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A delay differential system is investigated based on a previously proposed nutrient-phytoplanktonmodel.The time delay is regarded
as a bifurcation parameter. Our aim is to determine how the time delay affects the system. First, we study the existence and local
stability of two equilibria using the characteristic equation and identify the condition where a Hopf bifurcation can occur. Second,
the formulae that determine the direction of the Hopf bifurcation and the stability of periodic solutions are obtained using the
normal form and the center manifold theory. Furthermore, our main results are illustrated using numerical simulations.

1. Introduction

Phytoplankton plays a very important role as the first trophic
level in aquatic ecosystems. To describe the complex dynam-
ics of phytoplankton populations, the dynamic relationship
between phytoplankton and nutrients has been investigated
theoretically for a long time, as well as experimentally. Since
the pioneering work of Riley et al. [1], various nutrient-
phytoplankton models have been proposed and analyzed
[2–9]. Several of these models have been shown to predict
phytoplankton dynamics successfully in specific situations.

Themodel proposed by Taylor et al. [10] in 1986 describes
the nutrient-dependent growth of a single phytoplankton
population by considering sinking and variable vertical mix-
ing:
𝜕𝑁

𝜕𝑡
= −𝛾 (𝛼 (𝐼) 𝜙 (𝑁) − 𝜀𝑚) 𝑃 +

𝜕

𝜕𝑧
(𝐾 (𝑧, 𝑡)

𝜕𝑁

𝜕𝑧
) ,

𝜕𝑃

𝜕𝑡
= (𝛼 (𝐼) 𝜙 (𝑁) − 𝑚) 𝑃 − V

𝜕𝑃

𝜕𝑧
+

𝜕

𝜕𝑧
(𝐾 (𝑧, 𝑡)

𝜕𝑃

𝜕𝑧
) ,

(1)
where 𝑁 and 𝑃 are the concentrations of the nutrient
and phytoplankton, respectively; the specific growth rate of

the phytoplankton is taken to be the product of two parts,
a dependence (𝛼) on incident light (𝐼) and a function (𝜙)
of the concentration of a single nutrient; 𝑚 is the death
rate of phytoplankton; 𝜀 (0 < 𝜀 ≤ 1) is the regeneration
efficiency; V is the sinking rate of phytoplankton; 𝐾(𝑧, 𝑡) is
the turbulent diffusion coefficient. The diffusion coefficients
for phytoplankton and nutrients are assumed to be the same
for simplicity. It is well known that the abundance of the
phytoplankton population is affected bymany environmental
factors, such as the water temperature, salinity, and sunlight
intensity [11]. In system (1), 𝐼 is the light intensity and
numerical simulation indicates that the light intensity can
affect the result.

In this study, we consider an approximated model of sys-
tem (1) with delay effect as amodel of a layer of phytoplankton
growing over a pool of nutrients:

𝑑𝑁

𝑑𝑡
= −𝛾 (𝛽𝑁 − 𝜀𝑚) 𝑃 +

𝑘

ℎ
(𝑁
0

− 𝑁) ,

𝑑𝑃

𝑑𝑡
= (𝛽𝑁 (𝑡 − 𝜏) − 𝑚 −

V
ℎ

−
𝑘

ℎ
) 𝑃,

(2)

where 𝛽 is the specific growth rate of phytoplankton; ℎ

is the thickness of the layer; 𝑘 is the turbulent diffusion
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coefficient; 𝜏 is a positive delay, that is, the time required
to convert nutrients into phytoplankton; 𝑁

0
and 𝑃

0
are the

concentrations of nutrients and phytoplankton below the
layer, respectively.We assume that all parameters are positive,
except that 𝑃

0
is negligible and equal to zero.

Taylor et al. [10] described the dynamics of the above
system without considering the effect of delay, mainly using
numerical methods. Pardo [12] conducted a mathematical
study of the local and global stability of the equilibria in the
same system. He proved the positivity and boundedness of
the solutions, which made sure that the model is biologically
sound. He found that the interior equilibrium point of the
system is locally and globally asymptotically stable if it exists
and that the boundary equilibrium point is also globally
asymptotically stable if the system has only one equilibrium
point.

Time delay is known to play important roles in biolog-
ical dynamical systems, which have been studied by many
researchers in recent years [13–27]. Our aim is to investigate
how time delay may affect the system (2). Thus, we use the
delay 𝜏 as a bifurcation parameter.

The remainder of this paper is organized as follows. In
Section 2, we consider the local stability of the equilibria
and the condition where Hopf bifurcation can occur based
on the characteristic equation. In Section 3, we derive an
explicit algorithm to determine the direction of the Hopf
bifurcation and the stability of the periodic solutions. The
results of numerical simulations are presented to support the
theoretical results in Section 4. The paper ends with a brief
conclusion.

2. Stability Analysis of the Equilibria

In this section, we mainly consider the existence and stability
of the nonnegative equilibria of system (2). The equations for
the equilibria are as follows:

−𝛾 (𝛽𝑁 − 𝜀𝑚) 𝑃 +
𝑘

ℎ
(𝑁
0

− 𝑁) = 0,

(𝛽𝑁 − 𝑚 −
V
ℎ

−
𝑘

ℎ
) 𝑃 = 0.

