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This paper proposes the least squares method to estimate the drift parameter for the stochastic differential equations driven by
small noises, which is more general than pure jump 𝛼-stable noises. The asymptotic property of this least squares estimator is
studied under some regularity conditions. The asymptotic distribution of the estimator is shown to be the convolution of a stable
distribution and a normal distribution, which is completely different from the classical cases.

1. Introduction

Stochastic differential equations (SDEs) are being extensively
used as a model to describe some phenomena which are
subject to random influences; it has found many applications
in biology [1], medicine [2], econometrics [3, 4], finance
[5], geophysics [6], and oceanography [7]. Then, statistical
inference for these differential equations was of great interest
and became a challenging theoretical problem. For a more
recent comprehensive discussion, we refer to [8, 9].

The asymptotic theory of parametric estimation for dif-
fusion processes with small white noise based on continuous
time observations is well developed and it has been studied
by many authors (see, e.g., [10–14]). There have been many
applications of small noise in mathematical finance; see, for
example, [15–18].

In parametric inference, due to the impossibility of
observing diffusions continuously throughout a time interval,
it is more practical and interesting to consider asymptotic
estimation for diffusion processes with small noise based on
discrete observations. There are many approaches to drift
estimation for discretely observed diffusions (see, e.g., [19–
23]). Long [24] has started the study on parameter estimation
for a class of stochastic differential equations driven by small
stable noise {𝑍

𝑡
, 𝑡 ≥ 0}. However, there has been no study on

parametric inference for stochastic processes with small Lévy
noises yet.

In this paper, we are interested in the study of parameter
estimation for the following stochastic differential equations
driven by more general Lévy noise {𝐿

𝑡
, 𝑡 ≥ 0} based

on discrete observations. We will employ the least squares
method to obtain an asymptotically consistent estimator.

Let (Ω,F, {F}
𝑡≥0

,P) be a basic complete filtered prob-
ability space satisfying the usual conditions; that is, the
filtration is continuous on the right and F

0
contains all

P-null sets. In this paper, we consider a class of stochastic
differential equations as follows:

𝑑𝑋
𝑡

= 𝜃𝑓 (𝑋
𝑡
) 𝑑𝑡 + 𝜀𝑔 (𝑋

𝑡
−

) 𝑑𝐿
𝑡
, 𝑡 ∈ [0, 1] ,

𝐿
𝑡

= 𝑎𝐵
𝑡
+ 𝑏𝑍
𝑡
,

𝑋 (0) = 𝑥
0
,

(1)

where 𝑓 : R → R and 𝑔 : R → R are known functions
and 𝑎, 𝑏 are known constants. Let {𝐵

𝑡
, 𝑡 ≥ 0} be a standard

Brownian motion and let {𝑍
𝑡
, 𝑡 ≥ 0} be a standard 𝛼-stable

Lévy motion independent of {𝐵
𝑡
, 𝑡 ≥ 0}, with 𝑍

1
∼ 𝑆
𝛼
(1, 𝛽, 0)

for 𝛽 ∈ [0, 1], 1 < 𝛼 < 2.
Let 𝑋 = {𝑋

𝑡
, 𝑡 ≥ 0} be a real-valued, stationary process

satisfying the stochastic differential equation (1) and we
assume that this process is observed at regularly spaced time
points {𝑡

𝑖
= 𝑖/𝑛, 𝑖 = 1, 2, . . . , 𝑛}. Assume 𝑋

0

𝑡
is the solution of
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the underlying ordinary differential equation (ODE) with the
true value of the drift parameter 𝜃

0
:

𝑑𝑋
0

𝑡
= 𝜃
0
𝑓 (𝑋
0

𝑡
) 𝑑𝑡, 𝑋

0

0
= 𝑥
0
. (2)

Then, we get

𝑋
𝑡
𝑖

− 𝑋
𝑡
𝑖−1

= ∫

𝑡
𝑖

𝑡
𝑖−1

𝜃
0
𝑓 (𝑋
𝑠
) 𝑑𝑠 + 𝜀 ∫

𝑡
𝑖

𝑡
𝑖−1

𝑔 (𝑋
𝑠
−

) 𝑑𝐿
𝑠
. (3)

2. Preliminaries

In this paper, we denote 𝐶 as a generic constant whose value
may vary from place to place.

