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The nullity of a graph is themultiplicity of the eigenvalue zero in its spectrum. A signed graph is a graph with a sign attached to each
of its edges. In this paper, we apply the coefficient theorem on the characteristic polynomial of a signed graph and give two formulae
on the nullity of signed graphs with cut-points. As applications of the above results, we investigate the nullity of the bicyclic signed
graph Γ(∞(𝑝, 𝑞, 𝑙)), obtain the nullity set of unbalanced bicyclic signed graphs, and thus determine the nullity set of bicyclic signed
graphs.

1. Introduction

Let 𝐺 = (𝑉, 𝐸) be a simple graph with vertex set 𝑉 = 𝑉(𝐺) =
{V
1
, V
2
, . . . , V

𝑛
} and edge set 𝐸 = 𝐸(𝐺). The adjacency matrix

𝐴 = 𝐴(𝐺) = (𝑎
𝑖𝑗
)
𝑛×𝑛

of 𝐺 is defined as follows: 𝑎
𝑖𝑗
= 1 if there

exists an edge joining V
𝑖
and V

𝑗
, and 𝑎

𝑖𝑗
= 0 otherwise. The

nullity of a simple graph𝐺 is themultiplicity of the eigenvalue
zero in the spectrum of𝐴(𝐺), denoted by 𝜂(𝐺).The rank of𝐺
is referred to the rank of 𝐴(𝐺) and denoted by 𝑟(𝐺). Clearly,
𝜂(𝐺) + 𝑟(𝐺) = 𝑛 if 𝐺 has 𝑛 vertices.

A signed graph is a graph with a sign attached to each of
its edges. Formally, a signed graph Γ(𝐺) = (𝐺, 𝜎) consists of a
simple graph 𝐺 = (𝑉, 𝐸) which is regarded as its underlying
graph, and a mapping 𝜎 : 𝐸 → {+, −}, the edge labeling. To
avoid confusion, we also write 𝑉(Γ(𝐺)) instead of𝑉, 𝐸(Γ(𝐺))
instead of 𝐸, and 𝐸(Γ(𝐺)) = 𝐸𝜎.

The adjacencymatrix of Γ(𝐺) is𝐴(Γ(𝐺)) = (𝑎𝜎
𝑖𝑗
)with 𝑎𝜎

𝑖𝑗
=

𝜎(V
𝑖
V
𝑗
)𝑎
𝑖𝑗
, where (𝑎

𝑖𝑗
) is the adjacency matrix of the under-

lying graph 𝐺. In the case of 𝜎 = +, which is an all-positive
edge labeling,𝐴(𝐺, +) is exactly the classical adjacencymatrix
of 𝐺. So a simple graph is always assumed as a signed graph
with all edges positive.

The nullity of a signed graph Γ(𝐺) is defined as the mul-
tiplicity of the eigenvalue zero in the spectrum of 𝐴(Γ(𝐺)),
and is denoted by 𝜂(Γ(𝐺)). The rank of Γ(𝐺) is referred to the
rank of 𝐴(Γ(𝐺)), and denoted by 𝑟(Γ(𝐺)). Surely, 𝜂(Γ(𝐺)) +
𝑟(Γ(𝐺)) = 𝑛 if Γ(𝐺) has 𝑛 vertices.

Let Γ(𝐺) = (𝐺, 𝜎) be a signed graph and let Γ(𝐶) be
a signed cycle of Γ(𝐺). The sign of Γ(𝐶) is defined by
sgn(Γ(𝐶)) = ∏

𝑒∈Γ(𝐶)
𝜎(𝑒). The cycle Γ(𝐶) is said to be positive

or negative if sgn(Γ(𝐶)) = + or sgn(Γ(𝐶)) = −. A signed
graph is said to be balanced if all its cycles are positive, or
equivalently, all cycles have even number of negative edges;
otherwise it is called unbalanced.

About the nullity of simple graphs and its applications,
there are many known results (see [1–8] for details). In 1953,
Hurary [9] introduced the concept of a signed graph in
connection with the study of the theory of social balance in
social psychology. Formore results of signed graphs and their
applications, see [9–21].

In this paper, we obtain the coefficients theorem of the
characteristic polynomial of a signed graph and give two
formulae on the nullity of signed graphs with cut-points. As
applications of the above results, we investigate the nullity of
the bicyclic signed graph Γ(∞(𝑝, 𝑞, 𝑙)), obtain the nullity set
of unbalanced bicyclic signed graphs, and thus determine the
nullity set of bicyclic signed graphs.

2. The Coefficients of 𝑃
Γ(𝐺)
(𝜆)

In this section, we obtain the coefficients theorem of the
characteristic polynomial of a signed graph Γ(𝐺), 𝑃

Γ(𝐺)
(𝜆),

and the nullity of a signed cycle Γ(𝐶
𝑛
) by using the coefficients

theorem.
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Theorem 1 (see [11]). Let

𝑃
𝐺
(𝜆) =
󵄨󵄨󵄨󵄨𝜆𝐼𝑛 − 𝐴

󵄨󵄨󵄨󵄨 = 𝜆
𝑛
+ 𝑎
1
𝜆
𝑛−1
+ ⋅ ⋅ ⋅ + 𝑎

𝑛
(1)

be the characteristic polynomial of an arbitrary undirected
weighted multigraph 𝐺.

Call an “elementary figure”: (a) the graph 𝐾
2
or (b) every

graph 𝐶
𝑞
(𝑞 ≥ 1) (loops being included with 𝑞 = 1).

Call a basic figure𝑈 if all of its components are elementary
figures; let 𝑝(𝑈) and 𝑐(𝑈) be the number of components and
the number of cycles contained in 𝑈, respectively, and let U

𝑖

denote the set of all basic figures contained in 𝐺 having exactly
𝑖 vertices. Then for any 𝑖 ∈ {1, 2, . . . , 𝑛},

𝑎
𝑖
= ∑

𝑈∈U𝑖

(−1)
𝑝(𝑈)
⋅ 2
𝑐(𝑈)
⋅ ∏ (𝑈) ,

∏(𝑈) = ∏

𝑒∈𝐸(𝑈)

(𝑤 (𝑒))
𝜉(𝑒;𝑈)
,

(2)

where 𝐸(𝑈) is the set of edges of 𝑈, 𝑤(𝑒) is the weight of the
edge 𝑒, and

𝜉 (𝑒; 𝑈) = {
1, if 𝑒 is contained in some cycle of 𝑈;
2, otherwise.