(3)

There are two solutions: 𝐸
0
(𝑁
0
, 0), 𝐸

∗
(𝑁
∗
, 𝑃
∗
) if 𝑃 is not

equal to zero and 𝑁
0

> 𝑁
∗ exists, where

𝑁
∗

=
1

𝛽
(𝑚 +

V
ℎ

+
𝑘

ℎ
) ,

𝑃
∗

=
𝑘 (𝑁
0

− 𝑁
∗
)

𝛾ℎ (𝛽𝑁∗ − 𝜀𝑚)
=

𝑘 (𝛽𝑁
0

− 𝑚 − V/ℎ − 𝑘/ℎ)

𝛽𝛾ℎ (𝑚 + V/ℎ + 𝑘/ℎ − 𝜀𝑚)
.

(4)

2.1. Local Stability of Equilibrium 𝐸
0
. We linearize (2) about

𝐸
0
to obtain the linear system

𝑑𝑁

𝑑𝑡
= −

𝑘

ℎ
𝑁 − 𝛾𝛽 (𝑁

0
− 𝜀𝑚) 𝑃,

𝑑𝑃

𝑑𝑡
= (𝛽𝑁

0
− 𝑚 −

V
ℎ

−
𝑘

ℎ
) 𝑃.

(5)

There are two eigenvalues where −𝑘/ℎ is always negative and
𝛽𝑁
0

− 𝑚 − V/ℎ − 𝑘/ℎ > 0 only if 𝑁
0

> 𝑁
∗. Therefore, we have

the following theorem.

Theorem 1. The equilibrium 𝐸
0
(𝑁
0
, 0) is stable if 𝛽𝑁

0
− 𝑚 −

V/ℎ − 𝑘/ℎ < 0 and unstable if 𝛽𝑁
0

− 𝑚 − V/ℎ − 𝑘/ℎ > 0.
We recall that 𝛽𝑁

0
− 𝑚 − V/ℎ − 𝑘/ℎ > 0 is equivalent to

𝑁
0

> 𝑁
∗, which is the existing condition of the unique interior

equilibrium. Thus, 𝐸
0
is stable only if 𝐸

∗
does not exist.

2.2. Local Stability and the Hopf Bifurcation of Equilibrium𝐸
∗
.

Similarly, we linearize (2) about𝐸
∗
to obtain the linear system

𝑑𝑁

𝑑𝑡
= (−𝛾𝛽𝑃

∗
−

𝑘

ℎ
) 𝑁 − 𝛾 (𝛽𝑁

∗
− 𝜀𝑚) 𝑃,

𝑑𝑃

𝑑𝑡
= 𝛽𝑃
∗
𝑁 (𝑡 − 𝜏) .

(6)

The corresponding characteristic equation is

𝜆
2

+ (𝛾𝛽𝑃
∗

+
𝑘

ℎ
) 𝜆 + 𝛾𝛽 (𝛽𝑁

∗
− 𝜀𝑚) 𝑃

∗
𝑒
−𝜆𝜏

= 0 (7)

or

𝜆
2

+ 𝐴𝜆 + 𝐵𝑒
−𝜆𝜏

= 0, (8)

where

𝐴 = (𝛾𝛽𝑃
∗

+
𝑘

ℎ
) > 0, 𝐵 = 𝛾𝛽 (𝛽𝑁

∗
− 𝜀𝑚) 𝑃

∗
> 0.

(9)

When 𝜏 = 0, the characteristic equation is

𝜆
2

+ 𝐴𝜆 + 𝐵 = 0, (10)

and the two eigenvalues satisfy

𝜆
1

+ 𝜆
2

= −𝐴 < 0, 𝜆
1

⋅ 𝜆
2

= 𝐵 > 0, (11)

which indicates that 𝐸
∗
is locally asymptotically stable when

𝜏 = 0.
When 𝜏 ̸= 0, we assume that 𝜆 = 𝜇(𝜏) + 𝑖𝑤(𝜏) is a root of

(8). Substituting this in (8) we have

𝜇
2

− 𝑤
2

+ 2𝜇𝑤𝑖 + 𝜇𝐴 + 𝐴𝑤𝑖 + 𝐵𝑒
−𝜇𝜏

(cos 𝜏𝑤 − 𝑖 sin 𝜏𝑤) = 0

(12)

or

𝜇
2

− 𝑤
2

+ 𝜇𝐴 = −𝐵𝑒
−𝜇𝜏 cos 𝜏𝑤,

2𝜇𝑤 + 𝐴𝑤 = 𝐵𝑒
−𝜇𝜏 sin 𝜏𝑤.

(13)

Let 𝜇(𝜏) = 0 and 𝑤(𝜏) = 𝑤
0

> 0, and hence (13) is equal to

𝑤
2

0
= 𝐵 cos 𝜏𝑤

0
, 𝐴𝑤

0
= 𝐵 sin 𝜏𝑤

0
. (14)

Hence,

𝑤
4

0
+ 𝐴
2
𝑤
2

0
− 𝐵
2

= 0. (15)

Let Δ = 𝐴
4

+ 4𝐵
2

> 0, and then 𝑤
0

= √(−𝐴2 + √Δ)/2.
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However, we can solve the first formula in (13) to obtain

𝜏 = 𝜏
𝑘

=
1

𝑤
0

(arccos
𝑤
2

0

𝐵
+ 2𝑘𝜋) , 𝑘 = 0, 1, 2, . . . . (16)

Substituting 𝜆(𝜏) in (8) and taking the derivatives with
respect to 𝜏, we have

2𝜆 (𝜏)
𝑑𝜆 (𝜏)

𝑑𝜏
+ 𝐴

𝑑𝜆 (𝜏)

𝑑𝜏
+ 𝐵𝑒
−𝜆𝜏

(−
𝜏𝑑𝜆 (𝜏)

𝑑𝜏
− 𝜆 (𝜏)) = 0.