The following regularity conditions are assumed to hold:

(A
1
) The functions 𝑓(𝑥) and 𝑔(𝑥) satisfy the Lipschitz
conditions; that is, there exists a constant 𝐿 > 0 such
that

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥) − 𝑓 (𝑦)

󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑥) − 𝑔 (𝑦)

󵄨
󵄨
󵄨
󵄨

≤ 𝐿
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
, 𝑥, 𝑦 ∈ R.

(4)

(A
2
) There exist constants 𝑀 > 0 and 𝑟 ≥ 0 satisfying

the growth condition

𝑔
−2

(𝑥) ≤ 𝑀 (1 + |𝑥|
𝑟
) , 𝑥 ∈ R. (5)

(A
3
) There exists a positive constant 𝑁 > 0 such that

0 < |𝑔(𝑥)| ≤ 𝑁 < ∞.

(A
4
) For 𝐶

𝑟
= 2
𝑟−1

∨ 1, 𝑟 > 0,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑋
𝑡
𝑖−1

󵄨
󵄨
󵄨
󵄨
󵄨

𝑟

≤ 𝐶
𝑟
(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑋
0

𝑡
𝑖−1

󵄨
󵄨
󵄨
󵄨
󵄨

𝑟

+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑋
𝑡
𝑖−1

− 𝑋
0

𝑡
𝑖−1

󵄨
󵄨
󵄨
󵄨
󵄨

𝑟

) . (6)

The LSE of ̂
𝜃
𝑛,𝜀

is defined as

̂
𝜃
𝑛,𝜀

:= argmin
𝜃

𝜌
𝑛,𝜀

(𝜃) , (7)

where the contrast function

𝜌
𝑛,𝜀

(𝜃) =

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑋
𝑡
𝑖

− 𝑋
𝑡
𝑖−1

− 𝜃𝑓 (𝑋
𝑡
𝑖−1

) Δ𝑡
𝑖−1

𝜀𝑔 (𝑋
𝑡
𝑖−1

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

. (8)

Then the ̂
𝜃
𝑛,𝜀

can be represented explicitly as follows:

̂
𝜃
𝑛,𝜀

=

∑
𝑛

𝑖=1
𝑔
−2

(𝑋
𝑡
𝑖−1

) 𝑓 (𝑋
𝑡
𝑖−1

) (𝑋
𝑡
𝑖

− 𝑋
𝑡
𝑖−1

)

𝑛
−1

∑
𝑛

𝑖=1
𝑔
−2

(𝑋
𝑡
𝑖−1

) 𝑓
2

(𝑋
𝑡
𝑖−1

)

. (9)

Based on (3) and (9), there is a special decomposition for ̂
𝜃
𝑛,𝜀

̂
𝜃
𝑛,𝜀

=

𝜃
0

∑
𝑛

𝑖=1
𝑔
−2

(𝑋
𝑡
𝑖−1

) 𝑓 (𝑋
𝑡
𝑖−1

) ∫

𝑡
𝑖

𝑡
𝑖−1

𝑓 (𝑋
𝑠
) 𝑑𝑠

𝑛
−1

∑
𝑛

𝑖=1
𝑔
−2

(𝑋
𝑡
𝑖−1

) 𝑓
2

(𝑋
𝑡
𝑖−1

)

+

𝜀 ∑
𝑛

𝑖=1
𝑔
−2

(𝑋
𝑡
𝑖−1

) 𝑓 (𝑋
𝑡
𝑖−1

) ∫

𝑡
𝑖

𝑡
𝑖−1

𝑔 (𝑋
𝑠
−

) 𝑑𝐿
𝑠

𝑛
−1

∑
𝑛

𝑖=1
𝑔
−2

(𝑋
𝑡
𝑖−1

) 𝑓
2

(𝑋
𝑡
𝑖−1

)

=𝜃
0
+

𝜃
0
∑
𝑛

𝑖=1
𝑔
−2

(𝑋
𝑡
𝑖−1

)𝑓 (𝑋
𝑡
𝑖−1

)∫

𝑡
𝑖

𝑡
𝑖−1

(𝑓 (𝑋
𝑠
)−𝑓 (𝑋

𝑡
𝑖−1

)) 𝑑𝑠

𝑛
−1

∑
𝑛

𝑖=1
𝑔
−2

(𝑋
𝑡
𝑖−1

) 𝑓
2

(𝑋
𝑡
𝑖−1

)