(3)

Corollary 2. Let Γ(𝐺) be a signed graph on 𝑛 vertices and let

𝑃
Γ(𝐺)
(𝜆) =
󵄨󵄨󵄨󵄨𝜆𝐼𝑛 − 𝐴 (Γ (𝐺))

󵄨󵄨󵄨󵄨 = 𝜆
𝑛
+ 𝑎
1
𝜆
𝑛−1
+ ⋅ ⋅ ⋅ + 𝑎

𝑛
(4)

be the characteristic polynomial of 𝐴(Γ(𝐺)). Then for any 𝑖 ∈
{1, 2, . . . , 𝑛},

𝑎
𝑖
= ∑

Γ(𝑈)∈Γ(U𝑖)

(−1)
𝑝(Γ(𝑈))+𝑠(Γ(𝑈))

⋅ 2
𝑐(Γ(𝑈))
, (5)

where 𝑠(Γ(𝑈)) is the number of negative edges in cycle of Γ(𝑈);
other notations are similar to Theorem 1.

Proof. Since Γ(𝐺) is a signed graph, 𝑤(𝑒) = +1 or −1, then
∏(Γ(𝑈)) = ∏

𝑒∈𝐸(Γ(𝑈))
(−1)
𝑠(Γ(𝑈)). Thus the result follows from

Theorem 1.

Proposition 3. (1) (see [11]). Let Γ(𝐶
𝑛
) be a balanced cycle.

Then 𝜂(Γ(𝐶
𝑛
)) = 2 if 𝑛 ≡ 0(mod4) and 𝜂(Γ(𝐶

𝑛
)) = 0

otherwise.
(2) (see [13]). Let Γ(𝐶

𝑛
) be an unbalanced signed cycle.Then

𝜂(Γ(𝐶
𝑛
)) = 2 if 𝑛 ≡ 2(mod 4) and 𝜂(Γ(𝐶

𝑛
)) = 0 otherwise.

Let 𝑠 = 𝑠(Γ(𝐶
𝑛
)) be the number of negative edges of

Γ(𝐶
𝑛
). It is clear that Γ(𝐶

𝑛
) is balanced if and only if 𝑠 ≡

0(mod2); Γ(𝐶
𝑛
) is unbalanced if and only if 𝑠 ≡ 1(mod2).

Then Proposition 3 is equivalent to Theorem 4. We will give
a new proof by Corollary 2.

Theorem4. Let Γ(𝐶
𝑛
) = (𝐶

𝑛
, 𝜎) be a signed cycle on 𝑛 vertices,

and 𝑠 is the number of negative edges of Γ(𝐶
𝑛
). Then

𝜂 (Γ (𝐶
𝑛
)) =

{{{{{{{

{{{{{{{

{

2, if 𝑛 ≡ 0 (mod 4) , 𝑠 ≡ 0 (mod 2) ;
2, if 𝑛 ≡ 2 (mod 4) , 𝑠 ≡ 1 (mod 2) ;
0, if 𝑛 ≡ 1 (mod 2) ;
0, if 𝑛 ≡ 0 (mod 4) , 𝑠 ≡ 1 (mod 2) ;
0, if 𝑛 ≡ 2 (mod 4) , 𝑠 ≡ 0 (mod 2) .

(6)

Proof. By Corollary 2, for any 𝑖 ∈ {1, 2, . . . , 𝑛}, we have

𝑎
𝑖
= ∑

Γ(𝑈)∈Γ(U𝑖)

(−1)
𝑝(Γ(𝑈))+𝑠(Γ(𝑈))

⋅ 2
𝑐(Γ(𝑈))
. (7)

Case 1. 𝑛 ≡ 1 (mod 2).
Clearly, Γ(𝑈) = Γ(𝐶

𝑛
). Thus 𝑎

𝑛
= 2 ⋅ (−1)

𝑠+1
̸= 0.

Case 2. 𝑛 ≡ 0 (mod 2).
Clearly, Γ(𝑈) = Γ(𝐶

𝑛
) or Γ(𝑈) = (𝑛/2)Γ(𝐾

2
), and there

exist two basic figures (𝑛/2)Γ(𝐾
2
) in Γ(𝐶

𝑛
). Then

𝑎
𝑛
= 2 ⋅ (−1)

𝑠+1
+ 2 ⋅ (−1)

𝑛/2

=

{{{{

{{{{

{

0, if 𝑛 ≡ 0 (mod 4) , 𝑠 ≡ 0 (mod 2) ;
4, if 𝑛 ≡ 0 (mod 4) , 𝑠 ≡ 1 (mod 2) ;
−4, if 𝑛 ≡ 2 (mod 4) , 𝑠 ≡ 0 (mod 2) ;
0, if 𝑛 ≡ 2 (mod 4) , 𝑠 ≡ 1 (mod 2) .

(8)

If 𝑎
𝑛
̸= 0, then 𝜂(Γ(𝐶

𝑛
)) = 0.

If 𝑎
𝑛
= 0, then we consider 𝑎

𝑛−1
and 𝑎
𝑛−2

. Since 𝑛 is even,
it is clear that 𝑎

𝑛−1
= 0 and 𝑎

𝑛−2
̸= 0 by Corollary 2. Thus

𝜂(Γ(𝐶
𝑛
)) = 2.

Similarly, by Corollary 2, we have the following.

Proposition 5. Let Γ(𝑃
𝑛
) = (𝑃

𝑛
, 𝜎) be a signed path on 𝑛

vertices. Then

𝜂 (Γ (𝑃
𝑛
)) = {

1, if 𝑛 is odd;
0, if 𝑛 is even.

(9)

3. The Nullity of a Signed Graph
with Cut-Points

In this section, we deduce two concise formulae on the nullity
of signed graphs with cut-points by similar technique applied
in [3].

We first introduce some concepts and notations.
Let 𝐺 be a simple graph with vertex set 𝑉 = 𝑉(𝐺). For

a nonempty subset 𝑈 of 𝑉, the subgraph with vertex set 𝑈
and edge set consisting of those pairs of vertices that are
edges in 𝐺 is called the induced subgraph of 𝐺, denoted by
𝐺[𝑈]. Denote by 𝐺 − 𝑈, where 𝑈 ⊆ 𝑉, the graph obtained
from 𝐺 by removing the vertices of 𝑈 together with all edges
incident to them. Sometimes we use the notation 𝐺 − 𝐺

1

instead of 𝐺 − 𝑉(𝐺
1
) if 𝐺
1
is an induced subgraph of 𝐺. For

an induced subgraph 𝐺
1
(of 𝐺) and V ∈ 𝐺 − 𝐺

1
, the induced

subgraph𝐺[𝑉(𝐺
1
)∪{V}] is simply written as𝐺

1
+V.The vertex

V ∈ 𝑉 is called a cut-point of 𝐺 if the resultant graph 𝐺 − V is
disconnected.

