena in TSMC
will originally exist on the sliding surface after the system states achieve the sliding surface and before the system states reach the
equivalent point. However, by using the super twisting algorithm (STA), the chattering phenomena can be obviously reduced. The
proposedmethod is also comparedwith two othermethods: (1) CSMCwithout STA and (2) TSMCwithout STA. Finally, the control
schemes are applied to the control of a bioreactor system to illustrate the effectiveness and applicability. Simulation results show
that it can achieve better performance by using the proposed method.

1. Introduction

It is known that nonlinearities exist almost everywhere in
the real-world control systems. If the dynamical behavior
is dominated by nonlinear phenomenon, it is in general
inadequate to deal with this class of control systems simply by
linear control schemes.Therefore, many studies on nonlinear
systems and control have been discussed bymany researchers
[1–26]. The conventional sliding mode control (CSMC)
scheme is known to be an effective robust nonlinear control
approach for systems with uncertainties and/or disturbances.
It hasmany advantages such as fast response, small sensitivity
to system uncertainties and/or disturbances from the envi-
ronment, and being easily designed. Based on these reasons,
the CSMCapproach has been popularly applied to a variety of
control issues [1–3, 27–39]. The design of CSMC is known to
consist of two main steps. The first step is to select an
appropriate slidingmanifold (or sliding surface).The selected
surface should be an invariant manifold and therefore the
desired control performance will be achieved if the system
state remains on the sliding surface. The second step is the

organization of a suitable control law, which forces the system
state to reach the sliding surface in a finite amount of time and
to make the sliding surface an invariant manifold.

The CSMC design usually adopts linear sliding man-
ifold which can only guarantee system states to converge
asymptotically. In other words, CSMC with linear sliding
manifold cannot provide system states with finite-time con-
vergence property. The concept of terminal sliding mode
control (TSMC) was first proposed by Zak [40] and then
has been studied by many other researchers [40–54]. It
was mainly developed to achieve finite-time convergence of
system dynamics on the nonlinear sliding surface. By suitably
designing the parameter matrices of the TSMC, the system
states can reach the control objective point on the sliding
surface in finite time and then the closed loop system will
be infinitely stable. Therefore, TSMC not only can preserve
the advantages of CSMC, but also can make system states
converge to the desired point in a finite amount of time.

Although the TSMC design can be used to solve the only
“asymptotic tracking” feature in conventional sliding mode
control design (CSMC), the TSMC inevitably experiences
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the “chattering effect” which is an undesired phenomenon in
both CSMC andTSMCbecause the phenomenonmay lead to
exciting neglected resonant modes and low control accuracy.
In 1993, the so-called super twisting algorithm (STA) was
proposed by Professor Levant [55]. Moreno and Osorio
discussed the strict Lyapunov functions for the super twisting
algorithm [56]. It is a second-order sliding mode algorithm
for solving chattering phenomenon. In this study, we will
employ the TSMC incorporated with the STA to design
the control law. This hybrid method not only can achieve
tracking performance in a finite amount of time but also
can reduce the chattering phenomenon in original TSMC
design. Finally, the control schemes will be applied to the
control of a bioreactor system to illustrate the effectiveness
and applicability.

Here, the concept of a bioreactor is simply reviewed
from [57–60]. A bioreactor means a device system where the
biochemical reactions can proceed in vitro. It can be relatively
simple when they own few variables. However, it is still very
difficult to control due to strong nonlinearities which are
difficult to accuratelymodel. In its simplest form, a bioreactor
is simply a tank containing water and cells (e.g., yeast or
bacteria) which consume nutrients (substrate) and produce
products (both desired and undesired). It can also be quite
complex since cells are self-regulatory mechanisms which
can adjust their growth rates and production of different
products radically depending on temperature and concentra-
tions of waste product (e.g., alcohol). Systems with heating
or cooling, multiple reactors, or unsteady operation greatly
complicate analysis. For a benchmark, however, a relatively
simple systemwill be better to deal with the control issue. For
more details, the reader can refer to [57–60].

The rest of this paper is organized as follows. Section 2
states the problem formulation and the main goal of this
paper. It is followed by the description of the controllers
design, including CSMC, TSMC, and STA-based TSMC. In
Section 4, the obtained analytical results are applied to a
bioreactor system. Finally, Section 5 gives the conclusions.