+

𝜀 ∑
𝑛

𝑖=1
𝑔
−2

(𝑋
𝑡
𝑖−1

) 𝑓 (𝑋
𝑡
𝑖−1

) ∫

𝑡
𝑖

𝑡
𝑖−1

𝑔 (𝑋
𝑠
−

) 𝑑𝐿
𝑠

𝑛
−1

∑
𝑛

𝑖=1
𝑔
−2

(𝑋
𝑡
𝑖−1

) 𝑓
2

(𝑋
𝑡
𝑖−1

)

=𝜃
0
+

𝜃
0
∑
𝑛

𝑖=1
𝑔
−2

(𝑋
𝑡
𝑖−1

)𝑓 (𝑋
𝑡
𝑖−1

)∫

𝑡
𝑖

𝑡
𝑖−1

(𝑓 (𝑋
𝑠
)−𝑓 (𝑋

𝑡
𝑖−1

)) 𝑑𝑠

𝑛
−1

∑
𝑛

𝑖=1
𝑔
−2

(𝑋
𝑡
𝑖−1

) 𝑓
2

(𝑋
𝑡
𝑖−1

)

+

𝑏𝜀 ∑
𝑛

𝑖=1
𝑔
−2

(𝑋
𝑡
𝑖−1

) 𝑓 (𝑋
𝑡
𝑖−1

) ∫

𝑡
𝑖

𝑡
𝑖−1

𝑔 (𝑋
𝑠
−

) 𝑑𝑍
𝑠

𝑛
−1

∑
𝑛

𝑖=1
𝑔
−2

(𝑋
𝑡
𝑖−1

) 𝑓
2

(𝑋
𝑡
𝑖−1

)

+

𝑎𝜀 ∑
𝑛

𝑖=1
𝑔
−2

(𝑋
𝑡
𝑖−1

) 𝑓 (𝑋
𝑡
𝑖−1

) ∫

𝑡
𝑖

𝑡
𝑖−1

𝑔 (𝑋
𝑠
−

) 𝑑𝐵
𝑠

𝑛
−1

∑
𝑛

𝑖=1
𝑔
−2

(𝑋
𝑡
𝑖−1

) 𝑓
2

(𝑋
𝑡
𝑖−1

)

:= 𝜃
0

+

Φ
2

(𝑛, 𝜀)

Φ
1

(𝑛, 𝜀)

+

Φ
3

(𝑛, 𝜀)

Φ
1

(𝑛, 𝜀)

+

Φ
4

(𝑛, 𝜀)

Φ
1

(𝑛, 𝜀)

.

(10)

Now we give an explicit expression for 𝜀
−1

(
̂
𝜃
𝑛,𝜀

− 𝜃
0
). By using

(10), we have

𝜀
−1

(
̂
𝜃
𝑛,𝜀

− 𝜃
0
) =

𝜀
−1

Φ
2

(𝑛, 𝜀)

Φ
1

(𝑛, 𝜀)

+

𝜀
−1

Φ
3

(𝑛, 𝜀)

Φ
1

(𝑛, 𝜀)

+

𝜀
−1

Φ
4

(𝑛, 𝜀)

Φ
1

(𝑛, 𝜀)

:=

Ψ
2

(𝑛, 𝜀)

Φ
1

(𝑛, 𝜀)

+

Ψ
3

(𝑛, 𝜀)

Φ
1

(𝑛, 𝜀)

+

Ψ
4

(𝑛, 𝜀)

Φ
1

(𝑛, 𝜀)

.

(11)

One of the important tools we will employ is the under-
lying lemma (see (3.5) in the Lemma 3.2 of [24]).

Lemma 1. Under conditions (A
1
)-(A
2
), one has

󵄨
󵄨
󵄨
󵄨
󵄨
𝑋
𝑡
− 𝑋
0

𝑡

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜀𝑒
𝐿|𝜃
0

|𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

0

𝑔 (𝑋
𝑠
−

) 𝑑𝑍
𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, (12)

sup
0≤𝑡≤1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑋
𝑡
− 𝑋
0

𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󳨀→
𝑃
0, as 𝜀 󳨀→ 0. (13)
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3. Asymptotic Property of the Least
Squares Estimator

Theorem 2. Under the conditions (A
1
)–(A
4
), as 𝑛 →

∞, 𝜀 → 0, 𝑛𝜀 → ∞, and 𝑛𝜀
𝛼/(𝛼−1)