Let 𝐴 be the adjacency matrix of a graph 𝐺 = (𝑉(𝐺),
𝐸(𝐺)) on 𝑛 vertices. For 𝑈 ⊆ 𝑉(𝐺),𝑊 ⊆ 𝑉(𝐺), denoted by
𝐴[𝑈,𝑊] is the submatrix of 𝐴 with rows corresponding to
the vertices of 𝑈 and columns corresponding to the vertices
of𝑊. To simplify, the submatrix 𝐴[𝑈,𝑈] is written as 𝐴[𝑈].
For convenience, we usually write 𝐴[𝐺

1
, 𝐺
2
] instead of the

standard 𝐴[𝑉(𝐺
1
), 𝑉(𝐺

2
)] for the two induced subgraphs 𝐺

1

and 𝐺
2
of 𝐺. In particular, denoted by 𝐴[V, 𝐺] is the row
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vector of 𝐴 corresponding to the vertex V and by 𝐴[V, 𝐺
𝑖
] is

the subvector of 𝐴[V, 𝐺] corresponding to the vertices of 𝐺
𝑖
.

We refer to Cvetković et al. [11] for more terminologies and
notations not defined here.

The following lemma is obvious.

Lemma 6. Let 𝐺 = 𝐺
1
∪ 𝐺
2
∪ ⋅ ⋅ ⋅ ∪ 𝐺

𝑠
and Γ(𝐺) be a signed

graph, where𝐺
1
, 𝐺
2
, . . . , 𝐺

𝑠
are the connected components of𝐺.

Then Γ(𝐺
1
), Γ(𝐺

2
), . . . , Γ(𝐺

𝑠
) are the connected components of

Γ(𝐺), 𝑟(Γ(𝐺)) = ∑𝑠
𝑖=1
𝑟(Γ(𝐺

𝑖
)), and 𝜂(Γ(𝐺)) = ∑𝑠

𝑖=1
𝜂(Γ(𝐺

𝑖
)).

Theorem 7. Let Γ(𝐺) be a connected signed graph on
𝑛 vertices, let V be a cut-point of Γ(𝐺), and let Γ(𝐺

1
),

Γ(𝐺
2
), . . . , Γ(𝐺

𝑠
) be all the components of Γ(𝐺−V). If there exists

a component, say Γ(𝐺
1
), among Γ(𝐺

1
), Γ(𝐺

2
), . . . , Γ(𝐺

𝑠
) such

that 𝜂(Γ(𝐺
1
)) = 𝜂(Γ(𝐺

1
+V))+1, then 𝜂(Γ(𝐺)) = 𝜂(Γ(𝐺−V))−

1 = ∑
𝑠

𝑖=1
𝜂(Γ(𝐺

𝑖
)) − 1.

Proof. Let 𝐴 = 𝐴(Γ(𝐺)) be the adjacency matrix of Γ(𝐺).
For each 𝑖, denote by 𝐴[Γ(𝐺

𝑖
)] the adjacency matrix of the

subgraph Γ(𝐺
𝑖
) and by𝐴[V, Γ(𝐺

𝑖
)] the subvector of𝐴[V, Γ(𝐺)]

corresponding to the vertices of Γ(𝐺
𝑖
); then the matrix 𝐴 can

be partitioned as follows:

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 𝐴 [V, Γ (𝐺
1
)] 𝐴 [V, Γ (𝐺

2
)] ⋅ ⋅ ⋅ 𝐴 [V, Γ (𝐺

𝑠
)]

𝐴[Γ (𝐺
1
) , V] 𝐴 [Γ (𝐺

1
)] 0 ⋅ ⋅ ⋅ 0

𝐴 [Γ (𝐺
2
) , V] 0 𝐴 [Γ (𝐺

2
)] ⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝐴 [Γ (𝐺
𝑠
) , V] 0 0 ⋅ ⋅ ⋅ 𝐴 [Γ (𝐺

𝑠
)]

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(10)

where 𝐴[Γ(𝐺
𝑖
), V] = 𝐴[V, Γ(𝐺

𝑖
)]
𝑇
(𝑖 = 1, 2, . . . , 𝑠), the

transpose of 𝐴[V, Γ(𝐺
𝑖
)], for each 𝑖.

Note that 𝜂(Γ(𝐺
1
)) = 𝜂(Γ(𝐺

1
+ V))+1, then 𝑟(Γ(𝐺

1
+ V)) =

𝑟(Γ(𝐺
1
)) + 2, thus the row vector 𝐴[V, Γ(𝐺

1
)] is not linear

combination of the row vectors of 𝐴[Γ(𝐺
1
)], therefore the

row vector 𝐴[V, Γ(𝐺)] is not linear combination of any other
row vectors of 𝐴[Γ(𝐺)]. Since 𝐴 is a symmetric matrix, the
column vector 𝐴[Γ(𝐺), V] is not linear combination of any
other column vectors of 𝐴, which implies that 𝑟(Γ(𝐺)) =
𝑟(Γ(𝐺 − V)) + 2. Then by Lemma 6,

𝜂 (Γ (𝐺)) = 𝑛 − 𝑟 (Γ (𝐺)) = 𝑛 − 𝑟 (Γ (𝐺 − V)) − 2

= 𝜂 (Γ (𝐺 − V)) − 1 =
𝑠

∑

𝑖=1

𝜂 (Γ (𝐺
𝑖
)) − 1.

(11)

Theorem 8. Let Γ(𝐺) be a connected signed graph on 𝑛
vertices, let V be a cut-point of Γ(𝐺), and let Γ(𝐺

1
) be a

component of Γ(𝐺 − V). If 𝜂(Γ(𝐺
1
)) = 𝜂(Γ(𝐺

1
+ V)) − 1, then

𝜂(Γ(𝐺)) = 𝜂(Γ(𝐺
1
)) + 𝜂(Γ(𝐺 − 𝐺

1
)).

Proof. Let𝐴 = 𝐴(Γ(𝐺))be the adjacencymatrix ofΓ(𝐺).Then

𝐴 =

[
[
[
[

[

𝐴 [Γ (𝐺
1
)] 𝐴 [Γ (𝐺

1
) , V] 0

𝐴 [V, Γ (𝐺
1
)] 0 𝐴 [V, Γ (𝐺 − 𝐺

1
− V)]

0 𝐴 [Γ (𝐺 − 𝐺
1
− V) , V] 𝐴 [Γ (𝐺 − 𝐺

1
− V)]

]
]
]
]

]

.