2. Problem Formulation

In this study, we mainly focus on the control issue of a class
of bioractor systems with second-order dynamics. One of the
simplest versions of the bioreactor problems is a continuous
flow stirred tank reactor (CFSTR) in which cell growth
depends only on the nutrient being fed to the system. The
target value to be controlled is the cell mass. The normalized
dynamic model of the bioreactor system can be written as
[57–60]
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inwhich 𝑐
1
(𝑡) denotes the normalized cell concentration, 𝑐

2
(𝑡)

represents the normalized amount of nutrient per unit vol-
ume, 𝛽 and 𝛾 denote the growth rate and nutrient inhibition
parameters, respectively, and 𝑢(𝑡) is the normalized flow rate
(control input).

This system is difficult to control for several reasons. (1)
The uncontrolled equations are highly nonlinear and exhibit
limit cycles. (2) Optimal behavior occurs in or near an unsta-
ble region. (3)Theproblemexhibitsmultiplicity: twodifferent
values of the control parameters, that is, flow rate, can
lead to the same desired set point in cell mass yield.

From [57–60], we know that the normalized 𝑐
1
(𝑡), 𝑐
2
(𝑡),

and 𝑢(𝑡) satisfy the conditions given as follows:
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The main control objective is to organize a sliding mode
control law for 𝑢(𝑡) so that the normalized 𝑐
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[60] as follows, such that the bioreactor system (1) can be
represented in a regular form:
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Under the transformation (3)–(5), the bioreactor system (1)
can be rewritten in the regular form of a nonlinear system
[3]:
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Clearly, if condition (2) is satisfied, then 𝑔 given in (8) is
bounded away from zero [60]. That is, 1/𝑔 exists.

3. Controllers Design

In this section, we design three types of controllers for
the bioreactor systems and consider the finite-time control
scheme to improve the performance.

3.1. Design of Conventional Sliding Mode Controller. Accord-
ing to the control goal stated in Section 2, let 𝑐
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and 𝑐
2𝑑
be the

desired constant values of 𝑐
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2
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as follows:
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Hence, the tracking performance (i.e., 𝑐
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infinity.This fact was proven in paper [60]. Here, the result is
recalled in the following lemma.
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In the following, a conventional sliding mode control
(CSMC) law will be designed to perform tracking control
objective. According to the standard design procedure of
sliding mode control, we introduce the sliding manifold 𝑠 ∈
R = 0, where

𝑠 = ̇𝑒
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To achieve the so-called reachability condition [27] of sliding
mode control, we design the sliding mode control law to be
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The main results of the design are summarized in the
following theorem.

Theorem 2. Consider the normalized dynamic model of the
bioreactor system (1), which is equal to system (6); the sliding

mode control law (12) can achieve the tracking performance for
the system (1); that is, 𝑐
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to infinity.
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Consider a Lyapunov function candidate 𝑉 = (1/2)𝑠

2 for
𝑠 and substitute 𝑢 given in (12) into (13). Then the time
derivative of 𝑉 along the trajectory of system (6) is

̇

𝑉 = 𝑠 ̇𝑠 = −𝜂𝑠 ⋅ sign (𝑠) = −𝜂 ⋅ |𝑠| . (14)

That is, the so-called reachability condition [27] is satisfied.
Thus, the sliding mode 𝑠 = 0 can be achieved in a finite
amount of time. When the system (6) is under sliding mode,
it follows from (11) that ̇𝑒

1
= −𝑚𝑒

1
, which implies that 𝑒

1
(𝑡)

converges to zero as time 𝑡 tends to infinity, and then ̇𝑒
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approaches zero as time 𝑡 tends to infinity. Finally, according
to the result given in Lemma 1, the proof is completed.

3.2. Design of Terminal Sliding Mode Controller. In the
former subsection, we have completed the design of con-
ventional sliding mode control (CSMC) for the normalized
dynamic model of the bioreactor system so that the tracking
performance is performed. However, the tracking mission
is actually achieved in the sense of “asymptotic” rather
than in the sense of “finite-time achievement.” To solve
this “asymptotic tracking” problem in the traditional sliding
mode design, in this subsection, we use the so-called terminal
sliding mode control (TSMC) technique to organize the con-
trol law, so that the tracking performance can be achieved in
a finite amount of time rather than in the sense of asymptotic
tracking.