→ ∞, one has

𝜀
−1

(
̂
𝜃
𝑛,𝜀

− 𝜃
0
)

󳨐⇒ 𝑎

(∫

1

0
𝑔
−2

(𝑋
0

𝑠
) 𝑓
2

(𝑋
0

𝑠
) 𝑑𝑠)

1/2

∫

1

0
𝑔
−2

(𝑋
0

𝑠
) 𝑓
2

(𝑋
0

𝑠
) 𝑑𝑠

𝑁

+ 𝑏 (((∫

1

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔 (𝑋
0

𝑠
)

󵄨
󵄨
󵄨
󵄨
󵄨

−2𝛼

(𝑓 (𝑋
0

𝑠
) 𝑔 (𝑋

0

𝑠
))

𝛼

+
𝑑𝑠)

1/𝛼

𝑈
1

− (∫

1

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔 (𝑋
0

𝑠
)

󵄨
󵄨
󵄨
󵄨
󵄨

−2𝛼

(𝑓 (𝑋
0

𝑠
) 𝑔 (𝑋

0

𝑠
))

𝛼

−
𝑑𝑠)

1/𝛼

𝑈
2
)

× (∫

1

0

𝑔
−2

(𝑋
0

𝑠
) 𝑓
2

(𝑋
0

𝑠
) 𝑑𝑠)

−1

) ,

(14)

where 𝑈
1
and 𝑈

2
are independent random variables with 𝛼-

stable distribution 𝑆
𝛼
(1, 𝛽, 0) and 𝑁 is an independent random

variable with standard normal distribution.

The theoremwill be proved by establishing several propo-
sitions.Wewill consider the asymptotic behaviors ofΦ

1
(𝑛, 𝜀),

Ψ
𝑖
(𝑛, 𝜀), 𝑖 = 2, 3, 4, respectively.

Proposition 3. Under conditions (A
1
)–(A
4
), and 𝑛 → ∞,

𝜀 → 0, one has

Φ
1

(𝑛, 𝜀) 󳨀→
𝑃

∫

1

0

𝑔
−2

(𝑋
0

𝑠
) 𝑓
2

(𝑋
0

𝑠
) 𝑑𝑠. (15)

Proof. Under conditions (A
1
)–(A
3
), Proposition 3 can be

proved by using condition (A
4
) (see the proof of Proposition

3.3 in [24]).

Proposition 4. Under conditions (A
1
)–(A
4
), as 𝑛 → ∞,

𝜀 → 0 and 𝑛𝜀 → ∞, one has

Ψ
2

(𝑛, 𝜀) 󳨀→
𝑃
0. (16)

Proof. For 𝑡
𝑖−1

≤ 𝑡 ≤ 𝑡
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

𝑋
𝑡

= 𝑋
𝑡
𝑖−1

+ ∫

𝑡

𝑡
𝑖−1

𝜃
0
𝑓 (𝑋
𝑠
) 𝑑𝑠 + 𝜀 ∫

𝑡

𝑡
𝑖−1

𝑔 (𝑋
𝑠
−

) 𝑑𝐿
𝑠
. (17)

It follows that
󵄨
󵄨
󵄨
󵄨
󵄨
𝑋
𝑡
− 𝑋
𝑡
𝑖−1

󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑡

𝑡
𝑖−1

󵄨
󵄨
󵄨
󵄨
𝜃
0

󵄨
󵄨
󵄨
󵄨
(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑋
𝑠
) − 𝑓 (𝑋

𝑡
𝑖−1

)

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑋
𝑡
𝑖−1

)

󵄨
󵄨
󵄨
󵄨
󵄨
) 𝑑𝑠

+ 𝜀

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝑡
𝑖−1

𝑔 (𝑋
𝑠
−

) 𝑑𝐿
𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤
󵄨
󵄨
󵄨
󵄨
𝜃
0

󵄨
󵄨
󵄨
󵄨
𝑀 ∫

𝑡

𝑡
𝑖−1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑋
𝑠
) − 𝑓 (𝑋

𝑡
𝑖−1

)

󵄨
󵄨
󵄨
󵄨
󵄨
+ 𝑛
−1 󵄨

󵄨
󵄨
󵄨
𝜃
0

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑋
𝑡
𝑖−1

)

󵄨
󵄨
󵄨
󵄨
󵄨

+ 𝑎𝜀 sup
𝑡
𝑖−1

≤𝑡≤𝑡
𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝑡
𝑖−1

𝑔 (𝑋
𝑠
−

) 𝑑𝐵
𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ 𝑏𝜀 sup
𝑡
𝑖−1

≤𝑡≤𝑡
𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝑡
𝑖−1

𝑔 (𝑋
𝑠
−

) 𝑑𝑍
𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.