(12)

Because 𝜂(Γ(𝐺
1
)) = 𝜂(Γ(𝐺

1
+ V)) − 1, 𝑟(Γ(𝐺

1
+ V)) = 𝑟(Γ(𝐺

1
))

and thus the row vector 𝐴[V, Γ(𝐺
1
+ V)] = [𝐴[V, Γ(𝐺

1
)] 0]

is linear combination of the row vectors of 𝐴[Γ(𝐺
1
), Γ(𝐺

1
+

V)]. Similarly, the column vector 𝐴[Γ(𝐺
1
+ V), V] is linear

combination of the column vectors of 𝐴[Γ(𝐺
1
+ V), Γ(𝐺

1
)].

Thus 𝐵 can be obtained from 𝐴 by row and column linear
transformations, where

𝐵 =
[
[

[

𝐴 [Γ (𝐺
1
)] 0 0

0 0 𝐴 [V, Γ (𝐺 − 𝐺
1
− V)]

0 𝐴 [Γ (𝐺 − 𝐺
1
− V) , V] 𝐴 [Γ (𝐺 − 𝐺

1
− V)]

]
]

]

.

(13)

It is easy to see that 𝐵 is the adjacency matrix of the union of
Γ(𝐺
1
) and Γ(𝐺−𝐺

1
).Thenwe have 𝑟(𝐴) = 𝑟(𝐵), which implies

that 𝜂(Γ(𝐺)) = 𝑛−𝑟(𝐴) = 𝑛−𝑟(𝐵) = 𝜂(𝐵) = 𝜂(Γ(𝐺
1
))+𝜂(Γ(𝐺−

𝐺
1
)).

4. The Nullity of the Bicyclic Signed Graph
Γ(∞(𝑝,𝑞,𝑙))

Firstly, we introduce some definitions and notations which
will be used in the following.

A bicyclic graph is a simple connected graph in which
the number of edges equals the number of vertices plus one.
There are two basic bicyclic graphs:∞-graph and Θ-graph.
An ∞-graph, denoted by ∞(𝑝, 𝑞, 𝑙), is obtained from two
vertex-disjoint cycles 𝐶

𝑝
and 𝐶

𝑞
by connecting one vertex

of 𝐶
𝑝
and one of 𝐶

𝑞
with a path 𝑃

𝑙
of length 𝑙 − 1 (in the

case of 𝑙 = 1, identifying the above two vertices); and a Θ-
graph, denoted by Θ(𝑝, 𝑞, 𝑙), is a union of three internally
disjoint paths 𝑃

𝑝+1
, 𝑃
𝑞+1
, 𝑃
𝑙+1

of length 𝑝, 𝑞, 𝑙, respectively,
with common end vertices, where 𝑝, 𝑞, 𝑙 ≥ 1 and at most one
of them is 1. Observe that any bicyclic graph 𝐺 is obtained
from an∞-graph or a Θ-graph (possibly) by attaching trees
to some of its vertices.

Lemma 9 (see [13]). Let Γ(𝐺) be a signed graph containing
a pendant vertex, and let Γ(𝐻) be the induced subgraph of
Γ(𝐺) obtained by deleting this pendant vertex together with the
vertex adjacent to it. Then 𝜂(Γ(𝐺)) = 𝜂(Γ(𝐻)).

Theorem 10. Let 𝑝, 𝑞, 𝑙 be integers with 𝑝, 𝑞 ≥ 3, 𝑙 ≥ 1, and
𝐺 = ∞(𝑝, 𝑞, 𝑙).
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(1) If 𝑝 and 𝑞 are odd, then

𝜂 (Γ (𝐺))

=

{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{

{

0, if 𝑙 is even;

0, if 𝑙 is odd and 𝑠 (Γ (𝐶
𝑝
)) − 𝑠 (Γ (𝐶

𝑞
))

+
𝑞 − 𝑝

2
≡ 0 (mod 2) ;

1, if 𝑙 = 1 and 𝑠 (Γ (𝐶
𝑝
)) − 𝑠 (Γ (𝐶

𝑞
))

+
𝑞 − 𝑝

2
≡ 1 (mod 2) ;

≥ 1, if 𝑙 (≥ 3) is odd and 𝑠 (Γ (𝐶
𝑝
)) − 𝑠 (Γ (𝐶

𝑞
))

+
𝑞 − 𝑝

2
≡ 1 (mod 2) .

(14)

(2) If 𝑝 and 𝑞 have different parities, without loss of
generality, let 𝑝 be even; then

𝜂 (Γ (𝐺)) =

{

{

{

0, if 𝜂 (Γ (𝐶
𝑝
)) = 0;

1, if 𝜂 (Γ (𝐶
𝑝
)) = 2.

(15)

(3) If 𝑝 and 𝑞 are even, then

𝜂 (Γ (𝐺))

=

{{{{{{{

{{{{{{{

{

3, if 𝑙 is odd, 𝜂 (Γ (𝐶
𝑝
)) = 𝜂 (Γ (𝐶

𝑞
)) = 2;

1, if 𝑙 is odd, 𝜂 (Γ (𝐶
𝑝
)) ⋅ 𝜂 (Γ (𝐶

𝑞
)) = 0;

2, if 𝑙 is even, 𝜂 (Γ (𝐶
𝑝
)) = 2 or 𝜂 (Γ (𝐶

𝑞
)) = 2;

0, if 𝑙 is even, 𝜂 (Γ (𝐶
𝑝
)) = 𝜂 (Γ (𝐶

𝑞
)) = 0.

(16)

Proof. The proof is as follows.

Case 1 (both 𝑝 and 𝑞 are odd). By Corollary 2, we know

𝑎
𝑖
= ∑

Γ(𝑈)∈Γ(U𝑖)

(−1)
𝑝(Γ(𝑈))+𝑠(Γ(𝑈))

⋅ 2
𝑐(Γ(𝑈))

(𝑖 = 1, 2, . . . 𝑛) .

(17)

Subcase 1.1 (𝑙 is even). Consider

𝑎
𝑛
= (−1)

𝑠(Γ(𝐶𝑝))+𝑠(Γ(𝐶𝑞))+((𝑙+2)/2) × 2
2

+ (−1)
(((𝑝−1)/2)+((𝑞−1)/2)+(𝑙/2))

× 2
0
̸= 0.

(18)

So 𝜂(Γ(𝐺)) = 0.

Subcase 1.2 (𝑙 is odd).

𝑎
𝑛
= (−1)

𝑠(Γ(𝐶𝑝))+((𝑙+𝑞)/2) × 2
1
+ (−1)

𝑠(Γ(𝐶𝑞))+((𝑙+𝑝)/2) × 2
1
,

𝑎
𝑛
= 0, if 𝑠 (Γ (𝐶

𝑝
)) − 𝑠 (Γ (𝐶

𝑞
)) +
𝑞 − 𝑝

2
≡ 1 (mod 2) ;

𝑎
𝑛
̸= 0, if 𝑠 (Γ (𝐶

𝑝
)) − 𝑠 (Γ (𝐶

𝑞
)) +
𝑞 − 𝑝

2
≡ 0 (mod 2) .