Consider the same normalized dynamic model (1) as
given in the former subsection; for simplicity, we start our
design from considering the system (6). According to the
standard design procedure of terminal sliding mode, we
introduce the sliding manifold

𝑠 = 𝑘(𝑒
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where 𝑠 ∈ R, and 𝑞, 𝑝 are positive odd integers satisfying the
condition 𝑞

1
< 𝑞

2
[41, 47]. To achieve the so-called reacha-

bility condition [27] of (terminal) sliding mode control, we
design the sliding mode control law to be
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The main results of the design are summarized in the
following theorem.

Theorem 3. Consider the normalized dynamic model of the
bioreactor system (1), which is equal to system (6).The terminal
sliding mode control law (16) can achieve the tracking perfor-
mance in a finite amount of time for the system (1); that is,
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and substituting 𝑢 given in (16) into (17), it follows that the
time derivative of 𝑉 along the trajectory of system (6) is
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That is, the so-called reachability condition [27] is satisfied.
Thus, the sliding mode 𝑠 = 0 can be achieved in a finite
amount of time. When the system (6) is under sliding mode
(i.e., after 𝑡 ≥ 𝑡reach), it follows from (15) that ̇𝑒
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Lemma 1, the proof is completed.

3.3. Design of Super-Twisting-Algorithm-Based Terminal Slid-
ing Mode Controller. Although the terminal sliding control
design can be used to solve the only “asymptotic tracking”
feature in traditional sliding mode control design, the termi-
nal sliding control design inevitably which has undergone the
“chattering effect”which is an undesired phenomenon in slid-
ingmode design becausemight lead to exciting neglected res-
onant modes and low control accuracy. In 1993, the so-called
super twisting algorithm was proposed by Professor Levant
[55]. This is a popular second-order sliding mode algo-
rithm for solving chattering phenomenon in sliding mode
design. In this subsection, wewill employ the terminal sliding

mode technique with super twisting algorithm to design the
control law for a bioreactor system.The tracking performance
can be achieved in a finite amount of time. Moreover, the
chattering phenomena in the original terminal sliding mode
design can also be reduced.

Consider the same normalized dynamic model (1) as
given in Section 2. For simplicity, we start our design from
considering the system (6). As the design of terminal sliding
mode, we introduce the sliding manifold
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Note that the control law (20)-(21) is continuous which is
different from the original terminal sliding mode control (or
traditional sliding mode control). Before we start to investi-
gate the effectiveness of the proposed control law, it can be
seen that the time derivative of sliding variable is

̇𝑠 = 𝑓

𝑐
(𝑐

1
, 𝑐

2
) + 𝑔

𝑐
(𝑐

1
, 𝑐

2
) 𝑢 + 𝑘(𝑒

1
)

(𝑞−𝑝)/𝑝

× (1 − 𝑐

2
(𝑡)) (1 −

𝑐

1
(𝑡)

𝑐

2
(𝑡)

𝑝) 𝑒

𝑐
2
(𝑡)/𝛾

.

(22)

Substituting control law (20)-(21) into (22), we then have

̇𝑠 = −𝑘

1
⋅ |𝑠|

1/2
⋅ sign (𝑠) − ∫

𝑡

0

𝑘

2
⋅ sign (𝑠 (𝜏)) 𝑑𝜏. (23)

Let 𝜉 = −∫

𝑡

0
𝑘

2
⋅ sign(𝑠(𝜏))𝑑𝜏, and then (23) can be rewritten

as

̇𝑠 = −𝑘

1
⋅ |𝑠|

1/2
⋅ sign (𝑠) + 𝜉, (24)

̇

𝜉 = −𝑘

2
⋅ sign (𝑠) . (25)

Clearly, if the variables 𝑠 and 𝜉 in (24)-(25) converge to zero
at time 𝑡

𝑠
and keep zero after 𝑡 ≥ 𝑡

𝑠
, then it follows from (24)

that 𝑠(𝑡) = 0 and ̇𝑠(𝑡) = 0 for all 𝑡 ≥ 𝑡

𝑠
. That is, sliding mode

is achieved after 𝑡 ≥ 𝑡
𝑠
. Note that from (24) we can find that ̇𝑠

is continuous and the chattering is indeed reduced. Now we
have to show the convergence (to zero) of variables 𝑠 and 𝜉
in (24)-(25). Fortunately, the convergence of variables 𝑠 and 𝜉
was proven in [56]. The result stated in [56] is recalled in the
following lemma.