(18)

Using Gronwall inequality, we get
󵄨
󵄨
󵄨
󵄨
󵄨
𝑋
𝑡
− 𝑋
𝑡
𝑖−1

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑒
|𝜃
0

|𝑀(𝑡−𝑡
𝑖−1

)
[

󵄨
󵄨
󵄨
󵄨
𝜃
0

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑋
𝑡
𝑖−1

)

󵄨
󵄨
󵄨
󵄨
󵄨

𝑛

+ 𝑎𝜀 sup
𝑡
𝑖−1

≤𝑡≤𝑡
𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝑡
𝑖−1

𝑔 (𝑋
𝑠
−

) 𝑑𝐵
𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+𝑏𝜀 sup
𝑡
𝑖−1

≤𝑡≤𝑡
𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝑡
𝑖−1

𝑔 (𝑋
𝑠
−

) 𝑑𝑍
𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

] ,

(19)

which yields

sup
𝑡
𝑖−1

≤𝑡≤𝑡
𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
𝑋
𝑡
− 𝑋
𝑡
𝑖−1

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑒
|𝜃
0

|𝑀/𝑛
[

󵄨
󵄨
󵄨
󵄨
𝜃
0

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑋
𝑡
𝑖−1

)

󵄨
󵄨
󵄨
󵄨
󵄨

𝑛

+ 𝑎𝜀 sup
𝑡
𝑖−1

≤𝑡≤𝑡
𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝑡
𝑖−1

𝑔 (𝑋
𝑠
−

) 𝑑𝐵
𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+𝑏𝜀 sup
𝑡
𝑖−1

≤𝑡≤𝑡
𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝑡
𝑖−1

𝑔 (𝑋
𝑠
−

) 𝑑𝑍
𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

] ,

(20)

thus, under conditions (A
1
) and (A

3
),

󵄨
󵄨
󵄨
󵄨
Φ
2

(𝑛, 𝜀)
󵄨
󵄨
󵄨
󵄨

≤
󵄨
󵄨
󵄨
󵄨
𝜃
0

󵄨
󵄨
󵄨
󵄨

𝑛

∑

𝑖=1

𝑀 (1 +

󵄨
󵄨
󵄨
󵄨
󵄨
𝑋
𝑡
𝑖−1

󵄨
󵄨
󵄨
󵄨
󵄨

𝑟

)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑋
𝑡
𝑖−1

)

󵄨
󵄨
󵄨
󵄨
󵄨

×

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝑡
𝑖−1

(𝑓 (𝑋
𝑠
) − 𝑓 (𝑋

𝑡
𝑖−1

)) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝑀𝐾
󵄨
󵄨
󵄨
󵄨
𝜃
0

󵄨
󵄨
󵄨
󵄨

𝑛

𝑛

∑

𝑖=1

(1 +

󵄨
󵄨
󵄨
󵄨
󵄨
𝑋
𝑡
𝑖−1

󵄨
󵄨
󵄨
󵄨
󵄨

𝑟

)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑋
𝑡
𝑖−1

)

󵄨
󵄨
󵄨
󵄨
󵄨

× sup
𝑡
𝑖−1

≤𝑡≤𝑡
𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
𝑋
𝑡
− 𝑋
𝑡
𝑖−1

󵄨
󵄨
󵄨
󵄨
󵄨
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≤

𝑀𝐾
󵄨
󵄨
󵄨
󵄨
𝜃
0

󵄨
󵄨
󵄨
󵄨

2

𝑒
|𝜃
0

|𝑀/𝑛

𝑛
2

𝑛

∑

𝑖=1

(1 +

󵄨
󵄨
󵄨
󵄨
󵄨
𝑋
𝑡
𝑖−1

󵄨
󵄨
󵄨
󵄨
󵄨

𝑟

)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑋
𝑡
𝑖−1

)