(17)

For 𝜏 = 𝜏
0
,

sign{
𝑑Re (𝜆 (𝜏))

𝑑𝜏
}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜆=𝑖𝑤0

= sign{Re(
𝑑𝜆 (𝜏)

𝑑𝜏
)}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜆=𝑖𝑤0

= sign{
𝑖𝐵𝑤
0
𝑒
−𝑖𝑤0𝜏0

2𝑖𝑤
0

+ 𝐴 − 𝐵𝜏
0
𝑒−𝑖𝑤0𝜏0

}

= sign{
𝑤
2

0
(𝐴
2

+ 𝑤
2

0
)

(𝐴 − 𝑤2
0
𝜏
0
)
2

+ 𝑤2
0
(𝐴𝜏
0

+ 2)
2
} = 1.

(18)

This implies that all of the roots cross the imaginary axis at 𝑖𝑤

from left to right as 𝜏 increases. Therefore, the transversality
condition holds.

Based on the above, we have the following theorem.

Theorem 2. The interior equilibrium 𝐸
∗
(𝑁
∗
, 𝑃
∗
) exists only if

𝑁
0

> 𝑁
∗, and it is stable for 𝜏 ∈ [0, 𝜏

0
) but unstable for 𝜏 > 𝜏

0
.

Furthermore, system (2) undergoes a Hopf bifurcation at the
positive equilibrium 𝐸

∗
for 𝜏 = 𝜏

𝑘
, 𝑘 = 0, 1, 2, . . ..

3. Direction and Stability of Hopf Bifurcations

In this section, we consider the direction, stability, and period
of the periodic solutions from the steady state using the
method introduced by Hassard et al. [28]. Let 𝑥(𝑡) = 𝑁(𝜏𝑡) −

𝑁
∗, 𝑦(𝑡) = 𝑃(𝜏𝑡) − 𝑃

∗, 𝜏 = 𝜇 + 𝜏
𝑘
, 𝑢 = (𝑥, 𝑦)

𝑇, and
𝑢
𝑡
(𝜃) = 𝑢(𝑡 + 𝜃), 𝜃 ∈ [−1, 0], where 𝜇 is a real number.
Then (2) can be written as

𝑢
󸀠
(𝑡) = 𝐿 (𝜇) 𝑢

𝑡
+ 𝑓 (𝜇) 𝑢

𝑡
; (19)

that is,

(
𝑥̇ (𝑡)

̇𝑦 (𝑡)
) = (𝜇 + 𝜏

𝑘
) (𝐿
1

(
𝑥 (𝑡)

𝑦 (𝑡)
) + 𝐿

2
(

𝑥 (𝑡 − 1)

𝑦 (𝑡 − 1)
) + 𝑓) ,

(20)

where

𝐿
1

= (
−𝛾𝛽𝑃
∗

−
𝑘

ℎ
−𝛾 (𝛽𝑁

∗
− 𝜀𝑚)

0 0

) ,

𝐿
2

= (
0 0

𝛽𝑃
∗

0
) ,

𝑓 = 𝑓 (𝜇) 𝑢
𝑡

= (
−𝛾𝛽𝑥 (𝑡) 𝑦 (𝑡)

𝛽𝑥 (𝑡 − 1) 𝑦 (𝑡)
) .

(21)

According to the Riesz representation theorem, there exists a
matrix 𝜂(𝜃, 𝜇), which is bounded for 𝜃 ∈ [−1, 0] such that

𝐿 (𝜇) 𝜙 = ∫

0

−1

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) for 𝜙 ∈ 𝐶 ([−1, 0] , 𝑅
2
) .

(22)

In particular, we can select

𝜂 (𝜃, 𝜇) = (𝜇 + 𝜏
𝑘
) (

−𝛾𝛽𝑃
∗

−
𝑘

ℎ
−𝛾 (𝛽𝑁

∗
− 𝜀𝑚)

0 0

) 𝛿 (𝜃)

− (𝜇 + 𝜏
𝑘
) (

0 0

𝛽𝑃
∗

0
) 𝛿 (𝜃 + 1) ,

(23)

where

𝛿 (𝜃) = {
1, 𝜃 = 0

0, 𝜃 ̸= 0.
(24)

For 𝜙 ∈ 𝐶
1
([0, 1], 𝑅

2
), we define

𝐴 (𝜇) 𝜙 =
{

{

{

𝑑𝜙

𝑑𝜃
, 𝜃 ∈ [−1, 0)

𝐿 (𝜇) 𝜙, 𝜃 = 0,

𝐹 (𝜇) 𝜙 = {
0, 𝜃 ∈ [−1, 0)

𝑓 (𝜇) 𝜙, 𝜃 = 0.

(25)

Then, (19) can be rewritten as

𝑢̇ (𝑡) = 𝐴 (𝜇) 𝑢
𝑡
+ 𝐹 (𝜇) 𝑢

𝑡
. (26)

For 𝜓 ∈ 𝐶
1
([0, 1], (𝑅

2
)
∗
), we define the adjoint operator 𝐴

∗

as

𝐴
∗
𝜓 (𝑠) =

{{{{

{{{{

{

−
𝑑𝜓

𝑑𝑠
, 𝑠 ∈ (0, 1]

∫

0

−1

𝜓 (−𝜃) 𝑑𝜂 (𝜃, 0) , 𝑠 = 0.