Lemma 4. Consider (24)-(25) and constant gains 𝑘
1
, 𝑘
2
. Then

the following statements are equivalent.
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(i) The origin 𝑥 = 0 of (24)-(25) is finite-time stable.
(ii) The constant gains are positive; that is, 𝑘

1
> 0, 𝑘

2
> 0.

(iii) The matrix

𝐴 = [

−

1

2

⋅ 𝑘

1

1

2

−𝑘

2
0

] (26)

is Hurwitz; that is, all its eigenvalues have negative real
parts.

(iv) For every symmetric and positive definite 𝑄 = 𝑄

𝑇
> 0,

the algebra Lyapunov equation (ALE)

𝐴

𝑇
𝑃 + 𝑃𝐴

𝑇
= −𝑄 (27)

has a unique symmetric and positive definite solution
𝑃 = 𝑃

𝑇
> 0, where 𝐴 is the matrix defined in (26). In

this case, the function 𝑉(𝑥) = 𝜁𝑇𝑃𝜁, where 𝜁 = (𝑠, 𝜉)

𝑇

is a global strict Lyapunov function for system (24)-
(25). Its time derivative is ̇

𝑉(𝑥) along the trajectories
of system (24)-(25) where 𝜎 is a constant depending on
the gains 𝑘

1
, 𝑘
2
and matrix 𝑄.

Proof. Refer to [56].

So far we know that the sliding mode can be achieved (in
a finite amount of time) if 𝑘

1
and 𝑘

2
of control law (20)-(21)

are chosen to be positive. The remainder is to investigate the
system response in the slidingmode. Since the sliding surface
(19) is designed to be the same as that of the original terminal
sliding mode design, as given in (15), thus when the sliding
mode is achieved, the performance of system (6) is the same
as that of system (6) under terminal slidingmode control (16).
The main results of this section are summarized in the
following theorem.

Theorem 5. Consider the normalized dynamic model of the
bioreactor system (1), which is equal to system (6). The super-
twisting-algorithm-based terminal sliding mode control law
(20)-(21) can achieve the tracking performance in a finite
amount of time for the system (1); that is, 𝑐

1
→ 𝑐

1𝑑
and

𝑐

2
→ c
2𝑑

as time 𝑡 ≤ 𝑡

𝑟
, where 𝑡

𝑟
= 𝑡

𝑟𝑒𝑎𝑐ℎ
+ (𝑝/𝑘(𝑝 − 𝑞)) ⋅

|𝑒

1
(𝑡

𝑟𝑒𝑎𝑐ℎ
)|

(𝑝−𝑞)/𝑝 and 𝑡
𝑟𝑒𝑎𝑐ℎ

> 0 is the time of achieving sliding
mode.

Proof. Refer to the former discussion, and the details are
omitted here.

4. Application to a Bioreactor System

To demonstrate the effectiveness of the proposed scheme in
the study, in this section, three control laws: conventional
sliding mode (labeled SMC), terminal sliding mode (labeled
TSMC), and super-twisting-algorithm-based terminal slid-
ingmode (labeled STA+TSMC) control laws, as given by (12),
(16), and (20)-(21), respectively, are employed for a bioreactor
system (1) to fulfill the tracking task.The relevant parameters
(𝛽 = 0.02 and 𝛾 = 0.48) of a bioreactor system can be
referred to in [60].The desired trajectories of normalized cell
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0.155

Time (s)
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c
1
(t

)
Figure 1: Time history of the 𝑐

1
(𝑡) for all three schemes.