󵄨
󵄨
󵄨
󵄨
󵄨

2

+

𝑀𝐾
󵄨
󵄨
󵄨
󵄨
𝜃
0

󵄨
󵄨
󵄨
󵄨

2

𝑒
(|𝜃
0

|𝑀)/𝑛

𝑛

𝑏𝜀

𝑛

∑

𝑖=1

(1 +

󵄨
󵄨
󵄨
󵄨
󵄨
𝑋
𝑡
𝑖−1

󵄨
󵄨
󵄨
󵄨
󵄨

𝑟

)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑋
𝑡
𝑖−1

)

󵄨
󵄨
󵄨
󵄨
󵄨

× sup
𝑡
𝑖−1

≤𝑡≤𝑡
𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝑡
𝑖−1

𝑔 (𝑋
𝑠
−

) 𝑑𝑍
𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑀𝐾
󵄨
󵄨
󵄨
󵄨
𝜃
0

󵄨
󵄨
󵄨
󵄨

2

𝑒
|𝜃
0

|𝑀/𝑛

𝑛

𝑎𝜀

𝑛

∑

𝑖=1

(1 +

󵄨
󵄨
󵄨
󵄨
󵄨
𝑋
𝑡
𝑖−1

󵄨
󵄨
󵄨
󵄨
󵄨

𝑟

)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑋
𝑡
𝑖−1

)

󵄨
󵄨
󵄨
󵄨
󵄨

× sup
𝑡
𝑖−1

≤𝑡≤𝑡
𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝑡
𝑖−1

𝑔 (𝑋
𝑠
−

) 𝑑𝐵
𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

:= Φ
2,1

(𝑛, 𝜀) + Φ
2,2

(𝑛, 𝜀) + Φ
2,3

(𝑛, 𝜀) .

(21)

Then,

󵄨
󵄨
󵄨
󵄨
Ψ
2

(𝑛, 𝜀)
󵄨
󵄨
󵄨
󵄨

≤ 𝜀
−1

Φ
2,1

(𝑛, 𝜀) + 𝜀
−1

Φ
2,2

(𝑛, 𝜀)

+ 𝜀
−1

Φ
2,3

(𝑛, 𝜀)

:= Ψ
2,1

(𝑛, 𝜀) + Ψ
2,2

(𝑛, 𝜀) + Ψ
2,3

(𝑛, 𝜀) .

(22)

Using (13) in Lemma 1, conditions (A
1
) and (A

4
), we get

Ψ
2,1

(𝑛, 𝜀) →
𝑃
0 as 𝑛 → ∞, 𝜀 → 0 and 𝑛𝜀 → ∞ (see (3.26)

in [24]). By using the same techniques, under condition (A
2
),

we can prove thatΨ
2,𝑗

(𝑛, 𝜀) →
𝑃
0, 𝑗 = 2, 3, as 𝑛 → ∞, 𝜀 → 0,

respectively.

Proposition 5. Under conditions (A
1
)–(A
4
), as 𝑛 → ∞,

𝜀 → 0 and 𝑛𝜀
𝛼/(𝛼−1)

→ ∞, one has

Ψ
3

(𝑛, 𝜀)

󳨐⇒ 𝑏(∫

1

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔 (𝑋
0

𝑠
)

󵄨
󵄨
󵄨
󵄨
󵄨

−2𝛼

(𝑓 (𝑋
0

𝑠
) 𝑔 (𝑋

0

𝑠
))

𝛼

+
𝑑𝑠)

1/𝛼

𝑈
1

− 𝑏(∫

1

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔 (𝑋
0

𝑠
)

󵄨
󵄨
󵄨
󵄨
󵄨

−2𝛼

(𝑓 (𝑋
0

𝑠
) 𝑔 (𝑋

0

𝑠
))

𝛼

−
𝑑𝑠)

1/𝛼

𝑈
2
.

(23)

Proof. Under conditions (A
1
)–(A
3
), Proposition 5 can be

proved by using condition (A
4
) (see the proof of Proposition

4.4 in [24]).