(19)

Clearly, if 𝑎
𝑛
̸= 0, 𝜂(Γ(𝐺)) = 0; 𝑎

𝑛
= 0, 𝜂(Γ(𝐺)) ≥ 1. It is

obvious that 𝑎
𝑛−1
̸= 0when 𝑙 = 1; thus 𝜂(Γ(𝐺)) = 1when 𝑙 = 1.

Case 2 (𝑝 is even). Let V be the vertex of Γ(𝐺) joining Γ(𝐶
𝑝
)

and Γ(𝑃
𝑙
), then V is a cut-point of Γ(𝐺). Note that 𝜂(Γ(𝐶

𝑝
−

V)) = 𝜂(Γ(𝑃
𝑝−1
)) = 1 by Proposition 5 and 𝜂(Γ(𝐶

𝑝
)) = 2 or 0

byTheorem 4.

Subcase 2.1 (𝜂(Γ(𝐶
𝑝
)) = 0). It is clear that 𝜂(Γ(𝐶

𝑝
− V)) =

𝜂(Γ(𝐶
𝑝
)) + 1. Then byTheorem 7 and Lemma 9,

𝜂 (Γ (𝐺)) = 𝜂 (Γ (𝐺 − V)) − 1

= 𝜂 (Γ (𝐶
𝑝
− V)) + 𝜂 (Γ (𝐺 − 𝐶

𝑝
)) − 1

= 𝜂 (Γ (𝐺 − 𝐶
𝑝
))

=

{

{

{

𝜂 (Γ (𝑃
𝑞−1
)) , if 𝑙 is odd;

𝜂 (Γ (𝐶
𝑞
)) , if 𝑙 is even.

(20)

Subcase 2.2 (𝜂(Γ(𝐶
𝑝
)) = 2). It is clear that 𝜂(Γ(𝐶

𝑝
− V)) =

𝜂(Γ(𝐶
𝑝
)) − 1. Then byTheorem 8 and Lemma 9,

𝜂 (Γ (𝐺)) = 𝜂 (Γ (𝐶
𝑝
− V)) + 𝜂 (Γ (𝐺 − 𝐶

𝑝
+ V))

= 1 + 𝜂 (Γ (𝐺 − 𝐶
𝑝
+ V))

=

{

{

{

1 + 𝜂 (Γ (𝐶
𝑞
)) , if 𝑙 is odd;

1 + 𝜂 (Γ (𝑃
𝑞−1
)) , if 𝑙 is even.

(21)

ByTheorem 4,

𝜂 (Γ (𝐶
𝑞
)) = {

0, if 𝑞 is odd;
0 or 2, if 𝑞 is even.

(22)

Then by Proposition 5 and previous arguments, (2) and (3)
hold.

5. The Nullity Set of Bicyclic Signed Graphs

Denoted by B
𝑛
is the set of all bicyclic graphs on 𝑛 vertices.

Obviously, B
𝑛
consists of three types of graphs: first type

denoted by 𝐵+
𝑛
is the set of those graphs each of which is

an ∞-graph, ∞(𝑝, 𝑞, 𝑙), with trees attached when 𝑙 > 1;
second type denoted by 𝐵++

𝑛
is the set of those graphs each

of which is an∞-graph,∞(𝑝, 𝑞, 𝑙), with trees attached when
𝑙 = 1; third type denoted byΘ

𝑛
is the set of those graphs each

of which is a Θ-graph, Θ(𝑝, 𝑞, 𝑙), with trees attached. Then
B
𝑛
= 𝐵
+

𝑛
∪ 𝐵
++

𝑛
∪ Θ
𝑛
.

Let Γ(B
𝑛
) be the set of all bicyclic signed graphs on 𝑛

vertices. Clearly, Γ(B
𝑛
) = Γ(𝐵

+

𝑛
) ∪ Γ(𝐵

++

𝑛
) ∪ Γ(Θ

𝑛
).

Let Γ(𝐺) = (𝐺, 𝜎) be a signed graph on 𝑛 vertices. Suppose
𝜃 : 𝑉(𝐺) → {+, −} is a sign function. Switching Γ(𝐺)
by 𝜃 means forming a new signed graph Γ(𝐺)𝜃 = (𝐺, 𝜎𝜃)
whose underlying graph is the same as 𝐺, but whose sign
function is defined on an edge 𝑢V by 𝜎𝜃(𝑢V) = 𝜃(𝑢)𝜎(𝑢V)𝜃(V).
Note that switching does not change the signs or balance of
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the cycles of Γ(𝐺). If we define a diagonal signature matrix
𝐷
𝜃
= diag(𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑛
) with 𝑑

𝑖
= 𝜃(V
𝑖
) for each V

𝑖
∈ 𝑉(𝐺),

then𝐴(Γ(𝐺)𝜃) = 𝐷𝜃𝐴(Γ(𝐺))𝐷𝜃. Two graphs, Γ
1
(𝐺) and Γ

2
(𝐺)

are called switching equivalent, denoted by Γ
1
(𝐺) ∼ Γ

2
(𝐺), if

there exists a switching function 𝜃 such that Γ
2
(𝐺) = Γ

𝜃

1
(𝐺),

or equivalently, 𝐴(Γ
2
(𝐺)) = 𝐷

𝜃
𝐴(Γ
1
(𝐺))𝐷

𝜃.

Theorem 11 (see [16]). Let Γ(𝐺) = (𝐺, 𝜎) be a signed graph.
Then Γ(𝐺) is balanced if and only if Γ(𝐺) = (𝐺, 𝜎) ∼ (𝐺, +).

Note that switching equivalence is a relation of equiva-
lence, and two switching equivalent graphs have the same
nullity. Therefore, when we discuss the nullity of signed
graphs, we can choose an arbitrary representative of each
switching equivalent class. If a signed graph is balanced, by
Theorem 11, it is switching equivalent to one with all edges
positive, that is, the underlying graph. Thus we only need to
consider the case of unbalanced.

Hu et al. [6], Li et al. [7] characterize the maximal nullity
of bicyclic graphs and determine the the nullity set of B

𝑛
.

Recently, Fan et al. [14] characterize the maximal, the second
maximal nullity of bicyclic signed graphs.

Theorem 12 (see [7]). Let 𝑛 be a positive integer, [0, 𝑛] =
{0, 1, 2, . . . , 𝑛}. Then

(1) let 𝑛 ≥ 7, the nullity set of 𝐵+
𝑛
is [0, 𝑛 − 6];

(2) let 𝑛 ≥ 8, the nullity set of 𝐵++
𝑛

is [0, 𝑛 − 6];
(3) let 𝑛 ≥ 6, the nullity set of Θ

𝑛
is [0, 𝑛 − 4].