concentration and normalized cell concentration are chosen
to be constant 𝑐

1𝑑
= 0.1207 and 𝑐

2𝑑
= 0.8801 [60]. The initial

condition is chosen to be (𝑐
1
(0), 𝑐

2
(0)) = (0.12, 0.75) which

is consistent with the requirement of lying within ±10% of
the desired point (𝑐

1𝑑
, 𝑐

2𝑑
). Besides, the control parameters of

three schemes are selected below. For SMC, the parameters
of sliding surface and control law are set to be 𝑚 = 1 and
𝜂 = 1, respectively; for TSMC, 𝑘 = 1, 𝑞

1
= 1, and 𝑞

2
= 1.5

are selected for parameters of corresponding sliding surface,
while the control gain is also chosen to be ] = 1; finally, the
control parameters of STA+TSMC are chosen as 𝑘

1
= 𝑘

2
= 1,

while the parameters of sliding surface of STA+TSMC are the
same as those of TSMC.

From Figures 1 and 2, we can find that the tracking
task is, as expected, achieved for all three schemes. In
addition, from Figure 3, it can be found that the sliding
mode behavior can also be fulfilled for these three schemes;
however, the chattering phenomena obviously appear in the
timing responses of control input and corresponding sliding
variables of bothCSMCandTSMC,which can be observed in
Figures 3, 4, and 6. In contrast to SMC and TSMC, the timing
responses of control input and sliding variable of STA+SMC
will be more smooth. This agrees with the main theoretical
conclusion of this study. Figure 6 shows the control input for
three different control schemes, respectively, and the compar-
ison among three different control schemes. Moreover, from
Figures 1 and 2, it can be observed that the convergent speed
(to the desired point (𝑐

1𝑑
, 𝑐

2𝑑
)) of STA+TSMC is more faster

than that of both SMC and TSMC, while the required maxi-
mum control magnitude of STA+TSMC is also smaller than
that required by SMC and TSMC. A reasonable explanation
is that since STA+TSMC does not undergo high-frequency
chattering on sliding variable, it only requires relatively
smaller control force than that required by SMC and TSMC
to keep the system in sliding mode. Moreover, relatively
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Figure 3: Time history of the sliding variable 𝑠(𝑡) for CSMC.

lower accuracy of system states of SMC and TSMC lying on
corresponding sliding surface compared with STA+TSMC
might lead to a relatively slower converge speed. It is worth
noting from Figure 5 that the sliding variable of STA+TSMC
is not directly reaching zero and raises the oscillation before it
converges to zero.This comes from the nature of the design of
super twisting algorithm that it only makes 𝑠 and ̇𝑠 converge
to zero eventually (with finite convergent time) rather than
require the distance |𝑠(𝑡)| to be a decreasing function. Finally,
from this simulation, it is concluded that the STA+TSMC
design not only can effectively reduce the harmful chattering
of SMC and TSMC designs but also can retain the benefits of
finite-time tracking achievement provided by TSMC design.

Remark 6. The computation complexity, concerning time
and/or space, is an important index for an algorithm [23].
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Figure 4: Time history of the sliding variable 𝑠(𝑡) for TSMC.
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Figure 5: Time history of the sliding variable 𝑠(𝑡) for all three
schemes.

The lower the complexity is, the more valuable the algorithm
will be. Due to the low computation complexity of the super
twisting algorithm, it can thus be successfully applied to
TSMC.

5. Conclusions

In this study, three types of nonlinear control schemes are
applied to the tracking design in a bioreactor system with
second-order type dynamics. The super-twisting-algorithm-
based (STA-based) terminal sliding mode control (TSMC) is
proposed. It not only can retain the advantages of conven-
tional sliding mode control (CSMC), including easy imple-
mentation, robustness to disturbances, and fast response, but
also can make the system states converge to the equivalent
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point in a finite amount of time after the system states
intersect the sliding surface. The chattering phenomena will
originally exist on the sliding surface after the system states
achieve the sliding surface and before the system states reach
the equivalent point. By using the super twisting algorithm
(STA), the harmful chattering phenomena can be indeed
reduced. The proposed method is also compared with two
other methods: (1) CSMC without STA and (2) TSMC with-
out STA.These control schemes are also applied to the control
of a bioreactor system. Simulation results show that it can
achieve better performance by using the proposed method.

In the future, the workmight be further extended consid-
ering the other algorithms and the other possible applications
with some conditions, such as networked-based environ-
ment, time delays, quantization, and data-driven schemes [4–
7, 10, 24].
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