Proposition 6. Under conditions (A
1
)–(A
4
), as 𝑛 → ∞,

𝜀 → 0, one has

Ψ
4

(𝑛, 𝜀) 󳨐⇒ 𝑎(∫

1

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
−2

(𝑋
0

𝑠
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
2

(𝑋
0

𝑠
) 𝑑𝑠)

1/2

𝑁. (24)

Proof. Note that

Ψ
4

(𝑛, 𝜀) = 𝑎

𝑛

∑

𝑖=1

𝑔
−2

(𝑋
𝑡
𝑖−1

) 𝑓 (𝑋
𝑡
𝑖−1

) ∫

𝑡
𝑖

𝑡
𝑖−1

𝑔 (𝑋
𝑠
−

) 𝑑𝐵
𝑠

= 𝑎

𝑛

∑

𝑖=1

𝑔
−2

(𝑋
0

𝑡
𝑖−1

) 𝑓 (𝑋
0

𝑡
𝑖−1

) ∫

𝑡
𝑖

𝑡
𝑖−1

𝑔 (𝑋
0

𝑠
−

) 𝑑𝐵
𝑠

+ 𝑎

𝑛

∑

𝑖=1

𝑔
−2

(𝑋
0

𝑡
𝑖−1

) 𝑓 (𝑋
0

𝑡
𝑖−1

)

× ∫

𝑡
𝑖

𝑡
𝑖−1

(𝑔 (𝑋
𝑠
−

) − 𝑔 (𝑋
0

𝑠
−

)) 𝑑𝐵
𝑠

+ 𝑎

𝑛

∑

𝑖=1

𝑔
−2

(𝑋
0

𝑡
𝑖−1

) (𝑓 (𝑋
𝑡
𝑖−1

) − 𝑓 (𝑋
0

𝑡
𝑖−1

))

× ∫

𝑡
𝑖

𝑡
𝑖−1

𝑔 (𝑋
𝑠
−

) 𝑑𝐵
𝑠

+ 𝑎

𝑛

∑

𝑖=1

(𝑔
−2

(𝑋
𝑡
𝑖−1

) − 𝑔
−2

(𝑋
0

𝑡
𝑖−1

)) 𝑓 (𝑋
0

𝑡
𝑖−1

)

× ∫

𝑡
𝑖

𝑡
𝑖−1

𝑔 (𝑋
𝑠
−

) 𝑑𝐵
𝑠

+ 𝑎

𝑛

∑

𝑖=1

(𝑔
−2

(𝑋
𝑡
𝑖−1

) − 𝑔
−2

(𝑋
0

𝑡
𝑖−1

))

× (𝑓 (𝑋
𝑡
𝑖−1

) − 𝑓 (𝑋
0

𝑡
𝑖−1

))

× ∫

𝑡
𝑖

𝑡
𝑖−1

𝑔 (𝑋
𝑠
−

) 𝑑𝐵
𝑠

:=

5

∑

𝑗=1

Ψ
4,𝑗

(𝑛, 𝜀) .

(25)

For Ψ
4,1

(𝑛, 𝜀), let 𝑌
𝑖

= ∫

𝑡
𝑖

𝑡
𝑖−1

𝑔(𝑋
𝑠
−

)𝑑𝐵
𝑠
, 𝑗 = 1, . . . , 𝑛. Then it is

easy to see that 𝑌
𝑖

∼ 𝑁(0, ∫

𝑡
𝑖

𝑡
𝑖−1

𝑔
2
(𝑋
𝑠
−

)𝑑𝑠) and 𝑌
1
, . . . , 𝑌

𝑛
are

independent normal random variables.
It follows that

Ψ
4,1

(𝑛, 𝜀)

= 𝑎

𝑛

∑

𝑖=1

𝑔
−2

(𝑋
0

𝑡
𝑖−1

) 𝑓 (𝑋
0

𝑡
𝑖−1

) 𝑌
𝑖

∼ 𝑁 (0, 𝑎
2

𝑛

∑

𝑖=1

𝑔
−4

(𝑋
0

𝑡
𝑖−1

) 𝑓
2

(𝑋
0

𝑡
𝑖−1

) ∫

𝑡
𝑖

𝑡
𝑖−1

𝑔
2

(𝑋
𝑠
−

) 𝑑𝑠)

󳨐⇒ 𝑎(∫

1

0

𝑔
−2

(𝑋
0

𝑠
) 𝑓
2

(𝑋
0

𝑠
) 𝑑𝑠)

1/2

𝑁

(26)

as 𝑛 → ∞, 𝜀 → 0.
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For Ψ
4,2

(𝑛, 𝜀), using Markov inequality and Ito’s isometry
property, for any given 𝜂 > 0,

Ψ
4,2

(𝑛, 𝜀)