(27)

For 𝜙 ∈ 𝐶
1
([0, 1], 𝑅

2
) and 𝜓 ∈ 𝐶

1
([0, 1], (𝑅

2
)
∗
), we define

⟨𝜓, 𝜙⟩ = 𝜓 (0) 𝜙 (0) − ∫

0

−1

∫

𝜃

𝜉=0

𝜓 (𝜉 − 𝜃) 𝑑𝜂 (𝜃, 0) 𝜙 (𝜉) 𝑑𝜉.

(28)
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Suppose that 𝑞(𝜃) and 𝑞
∗
(𝑠) are the eigenvectors that corre-

spond to 𝑖𝑤
0
𝜏
𝑘
and −𝑖𝑤

0
𝜏
𝑘
, respectively. Let

𝑞 (𝜃) = (
1

𝐶
) 𝑒
𝑖𝑤0𝜏𝑘𝜃. (29)

With the condition 𝐴𝑞(0) = 𝑖𝑤
0
𝜏
𝑘
𝑞(0), that is,

𝜏
𝑘

(
𝑖𝑤
0

+ 𝛾𝛽𝑃
∗

+
𝑘

ℎ
𝛾 (𝛽𝑁

∗
− 𝜀𝑚)

−𝛽𝑃
∗
𝑒
−𝑖𝑤0𝜏𝑘 𝑖𝑤

0

) (
1

𝐶
) = (

0

0
) ,

(30)

we can obtain

𝐶 = −
𝑖𝑤
0

+ 𝛾𝛽𝑃
∗

+ 𝑘/ℎ

𝛾 (𝛽𝑁∗ − 𝜀𝑚)
. (31)

Similarly, let

𝑞
∗

(𝑠) = 𝐸 (1𝐷) 𝑒
𝑖𝑤0𝜏𝑘𝑠 (32)

and with

𝐴
∗
𝑞
∗

(0) = −i𝑤
0
𝜏
𝑘
𝑞
∗

(0) , (33)

that is,

𝜏
𝑘

(
−𝑖𝑤
0

+ 𝛾𝛽𝑃
∗

+
𝑘

ℎ
−𝛽𝑃
∗e−𝑖𝑤0𝜏𝑘

𝛾 (𝛽𝑁
∗

− 𝜀𝑚) −𝑖𝑤
0

) (
1

𝐷
) = (

0

0
) , (34)

we can obtain

𝐷 =
𝛾 (𝛽𝑁

∗
− 𝜀𝑚)

𝑖𝑤
0

. (35)

Given the condition ⟨𝑞
∗
, 𝑞⟩ = 1, ⟨𝑞

∗
, 𝑞⟩ = 0 and since

⟨𝑞
∗
, 𝑞⟩ = 𝑞∗ (0) 𝑞 (0)

− ∫

0

−1

∫

𝜃

𝜉=0

𝑞∗ (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝑞 (𝜉) d𝜉

= 𝐸 (1 𝐷) (
1

𝐶
)

− ∫

0

−1

∫

𝜃

𝜉=0

𝐸 (1 𝐷) 𝑒
−𝑖𝑤0𝜏𝑘(𝜉−𝜃)𝑑𝜂 (𝜃) (

1

𝐶
) 𝑒
𝑖𝑤0𝜏𝑘𝜉𝑑𝜉

= 𝐸 {1 + 𝐷𝐶 − ∫

0

−1

𝜃 (1 𝐷) 𝑑𝜂 (𝜃) (
1

𝐶
) 𝑒
𝑖𝑤0𝜏𝑘𝜃}

= 𝐸 {1 + 𝐷𝐶 + 𝜏
𝑘
𝐷𝛽𝑃
∗
𝑒
−𝑖𝑤0𝜏𝑘} ,

(36)

we obtain

𝐸 =
1

1 + 𝐷𝐶 + 𝜏
𝑘
𝐷𝛽𝑃∗𝑒𝑖𝑤0𝜏𝑘

. (37)

In the following, we compute the coordinates to describe
the center manifold 𝐶

0
at 𝜇 = 0 according to [28]. We define

𝑧 (𝑡) = ⟨𝑞
∗
, 𝑢
𝑡
⟩ , 𝑊 (𝑡, 𝜃) = 𝑢

𝑡 (𝜃) − 2Re {𝑧 (𝑡) 𝑞 (𝜃)} .

(38)

On the center manifold 𝐶
0
, we have

𝑊 (𝑡, 𝜃) = 𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃) , (39)

where

𝑊 (𝑧, 𝑧, 𝜃) = 𝑊
20 (𝜃)

𝑧
2

2
+ 𝑊
11 (𝜃) 𝑧𝑧 + 𝑊

02 (𝜃)
𝑧
2

2

+ 𝑊
30

(𝜃)
𝑧
3

6
+ ⋅ ⋅ ⋅ .