In Section 5.1–Section 5.3, we firstly obtain an upper
bound of the nullity of bicyclic signed graphs in Γ(𝐵+

𝑛
) and

Γ(𝐵
++

𝑛
), and then we obtain the nullity set of unbalanced

bicyclic signed graphs in Γ(𝐵+
𝑛
), Γ(𝐵++

𝑛
), Γ(Θ

𝑛
), respectively,

and determine the nullity set of (unbalanced) bicyclic signed
graphs.

5.1. The Nullity Set of Unbalanced Bicyclic Signed Graphs in
Γ(𝐵
+

𝑛
)

Theorem 13. Let 𝑛 ≥ 7, Γ(𝐺) ∈ Γ(𝐵+
𝑛
). Then 𝜂(Γ(𝐺)) ≤ 𝑛 − 6.

Proof. Let 𝐺 ∈ 𝐵+
𝑛
be a bicyclic graph with trees attached on

an∞-graph,∞(𝑝, 𝑞, 𝑙), where 𝑝, 𝑞 ≥ 3, 𝑙 ≥ 2.

Case 1 (𝑝, 𝑞 ∈ {3, 4}). Consider the following subcases.

Subcase 1.1 (𝑝 = 𝑞 = 4). Note that

𝑝 + 𝑞 + 𝑙 − 2 = 6 + 𝑙 ≥

{

{

{

9, if 𝑙 is odd;

8, if 𝑙 is even.
(23)

Then by (3) of Theorem 10, 𝑟(Γ(∞(4, 4, 𝑙))) ≥ 6.
Clearly, ∞(4, 4, 𝑙) is an induced subgraph of 𝐺; then

𝑟(Γ(𝐺)) ≥ 𝑟(Γ(∞(4, 4, 𝑙))) ≥ 6. Therefore 𝜂(Γ(𝐺)) ≤ 𝑛 − 6.

Subcase 1.2 (𝑝 ̸= 4 or 𝑞 ̸= 4). In this case, there must exist a
graph 𝐻 on 6 vertices as an induced subgraph of 𝐺, where

H1 H2 H3

Cp

Figure 1

· · · · · ·

· · ·

Pn−k−7

Sk+2Sn−6

G2G1

Figure 2

𝐻 = 𝐻
1
or 𝐻 = 𝐻

2
, shown in Figure 1. By Lemma 9

repeatedly we obtain 𝜂(Γ(𝐻
1
)) = 𝜂(Γ(𝐻

2
)) = 0, then

𝑟(Γ(𝐻
1
)) = 𝑟(Γ(𝐻

2
)) = 6. Thus 𝑟(Γ(𝐺)) ≥ 𝑟(Γ(𝐻)) ≥ 6 and

𝜂(Γ(𝐺)) ≤ 𝑛 − 6.

Case 2 (𝑝 ≥ 5 or 𝑞 ≥ 5).Without loss of generality, we assume
that 𝑝 ≥ 5. There must exist a graph 𝐻

3
on 𝑝 + 1 vertices

shown in Figure 1 as an induced subgraph of 𝐺. By Lemma 9
and Proposition 5, it is easy to check that

𝜂 (Γ (𝐻
3
)) =

{

{

{

0, if𝑝 is odd;

1, if𝑝 is even.
(24)

Hence

𝑟 (Γ (𝐻
3
)) =

{

{

{

𝑝 + 1, if𝑝 is odd;

𝑝, if𝑝 is even.
(25)

Since 𝑝 ≥ 5, 𝑟(Γ(𝐻
3
)) ≥ 6. Then 𝑟(Γ(𝐺)) ≥ 𝑟(Γ(𝐻

3
)) ≥ 6.

Thus 𝜂(Γ(𝐺)) ≤ 𝑛 − 6.

Theorem 14. Let 𝑛 ≥ 7. Then the nullity set of unbalanced
bicyclic signed graphs in Γ(𝐵+

𝑛
) is [0, 𝑛 − 6].

Proof. It suffices to show that for each 𝑘 ∈ [0, 𝑛 − 6], there
exists an unbalanced bicyclic signed graph Γ(𝐺) ∈ Γ(𝐵+

𝑛
) such

that 𝜂(Γ(𝐺)) = 𝑘.

Case 1 (𝑘 = 0). It is clear that there exists an unbalanced
bicyclic signed graph Γ(𝐺) = Γ(∞(𝑝, 𝑞, 𝑙)) ∈ Γ(𝐵+

𝑛
) satisfying

𝜂(Γ(𝐺)) = 0 byTheorem 10, where 𝑝, 𝑞 ≥ 3, 𝑙 ≥ 2.

Case 2 (𝑘 = 𝑛−6). Let𝐺 = 𝐺
1
shown in Figure 2, where Γ(𝐺

1
)

contains a balanced quadrangle and an unbalanced triangle.
Thus 𝜂(Γ(𝐶

4
)) = 2 byTheorem 4.

If 𝑛 = 7, then 𝐺 = ∞(3, 4, 2) and 𝜂(Γ(𝐺)) = 1 = 𝑛 − 6 by
(2) of Theorem 10.
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H4 H5 H6

H7 H8 H9

H10
H11 H12

Figure 3

If 𝑛 ≥ 8, then by Lemmas 9 and 6, we have 𝜂(Γ(𝐺)) =
𝜂(Γ(𝑃
2
) ∪ Γ(𝐶

4
) ∪ (𝑛 − 8)Γ(𝐾

1
)) = 𝜂(Γ(𝑃

2
)) + 𝜂(Γ(𝐶

4
)) + (𝑛 −

8)𝜂(Γ(𝐾
1
)) = 0 + 2 + (𝑛 − 8) = 𝑛 − 6.

Case 3 (1 ≤ 𝑘 ≤ 𝑛 − 7). Let 𝐺 = 𝐺
2
shown in Figure 2, where

Γ(𝐺
2
) contains two unbalanced triangles. By using Lemma 9

repeatedly, after [(𝑛 − 𝑘 − 4)/2] steps, we have

𝜂 (Γ (𝐺))

= {
𝜂 (Γ (𝑃

2
) ∪ Γ (𝐶

3
) ∪ 𝑘Γ (𝐾

1
)) , if 𝑛 − 𝑘 is odd;

𝜂 (2Γ (𝑃
2
) ∪ 𝑘Γ (𝐾

1
)) , if 𝑛 − 𝑘 is even.