≤

1

𝜂

E[𝑎

𝑛

∑

𝑖=1

𝑔
−2

(𝑋
0

𝑡
𝑖−1

)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑋
0

𝑡
𝑖−1

)

󵄨
󵄨
󵄨
󵄨
󵄨

×

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡
𝑖

𝑡
𝑖−1

(𝑔 (𝑋
𝑠
−

) − 𝑔 (𝑋
0

𝑠
−

)) 𝑑𝐵
𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

]

≤

𝑎

𝜂

𝑛

∑

𝑖=1

𝑔
−2

(𝑋
0

𝑡
𝑖−1

)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑋
0

𝑡
𝑖−1

)

󵄨
󵄨
󵄨
󵄨
󵄨

× [∫

𝑡
𝑖

𝑡
𝑖−1

(𝑔 (𝑋
𝑠
−

) − 𝑔 (𝑋
0

𝑠
−

))

2

𝑑𝑠]

1/2

≤

𝐿𝑎

𝜂

𝑛

∑

𝑖=1

𝑔
−2

(𝑋
0

𝑡
𝑖−1

)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑋
0

𝑡
𝑖−1

)

󵄨
󵄨
󵄨
󵄨
󵄨

× [∫

𝑡
𝑖

𝑡
𝑖−1

(𝑋
𝑠
−

− 𝑋
0

𝑠
−

)

2

𝑑𝑠]

1/2

≤

𝐿𝑎

𝜂

𝑛

∑

𝑖=1

𝑔
−2

(𝑋
0

𝑡
𝑖−1

)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑋
0

𝑡
𝑖−1

)

󵄨
󵄨
󵄨
󵄨
󵄨

× [ sup
𝑡
𝑖−1

≤𝑡≤𝑡
𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
𝑋
𝑠
−

− 𝑋
0

𝑠
−

󵄨
󵄨
󵄨
󵄨
󵄨
𝑛
−1/2

] .

(27)

By using (13), Ψ
4,2

(𝑛, 𝜀) → 0, as 𝑛 → ∞, 𝜀 → 0.
Applying similar techniques to Ψ

4,𝑗
(𝑛, 𝜀), 𝑗 = 3, 4, 5, we

get Ψ
4,𝑗

(𝑛, 𝜀) → 0, 𝑗 = 3, 4, 5, as 𝑛 → ∞, 𝜀 → 0.

Now we can proveTheorem 2.

Proof. By using Propositions 3, 4, 5, 6 and Slutsky’s theorem,
we can get the conclusion.

4. Example

We consider the following nonlinear SDE driven by general
Lévy noises:

𝑑𝑋
𝑡

= 𝜃𝑋
𝑡
𝑑𝑡 +

𝜀

1 + 𝑋
2

𝑡
−

𝑑𝐿
𝑡
, 𝑡 ∈ [0, 1] ; 𝑋

0
= 𝑥
0
,

(28)

where 𝑓(𝑥) = 𝑥, 𝑔(𝑥) = 1/(1 + 𝑥
2
), 𝑥
0
and 𝜀 are known

constants, and 𝜃 ̸= 0 is an unknown parameter.
For simplicity, let 𝑥

0
> 0, 𝜀 = 0; we get the ODE:

𝑑𝑋
0

𝑡
= 𝜃
0
𝑋
0

𝑡
𝑑𝑡, 𝑡 ∈ [0, 1] ; 𝑋

0

0
= 𝑥
0

(29)

and the solution

𝑋
0

𝑡
= 𝑥
0
𝑒
𝜃
0

𝑡
. (30)

Then, the asymptotic distribution is

𝑎(∫

1

0

(1 + 𝑥
2

0
𝑒
2𝜃
0

𝑠
)

2

𝑥
2

0
𝑒
2𝜃
0

𝑠
𝑑𝑠)

−1/2

𝑁

+ 𝑏

(∫

1

0
(1 + 𝑥

2

0
𝑒
2𝜃
0

𝑠
)

𝛼

𝑥
𝛼

0
𝑒
𝛼𝜃
0

𝑠
𝑑𝑠)

1/𝛼

∫

1

0
(1 + 𝑥

2

0
𝑒
2𝜃
0

𝑠
)
2

𝑥
2

0
𝑒
2𝜃
0

𝑠
𝑑𝑠

𝑆
𝛼

(1, 𝛽, 0) .

(31)
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