(40)

Then,
𝑧̇ (𝑡) = ⟨𝑞

∗
, 𝑢̇ (𝑡)⟩ = 𝑖𝑤

0
𝜏
𝑘
𝑧 (𝑡)

+ ⟨𝑞
∗

(𝜃) , 𝐹 (0) (𝑊 (𝑧, 𝑧, 𝜃) + 2Re {𝑧 (𝑡) 𝑞 (𝜃)})⟩

= 𝑖𝑤
0
𝜏
𝑘
𝑧 (𝑡) + 𝑞∗ (0) 𝑓 (0)

× (𝑊 (𝑧, 𝑧, 0) + 2Re {𝑧 (𝑡) 𝑞 (0)})

Δ

= 𝑖𝑤
0
𝜏
𝑘
𝑧 (𝑡) + 𝑔 (𝑧, 𝑧) ,

(41)

where
𝑔 (𝑧, 𝑧) = 𝑞∗ (0) 𝑓 (0) (𝑊 (𝑧, 𝑧, 0) + 2Re {𝑧 (𝑡) 𝑞 (0)})

= 𝑔
20

𝑧
2

2
+ 𝑔
11

𝑧𝑧 + 𝑔
02

𝑧
2

2
+ 𝑔
21

𝑧
2
𝑧

2
+ ⋅ ⋅ ⋅ .

(42)

Based on (26) and (38), we have

𝑊̇ = 𝑢̇
𝑡
− 2Re {𝑧̇𝑞} = 𝑢̇

𝑡
− 𝑧̇𝑞 − ̇𝑧𝑞

= 𝐴𝑢
𝑡
+ 𝐹𝑢
𝑡
− 𝑧̇𝑞 − 𝑧̇𝑞

= 𝐴 (𝑊 + 2Re {𝑧𝑞}) + 𝐹 (𝑊 + 2Re {𝑧𝑞})

− 2Re {𝑔 (𝑧, 𝑧) 𝑞 (𝜃)}

=
{

{

{

𝐴𝑊 − 2Re {𝑞∗ (0) 𝐹 (0) 𝑞 (𝜃)} , −1 ≤ 𝜃 < 0

𝐴𝑊 − 2Re {𝑞∗ (0) 𝐹 (0) 𝑞 (𝜃)} + 𝐹 (0) , 𝜃 = 0

Δ

= 𝐴𝑊 + 𝐻 (𝑧, 𝑧, 𝜃) ,

(43)

where

𝐻 (𝑧, 𝑧, 𝜃) = 𝐻
20 (𝜃)

𝑧
2

2
+ 𝐻
11 (𝜃) 𝑧𝑧 + 𝐻

02 (𝜃)
𝑧
2

2
+ ⋅ ⋅ ⋅ .

(44)

Comparing the coefficients, we have

(2𝑖𝑤
0
𝜏
𝑘
𝐼 − 𝐴 (0)) 𝑊

20
(𝜃) = 𝐻

20
(𝜃) , (45)

−𝐴 (0) 𝑊
11

(𝜃) = 𝐻
11

(𝜃) , (46)

(𝐴 (0) + 2𝑖𝑤
0
𝜏
𝑘
𝐼) 𝑊
02

(𝜃) = −𝐻
02

(𝜃) . (47)
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Note that

𝑞 (0) = (
1

𝐶
) , 𝑞

∗
(0) = 𝐸 (1 𝐷) ,

𝑥 (𝑡) = 𝑧 + 𝑧 + 𝑊
(1)

20
(0)

𝑧
2

2
+ 𝑊
(1)

11
(0) 𝑧𝑧

+ 𝑊
(1)

02
(0)

𝑧
2

2
+ ⋅ ⋅ ⋅ ,

𝑦 (𝑡) = 𝐶𝑧 + 𝐶 𝑧 + 𝑊
(2)

20
(0)

𝑧
2

2
+ 𝑊
(2)

11
(0) 𝑧𝑧

+ 𝑊
(2)

02
(0)

𝑧
2

2
+ ⋅ ⋅ ⋅ ,

𝑥 (𝑡 − 1) = 𝑒
−𝑖𝑤0𝜏𝑘𝑧 + 𝑒

𝑖𝑤0𝜏𝑘𝑧 + 𝑊
(1)

20
(−1)

𝑧
2

2

+ 𝑊
(1)

11
(−1) 𝑧𝑧 + 𝑊

(1)

02
(−1)

𝑧
2

2
+ ⋅ ⋅ ⋅ ,

𝐹 (0) = (
−𝜏𝛾𝛽𝑥 (𝑡) 𝑦 (𝑡)

𝜏𝛽𝑥 (𝑡 − 1) 𝑦 (𝑡)
) .

(48)

Thus, according to the definition of 𝑔(𝑧, 𝑧), we can easily
obtain

𝑔
20

= 2𝜏
𝑘
𝐸 [−𝛾𝛽𝐶 + 𝐷𝛽𝐶𝑒

−𝑖𝑤0𝜏𝑘] ,

𝑔
11

= 𝜏
𝑘
𝐸 [−𝛾𝛽 (𝐶 + 𝐶) + 𝐷𝛽 (𝐶𝑒

−𝑖𝑤0𝜏𝑘 + 𝐶𝑒
𝑖𝑤0𝜏𝑘)] ,

𝑔
02

= 2𝜏
𝑘
𝐸 [−𝛾𝛽𝐶 + 𝐷𝛽𝐶𝑒

𝑖𝑤0𝜏𝑘] ,

𝑔
21

= 2𝜏
𝑘
𝐸 [−𝛾𝛽 (𝑊

(2)

11
(0) +

𝑊
(1)

11
(0)

2
+ 𝐶𝑊

(1)

11
(0)

+ 𝐶
𝑊
(1)

20
(0)

2
)

+ 𝐷𝛽 (𝑒
−𝑖𝑤0𝜏𝑘𝑊

(2)

11
(0) + 𝑒

𝑖𝑤0𝜏𝑘
𝑊
(2)

20
(0)

2

+ 𝐶𝑊
(1)

11
(−1) + 𝐶

𝑊
(1)

20
(−1)

2
)] .