(26)

Hence by Lemma 6,

𝜂 (Γ (𝐺))

=

{{{{{

{{{{{

{

𝜂 (Γ (𝑃
2
)) + 𝜂 (Γ (𝐶

3
)) + 𝑘𝜂 (Γ (𝐾

1
))

= 0 + 0 + 𝑘 = 𝑘, if 𝑛 − 𝑘 is odd;

2𝜂 (Γ (𝑃
2
)) + 𝑘𝜂 (Γ (𝐾

1
))

= 0 + 𝑘 = 𝑘, if 𝑛 − 𝑘 is even.
(27)

5.2. The Nullity Set of Unbalanced Bicyclic Signed Graphs in
Γ(𝐵
++

𝑛
)

Theorem 15. Let 𝑛 ≥ 8, Γ(𝐺) ∈ Γ(𝐵++
𝑛
). Then 𝜂(Γ(𝐺)) ≤ 𝑛−6.

Proof. Let 𝐺 ∈ 𝐵++
𝑛

be a bicyclic graph with trees attached on
an∞-graph,∞(𝑝, 𝑞, 1), where 𝑝, 𝑞 ≥ 3.

Case 1 (𝑝, 𝑞 ∈ {3, 4}). In this case, there must exist a graph
𝐻 on ℎ vertices as an induced subgraph of 𝐺, where 𝐻 =

Sn−4

G3

...

H13

Figure 4

· · ·
...

Pn−k−7G4

Sk+2

Figure 5

𝐻
4
, 𝐻
5
with ℎ = 6, or 𝐻 = 𝐻

6
, 𝐻
7
, 𝐻
8
, 𝐻
9
with ℎ = 7, or

𝐻 = 𝐻
10
, 𝐻
11
, 𝐻
12
with ℎ = 8 shown in Figure 3. By Lemma 9

repeatedly andTheorem 4, we obtain 𝜂(Γ(𝐻
4
)) = 𝜂(Γ(𝐻

5
)) =

𝜂(Γ(𝐻
8
)) = 0, 𝜂(Γ(𝐻

6
)) = 𝜂(Γ(𝐻

7
)) = 𝜂(Γ(𝐻

9
)) = 1,

𝜂(Γ(𝐻
11
)) = 𝜂(Γ(𝐻

12
)) = 2, and let Γ(𝐶

4
) be the quadrangle

containing no pendent edge of Γ(𝐻
10
); we have

𝜂 (Γ (𝐻
10
)) =

{

{

{

2, if Γ (𝐶
4
) is balanced;

0, if Γ (𝐶
4
) is unbalanced.

(28)

Hence for each Γ(𝐻
𝑖
) (𝑖 = 4, 5, . . . , 12), we have

𝑟(Γ(𝐻
𝑖
)) ≥ 6, so 𝑟(Γ(𝐺)) ≥ 𝑟(Γ(𝐻

𝑖
)) ≥ 6.Thus 𝜂(Γ(𝐺)) ≤ 𝑛−6.

Case 2 (𝑝 ≥ 5 or 𝑞 ≥ 5).Without loss of generality, we assume
that 𝑝 ≥ 5. There must exist a graph 𝐻

3
on 𝑝 + 1 vertices

shown in Figure 1 as an induced subgraph of𝐺. Similar to the
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· · ·· · ·

· · ·

...

Pn−k−5Pn−5

Sk+1

· · ·
...

Pn−k−5
Sk

G5 G7

G8G6

Figure 6

proof of Case 2 in Theorem 13, we have 𝑟(Γ(𝐻
3
)) ≥ 6. Then

𝑟(Γ(𝐺)) ≥ 𝑟(Γ(𝐻
3
)) ≥ 6 and thus 𝜂(Γ(𝐺)) ≤ 𝑛 − 6.

Lemma 16 (see [14]). Let𝐻
13
be a graph on 5 vertices as shown

in Figure 4, and the two triangles of Γ(𝐻
13
) have the same

balance. Then 𝜂(Γ(𝐻
13
)) = 𝑛 − 5 = 0.

Theorem 17. Let 𝑛 ≥ 8; then the nullity set of unbalanced
bicyclic signed graphs in Γ(𝐵++

𝑛
) is [0, 𝑛 − 6].

Proof. It suffices to show that for each 𝑘 ∈ [0, 𝑛 − 6], there
exists an unbalanced bicyclic signed graph Γ(𝐺) ∈ Γ(𝐵++

𝑛
)

such that 𝜂(Γ(𝐺)) = 𝑘.
Case 1 (𝑘 = 0). It is clear that there exists an unbalanced
bicyclic signed graph Γ(𝐺) = Γ(∞(𝑝, 𝑞, 1)) ∈ Γ(𝐵++

𝑛
)

satisfying 𝜂(Γ(𝐺)) = 0 byTheorem 10, where 𝑝, 𝑞 ≥ 3.

Case 2 (𝑘 = 𝑛 − 6). Let 𝐺 = 𝐺
3
shown in Figure 4, where the

two triangles of Γ(𝐺
3
) are unbalanced.Then by Lemmas 9 and

6, we have 𝜂(Γ(𝐺)) = 𝜂(Γ(𝑃
2
) ∪ (𝑛 − 6)Γ(𝐾

1
)) = 𝜂(Γ(𝑃

2
)) +

(𝑛 − 6)𝜂(Γ(𝐾
1
)) = 0 + (𝑛 − 6) = 𝑛 − 6.

Case 3 (1 ≤ 𝑘 ≤ 𝑛 − 7). Let 𝐺 = 𝐺
4
shown in Figure 5, where

the two triangles of Γ(𝐺
4
) are unbalanced.

Subcase 3.1 (𝑛 − 𝑘 is odd). By using Lemma 9 repeatedly, after
(𝑛−𝑘−5)/2 steps, we obtain the graph 𝑘Γ(𝐾

1
)∪Γ(𝐻

13
), where

the two triangles of Γ(𝐻
13
) are unbalanced. Hence 𝜂(Γ(𝐺)) =

𝜂(𝑘Γ(𝐾
1
) ∪ Γ(𝐻

13
)) = 𝜂(𝑘Γ(𝐾

1
)) + 𝜂(Γ(𝐻

13
)) = 𝑘 + 0 = 𝑘 by

Lemma 16.

Subcase 3.2 (𝑛−𝑘 is even). By using Lemma 9 repeatedly, after
(𝑛−𝑘−2)/2 steps, we obtain the graph 𝑘Γ(𝐾

1
)∪Γ(𝑃

2
). Hence

𝜂(Γ(𝐺)) = 𝜂(𝑘Γ(𝐾
1
)∪Γ(𝑃

2
)) = 𝜂(𝑘Γ(𝐾

1
))+𝜂(Γ(𝑃

2
)) = 𝑘+0 =

𝑘.