(49)

In the final formula, 𝑊
20

(0), 𝑊
20

(−1), 𝑊
11

(0), and 𝑊
11

(−1)

are still unknown. Thus, we need to compute 𝑊
20

(𝜃) and
𝑊
11

(𝜃) accurately, as follows.
Consider

𝐻 (𝑧, 𝑧, 𝜃) = −2Re {𝑞
∗

(0) 𝐹 (0) 𝑞 (𝜃)} = −𝑔𝑞 (𝜃) − 𝑔𝑞 (𝜃)

= − (𝑔
20

𝑧
2

2
+ 𝑔
11

𝑧𝑧 + 𝑔
02

𝑧
2

2
+ ⋅ ⋅ ⋅ ) 𝑞 (𝜃)

− (𝑔
20

𝑧
2

2
+ 𝑔
11

𝑧𝑧 + 𝑔
02

𝑧
2

2
+ ⋅ ⋅ ⋅ ) 𝑞 (𝜃) .

(50)

Comparing the coefficients, we have

𝐻
20 (𝜃) = −𝑔

20
𝑞 (𝜃) − 𝑔

02
𝑞 (𝜃) ,

𝐻
11

(𝜃) = −𝑔
11

𝑞 (𝜃) − 𝑔
11

𝑞 (𝜃) .

(51)

From (45), we can obtain

𝑊̇
20

(𝜃) = 2𝑖𝑤
0
𝜏
𝑘
𝑊
20

(𝜃) + 𝑔
20

𝑞 (0) + 𝑔
02

𝑞 (0)

= 2𝑖𝑤
0
𝜏
𝑘
𝑊
20 (𝜃) + 𝑔

20
𝑞 (0) 𝑒

𝑖𝑤0𝜏𝑘𝜃

+ 𝑔
02

𝑞 (0) 𝑒
−𝑖𝑤0𝜏𝑘𝜃.

(52)

Solving the formula, we have

𝑊
20

(𝜃) =
𝑖𝑔
20

𝑞 (0)

𝑤
0
𝜏
𝑘

𝑒
𝑖𝑤0𝜏𝑘𝜃 +

𝑖𝑔
02

𝑞 (0)

3𝑤
0
𝜏
𝑘

𝑒
−𝑖𝑤0𝜏𝑘𝜃 + 𝐸

1
𝑒
2𝑖𝑤0𝜏𝑘𝜃.

(53)

Using the same method, we can obtain

𝑊
11 (𝜃) =

−𝑖𝑔
11

𝑞 (0)

𝑤
0
𝜏
𝑘

𝑒
𝑖𝑤0𝜏𝑘𝜃 +

𝑖𝑔
11

𝑞 (0)

𝑤
0
𝜏
𝑘

𝑒
−𝑖𝑤0𝜏𝑘𝜃 + 𝐸

2
, (54)

where 𝐸
1
and 𝐸

2
are both two-dimensional vectors.

For 𝜃 = 0, 𝐻(𝑧, 𝑧, 0) = −2Re{𝑞∗(0)𝐹(0)𝑞(0)} + 𝐹(0); thus

𝐻
20 (0) = −𝑔

20
𝑞 (0) − 𝑔

02
𝑞 (0) + 𝜏𝛽 (

−𝛾𝐶

𝐶𝑒
−𝑖𝑤0𝜏𝑘

) ,

𝐻
11

(0) = −𝑔
11

𝑞 (0) − 𝑔
11

𝑞 (0) + 𝜏𝛽 (
−𝛾𝐶 + 𝐶

𝐶𝑒
𝑖𝑤0𝜏𝑘 + 𝐶𝑒

−𝑖𝑤0𝜏𝑘
) .

(55)

According to (45) and (46), we have

𝜏
𝑘
𝐿
1
𝑊
20

(0) − 𝜏
𝑘
𝐿
2
𝑊
20

(−1) = 2𝑖𝑤
0
𝜏
𝑘
𝑊
20

(0) − 𝐻
20

(0) ,

(56)

𝜏
𝑘
𝐿
1
𝑊
11

(0) − 𝜏
𝑘
𝐿
2
𝑊
11

(−1) = −𝐻
11

(0) . (57)

Substituting (56) and (57) into (53) and (54), respectively, we
can obtain

𝐸
1

=
1

𝜏
(2𝑖𝑤
0
𝐼 − 𝐿
1

− 𝐿
2
𝑒
−2𝑖𝑤0𝜏𝑘)

−1

× [𝐻
20 (0) + 2𝑔

20
𝑞 (0) +

𝑔
02

𝑞 (0)

3
+

𝑖𝑔
20

𝐿
1
𝑞 (0)

𝑤
0

+
𝑖𝑔
02

𝐿
1
𝑞 (0)

3𝑤
0

+
𝑖𝑔
20

𝑒
−𝑖𝑤0𝜏𝑘𝐿

2
𝑞 (0)

𝑤
0

+
𝑖𝑔
02

𝑒
𝑖𝑤0𝜏𝑘𝐿

2
𝑞 (0)

3𝑤
0

] ,
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𝐸
2

=
1

𝜏
(−𝐿
1

− 𝐿
2
)
−1

× [𝐻
11

(0) −
𝑖𝑔
11

𝐿
1
𝑞 (0)

𝑤
0

+
𝑖𝑔
11

𝐿
1
𝑞 (0)

𝑤
0

−
𝑖𝑔
11

𝑒
−𝑖𝑤0𝜏𝑘𝐿

2
𝑞 (0)

𝑤
0

+
𝑖𝑔
11

𝑒
𝑖𝑤0𝜏𝑘𝐿

2
𝑞 (0)

𝑤
0

] .

(58)

From the above, we already know 𝑊
20

(𝜃) and 𝑊
11

(𝜃), and
𝑔
21

is also expressed using these parameters. Thus, we can
compute the following values:

𝑐
1 (0) =

𝑖

2𝑤
0
𝜏
𝑘

(𝑔
20

𝑔
11

− 2
󵄨󵄨󵄨󵄨𝑔11

󵄨󵄨󵄨󵄨
2

−

󵄨󵄨󵄨󵄨𝑔02
󵄨󵄨󵄨󵄨
2

3
) +

𝑔
21

2
,

𝜇
2

= −
Re (𝑐
1

(0))

Re 𝜆󸀠 (𝜏
𝑘
)

, 𝛽
2

= 2Re (𝑐
1 (0)) ,

𝑇
2

= −
Im {𝑐
1

(0)} + 𝜇
2
Im {𝜆

󸀠
(𝜏
𝑘
)}

𝑤
0
𝜏
𝑘

.

(59)

Theorem 3. 𝜇
2
, 𝛽
2
, and 𝑇

2
are defined above, so the following

are true:

(i) if 𝜇
2

> 0 (𝜇
2

< 0), then the Hopf bifurcation is
supercritical (subcritical);

(ii) if 𝛽
2

< 0 (𝛽
2

> 0), then the periodic solutions are stable
(unstable);

(iii) if 𝑇
2

> 0 (𝑇
2

< 0), then the period of the bifurcating
periodic solution of system (2) increases (decreases).

4. Numerical Simulation

According to Pardo [12], if there exists an interior equilibrium
in system (2) without a delay effect, then the equilibrium
is always globally asymptotically stable. According to our
study, however, the equilibrium is not always stable due to
the delay effect.That is, an oscillation will occur in system (2)
under some conditions. These conditions are obtained using
an analytical technique. To verify the validity of the results,
a series of numerical results is given in this section. In the
following, the parameters are fixed, excluding 𝑁

0
, ℎ, and 𝜏.

The three parameters are taken as control parameters because
we want to know how the concentration of nutrients below
the layer and the thickness of the layer, but mainly the delay,
affect the system.

Consider

𝛾 = 0.503, 𝛽 = 0.18, 𝑚 = 0.0087,

V = 0.036, 𝑘 = 1.152, 𝜀 = 0.2.

(60)

In this study, we are interested in the interior equilibrium,
though the interior does not always exist. Thus, the field
where there exists an interior equilibrium is given when
𝑁
0
, ℎ change, as shown in Figure 1(a). In Figure 1(a), both the

interior equilibrium and boundary equilibrium exist in zone

I (yellow), whereas there is only a boundary equilibrium in
zone II (green), which is separated by the blue line. Based
on the theoretical results, an oscillation will occur when the
delay 𝜏 is larger than 𝜏

0
(the critical value). The critical value

𝜏
0
is determined by the parameters of system (2) except 𝜏,

and the relationship of 𝜏
0
with respect to 𝑁

0
, ℎ is shown in

Figure 1(b). In Figure 1(b), when ℎ is fixed, 𝜏
0
will decrease

with the increase of 𝑁
0
. If 𝑁
0
is fixed, 𝜏

0
decreases first with

the increase in ℎ (0 < ℎ < 30), before it decreases. It should be
noted that 𝜏

0
does not always exist when 0 < ℎ < 30 and𝑁

0
is

much smaller, because of the reason illustrated in Figure 1(a).
Based on Figure 1, the parameter 𝑁

0
is taken as 10 and

ℎ is set as 1, so 𝜏
0
is obtained according to 𝜏

0
= (1/𝑤

0
)

arccos (𝑤
2

0
/𝐵). To investigate the effect of a delay on system

(2), we set 𝜏 as 0 and 2 initially. The numerical solutions for
phytoplankton are shown in Figure 2(a). In Figure 2(a), the
solution eventually converges to the interior equilibrium, but
the solution with the delay oscillates initially. The interior
equilibrium is globally asymptotically stable in system (2)
without delay, so the solution must converge to the interior
equilibrium. If the solution with a delay converges to the
interior equilibrium because 𝜏 < 𝜏

0
= 3.45, an oscillation

does not appear. In the following, we set 𝜏 as 0 and 4.
The numerical solutions for phytoplankton are shown in
Figure 2(b). Hopf bifurcation occurs at 𝜏 = 𝜏

0
, so an

oscillation appears because 𝜏 > 𝜏
0

= 3.45. From Figure 2(b),
it is obvious that an oscillation occurs.

Furthermore, to investigate the relationship between
nutrients and phytoplankton, the numerical solutions for
nutrients and phytoplankton are shown in Figure 3, where
𝑁
0
= 10, ℎ = 1, and 𝜏 = 3.6. Figure 3(a) shows that the

solutions oscillate. Thus, the relationship between nutrients
and phytoplankton is mutually constrained. The phase of
system (2) is shown in Figure 3(b).