5.3. The Nullity Set of Unbalanced Bicyclic Signed Graphs in
Γ(Θ
𝑛
)

Lemma 18 (see [14]). Let Γ(𝐺) be an unbalanced bicyclic
signed graph on 𝑛 vertices.Then 𝜂(Γ(𝐺)) ≤ 𝑛 − 3, with equality

if and only if Γ(𝐺) = Γ(Θ(2, 2, 1)) and the two triangles of
Γ(Θ(2, 2, 1)) are both unbalanced.

By Lemma 18, we obtain the following result immediately.

Proposition 19. Let 𝑛 ≥ 5 and let Γ(𝐺) be an unbalanced
bicyclic signed graph in Γ(Θ

𝑛
). Then 𝜂(Γ(𝐺)) ≤ 𝑛 − 4.

Theorem 20. Let 𝑛 ≥ 6. Then the nullity set of unbalanced
bicyclic signed graphs in Γ(Θ

𝑛
) is [0, 𝑛 − 4].

Proof. It suffices to show that for each 𝑘 ∈ [0, 𝑛 − 4], there
exists an unbalanced bicyclic signed graph Γ(𝐺) ∈ Γ(Θ

𝑛
) such

that 𝜂(Γ(𝐺)) = 𝑘.

Case 1 (𝑘 = 0). Let 𝐺 = 𝐺
5
shown in Figure 6, where Γ(𝐺

5
)

contains at least an unbalanced triangle. By Lemma 9 and
Theorem 4 (when 𝑛 is odd) or Proposition 5 (when 𝑛 is even),
we have 𝜂(Γ(𝐺)) = 0.

Case 2 (𝑘 = 𝑛−4). Let𝐺 = 𝐺
6
shown in Figure 6, where Γ(𝐺

6
)

contains at least an unbalanced triangle. By Lemma 9 and
Proposition 5, we have 𝜂(Γ(𝐺)) = 𝜂(Γ(𝑃

3
) ∪ (𝑛 − 5)Γ(𝐾

1
)) =

𝜂(Γ(𝑃
3
)) + (𝑛 − 5)𝜂(Γ(𝐾

1
)) = 1 + (𝑛 − 5) = 𝑛 − 4.

Case 3 (1 ≤ 𝑘 ≤ 𝑛 − 5). Consider the following subcases.

Subcase 3.1 (𝑛−𝑘 is odd). Let𝐺 = 𝐺
7
shown in Figure 6, where

the two triangles of 𝐺
7
are unbalanced. By using Lemma 9

repeatedly, after (𝑛 − 𝑘 − 3)/2 steps, we obtain the graph
Γ(Θ(2, 2, 1))∪(𝑘−1)Γ(𝐾

1
). Hence 𝜂(Γ(𝐺)) = 𝜂(Γ(Θ(2, 2, 1))∪

(𝑘−1)Γ(𝐾
1
)) = 𝜂(Γ(Θ(2, 2, 1)))+(𝑘−1)𝜂(Γ(𝐾

1
)) = 1+(𝑘−1) =

𝑘 by Lemmas 9 and 18.

Subcase 3.2 (𝑛 − 𝑘 is even). Let 𝐺 = 𝐺
8
shown in Figure 6,

where the triangle of 𝐺
8
is unbalanced and the quadrangle is

balanced. By using Lemma 9 repeatedly, after (𝑛 − 𝑘 − 2)/2
steps, we obtain the graph Γ(𝐶

4
) ∪ (𝑘 − 2)Γ(𝐾

1
). Hence

𝜂(Γ(𝐺)) = 𝜂(Γ(𝐶
4
) ∪ (𝑘 − 2)Γ(𝐾

1
)) = 𝜂(Γ(𝐶

4
)) + (𝑘 −

2)𝜂(Γ(𝐾
1
)) = 2 + (𝑘 − 2) = 𝑘 by Lemma 9 and Theorem 4.
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5.4. In Conclusion. From the above discussion, by Theorems
12, 14, 17 and 20 we can obtain the following results immedi-
ately.

Theorem 21. Let 𝑛 ≥ 8. Then the nullity set of unbalanced
bicyclic signed graphs is [0, 𝑛 − 4].

Theorem 22. Let 𝑛 ≥ 8. Then the nullity set of bicyclic signed
graphs is [0, 𝑛 − 4].

When 4 ≤ 𝑛 ≤ 7, the nullity set of bicyclic signed graphs
is easy to obtain by known results and direct calculation, so
we omit it.
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[11] D. M. Cvetković, M. Doob, and H. Sachs, Spectra of Graphs,
Johann Ambrosius Barth, Heidelberg, Germany, 3rd edition,
1995.

[12] B. D. Acharya, “Spectral criterion for cycle balance in networks,”
Journal of Graph Theory, vol. 4, no. 1, pp. 1–11, 1980.

[13] Y. Z. Fan, Y. Wang, and Y. Wang, “A note on the nullity of
unicyclic signed graphs,” Linear Algebra and Its Applications,
vol. 438, no. 3, pp. 1193–1200, 2013.

[14] Y. Z. Fan, W. X. Du, and C. L. Dong, “The nullity of bicyclic
signed graphs,” Linear and Multilinear Algebra, 2013.

[15] I. Gutman, S. L. Lee, J. H. Sheu, and C. Li, “Predicting the nodal
properties of molecular orbitals by means of signed graphs,”
Bulletin of the Institute of Chemistry, Academia Sinica, vol. 42,
pp. 25–32, 1995.

[16] Y. P. Hou, J. S. Li, and Y. Pan, “On the Laplacian eigenvalues of
signed graphs,” Linear andMultilinear Algebra, vol. 51, no. 1, pp.
21–30, 2003.

[17] Y. P. Hou, “Bounds for the least Laplacian eigenvalue of a signed
graph,” Acta Mathematica Sinica (English Series), vol. 21, no. 4,
pp. 955–960, 2005.

[18] S. L. Lee and R. R. Lucchese, “Topological analysis of eigenvec-
tors of the adjacency matrices in graph theory: the concept of
internal connectivity,” Chemical Physics Letters, vol. 137, no. 3,
pp. 279–284, 1987.

[19] S. L. Lee and C. Li, “Chemical signed graph theory,” Interna-
tional Journal ofQuantumChemistry, vol. 49, no. 5, pp. 639–648,
1994.

[20] F. S. Roberts, “On balanced signed graphs and consistent
marked graphs,” Electronic Notes in Discrete Mathematics, vol.
2, pp. 94–105, 1999.

[21] P. K. Sahu and S. L. Lee, “Net-sign identity information index: a
novel approach towards numerical characterization of chemical
signed graph theory,” Chemical Physics Letters, vol. 454, no. 1–3,
pp. 133–138, 2008.