To determine how 𝑁
0
, ℎ, and 𝜏 affect system (2), the

bifurcation of the stable state is considered and Figure 4
shows the results. In Figure 4(a), the parameters 𝑁

0
, ℎ are

fixed, and the delay 𝜏 varies. The solid line denotes the stable
state, the symbol “∗” is the Hopf bifurcation point, and the
dashed line represents the unstable state. There is only one
stable state when 𝜏 is smaller than 𝜏

0
. However, the stable

state becomes unstable when 𝜏 is larger than 𝜏
0
. Next, a

periodic solution arises from the stable state, which is stable
when 𝜏

0
< 𝜏 < 5. It is obvious that a delay destroys the

stability of the equilibrium. In addition, the delay 𝜏 is fixed,
where 𝜏 = 6. We consider the effects of 𝑁

0
, ℎ on system

(2), as shown in Figure 4(b). The solid line denotes the stable
state, the symbol “∗” is the Hopf bifurcation point, and the
dashed line represents the unstable state. The red line and
the blue line both denote the equilibrium (phytoplankton),
while the magenta line represents the minimum amount of
phytoplankton. There are two Hopf bifurcation points when
𝑁
0

= 7 and 1 < ℎ < 7, but there is only one when
𝑁
0

= 10 and 𝑁
0

= 12. When 𝑁
0

= 7, the equilibrium
is stable at first, but the stable state becomes unstable when
ℎ reaches ℎ

∗
and a Hopf bifurcation occurs, before a stable

periodic solution emerges. When ℎ reaches ℎ
∗∗
, another

Hopf bifurcation occurs and the stable periodic solution



Abstract and Applied Analysis 7

10 20 30
0

4

8

11

I

II

h

N
0

(a)

0 5 10 15 20 25 300

20

40

60

80

𝜏
0

N0 = 10

N0 = 4

N0 = 1.5

N0 = 0.9

N0 = 0.7
N0 = 0.5

h

(b)

Figure 1: (a) The field where two equilibria exist; (b) the relationship of 𝜏
0
with 𝑁

0
, ℎ.
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Figure 2: Solution for phytoplankton for 𝑁
0
= 10, ℎ = 1, and (a) 𝜏 = 2; (b) 𝜏 = 4.

disappears, before the equilibrium becomes stable again. In
particular, the minimum periodic solution decreases initially
with the increase in ℎ, before it increases. When 𝑁

0
= 10 and

𝑁
0

= 12, the minimum periodic solution increases with the
increase in ℎ and the unstable equilibrium becomes stable via
a Hopf bifurcation; that is, the oscillation disappears.

5. Conclusion

In this study, we investigate a biological system and consider
the effect of time delay. Our results show that the time delay
plays a vital role in system (2).Model (1), which was proposed
by Taylor et al. [10], includes nutrient recycling without
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Figure 3: (a) The solutions for nutrients and phytoplankton for 𝑁
0
= 10, ℎ = 1, and 𝜏 = 3.6; (b) phase diagram.
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Figure 4: The stable state bifurcation: (a) 𝑁
0
= 10 and ℎ = 1 are fixed; (b) 𝜏 = 6 is fixed.

any nutrient loss and vertical variation. Using a numerical
simulation, Taylor discussed how the light intensity, diurnal
variation in light, and diurnal variation in turbulence affected
the system. This is a very realistic model and it is useful
for studying the dynamic relationship between nutrients and
phytoplankton. However, because it considered too many
realistic factors, the model dynamics were very complicated

and difficult to discern in the full model. Therefore, an
approximated model was proposed, which considered a layer
of phytoplankton growing over a pool of nutrients.Themodel
was the same as (2) but it lacked the time delay. Similar to
the analysis of system (1), the condition where an oscillation
occurred was considered based on a theoretical analysis,
including how factors such as the phytoplankton loss rate
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affected the system based on a numerical simulation. Most
of this analysis was based on the results obtained using a
numerical method.

Pardo [12] focused on the approximated model in 2000.
In a mathematical study, Pardo proved that if the interior
equilibrium point exists, it is always globally asymptotically
stable. The boundary equilibrium point is also globally
asymptotically stable if the system has only one equilibrium
point.

In our study, we consider themodel with delay as (2). Our
theoretical analysis shows that the boundary equilibrium is
still stable if 𝑁

0
< 𝑁
∗, but the unique positive equilibrium

will lose its stability if the time delay exceeds a critical value
and an oscillation occurs. Furthermore, we also prove that
system (2) undergoes a Hopf bifurcation with a specific delay.
These results are verified using numerical simulation based
on published parameters [10] to ensure that they are realistic.
Using a computer simulation, we find that the concentration
of phytoplankton will increase to a large value within a short
period of time because of the effect of delay, which is very
similar to the phytoplankton blooms found in nature. Thus,
the time delaymay be a reason for phytoplankton blooms, but
more research is needed to confirm this hypothesis.

The limitations of our study are that we only consider a
discrete delay in the phytoplankton increase and we assumed
that the recycling of nutrients is instantaneous. A model
with delayed recycling would be more complicated but more
similar to reality. Moreover, the model we considered is only
an approximatemodel based on (1) andwe consider that𝛽 is a
constant. Thus, we did not consider the influence of the light
intensity, although the light intensity is depth independent.
Therefore, further research is required to consider these
aspects fully.
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