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This paper is devoted to the study of the well-posedness of an initial boundary value problem for an odd higher order nonlinear
pseudohyperbolic integrodifferential partial differential equation. We associate to the equation n nonlocal conditions and 𝑛 + 1
classical conditions. Upon some a priori estimates and density arguments, we first establish the existence and uniqueness of the
strongly generalized solution in a class of a certain type of Sobolev spaces for the associated linear mixed problem. On the basis of
the obtained results for the linear problem, we apply an iterative process in order to establish the well-posedness of the nonlinear
problem.

1. Introduction

Classical and nonclassical and local and nonlocal initial
boundary value problems for partial differential equations
are widely studied and athre being studied nowadays. One of
the most important and crucial tools to be applied to partial
differential equations is functional analysis. It is the universal
language of mathematics. No serious study in partial differ-
ential equations, mathematical physics, numerical analysis,
mathematical economics, or control theory is conceivable
without a broad solicitation to methods and results of the
functional analysis and its applications.

Themain objective of this research work is to develop one
of the powerful methods of functional analysis, namely, the
energy inequality method for a certain classes of partial dif-
ferential equations with nonlocal constraints of convolution
type in some functional spaces of Sobolev type.This method,
based on the ideas of Petrovski [1], Leray [2], Garding [3],
and presented on a method form by Dezin [4], was used to
investigate and study different categories of mixed problems
related to elliptic, parabolic, and hyperbolic equations [5–
12], mixed equations [13–15], nonclassical equations [16, 17],
and operational equations [18, 19], with classical conditions
of types: Cauchy, Dirichlet, Neumann, and Robinson.

Mixed nonlocal problems are especially inspired from
modern physics and technological sciences and they describe

many physical and biological phenomena. That is in terms
of applications, nonlocal mixed problems are widely applied
in medical science, biological processes, chemical reaction
diffusion, heat conduction processes, population dynam-
ics, thermoelasticity, control theory, and in so many other
domains of research. It is worth to mention that for these
types of problems, we cannotmeasure the data directly on the
boundary, but we only know the average value of the solution
on the domain.

For second order parabolic equations with nonlocal
conditions, the reader should refer to [20–23]. For hyperbolic
equations and pseudoparabolic equations with purely or
one integral conditions, the reader should refer to [24–
31]. The reader could also refer to a recent paper dealing
with a higher dimension Boussinesq equation with a purely
nonlocal condition [32]. This paper is organized as follows.
In Section 2, we pose and set the problem to be solved. In
Section 3, we give some notations, introduce the functional
frame, and state some important inequalities that will be
used in the sequel. Section 4 is devoted to the proof of the
uniqueness of the solution of the associated linear problem.
In Section 5, we establish and prove the existence of solution
of the posed associated linear problem. In the last Section,
Section 6, we solve the nonlinear problem. On the basis of
the results obtained in Sections 4 and 5, and by using an
iterative process, we prove the existence and uniqueness of

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 464205, 12 pages
http://dx.doi.org/10.1155/2014/464205

http://dx.doi.org/10.1155/2014/464205


2 Journal of Applied Mathematics

the solution of problem (1)–(6). Some proofs of Sections 3, 4,
and 5 are given in Appendices A and B at the end of Section 6.
At the end of the paper, we give a set of references.

2. Problem Setting

In the rectangle 𝑄 = (0, 𝑏) × (0, 𝑇), where 0 < 𝑏 < ∞
and 0 < 𝑇 < ∞, we consider the nonlinear higher order
pseudohyperbolic differential equation of odd order

𝜕
2
𝑢

𝜕𝑡
2
+ (−1)

𝑚
𝛼 (𝑡)

𝜕

𝜕𝑡

(

𝜕
2𝑚+1

𝑢

𝜕𝑥
2𝑚+1

)

= 𝑓(𝑥, 𝑡,

𝑥
𝑚−1
∗ 𝑢

(𝑚 − 1)!

,

𝑥
𝑚−1
∗ 𝜕𝑢/𝜕𝑡

(𝑚 − 1)!

) ,

(1)

where
𝑥
𝑚−1
∗ 𝑢 (𝑥, 𝑡)

(𝑚 − 1)!

= ∫

𝑥

0

(𝑥 − 𝑧)
𝑚−1
𝑢 (𝑧, 𝑡)

(𝑚 − 1)!

𝑑𝑧. (2)

In (1), 𝑓 is a given function which will be specified later on
and 𝛼(𝑡) is a function satisfying the conditions
(H1) 𝑐

0
≤ 𝛼(𝑡) for all 𝑡 ∈ [0, 𝑇],

(H2) 𝛼(𝑡) ≤ 𝑐
1
, 𝑐
2
≤ 𝛼

(𝑡) ≤ 𝑐

3
, 𝛼(𝑡) ≤ 𝑐

4
, 0 ≤ 𝛼(𝑡) for

all 𝑡 ∈ [0, 𝑇] and all constants 𝑐
𝑖
; 𝑖 = 0, 4 are strictly

positive.
To (1), we associate the initial conditions

ℓ
1
𝑢 = 𝑢 (𝑥, 0) = 𝜑

1
(𝑥) ,

ℓ
2
𝑢 = 𝑢
𝑡
(𝑥, 0) = 𝜑

2
(𝑥) ,

(3)

the Dirichlet boundary condition

𝑢 (0, 𝑡) = 0, (4)

the Neumann boundary conditions

𝜕
𝑗
𝑢 (𝑏, 𝑡)

𝜕𝑥
𝑗

= 0, 𝑗 = 𝑚 + 1, 2𝑚, (5)

and the nonlocal conditions

(𝑥
𝑘−1
∗ 𝑢(𝑥, 𝑡))





𝑥=𝑏

= 0, 𝑘 = 1,𝑚, (6)

where the data functions 𝜑
1
and 𝜑

2
satisfy the compatibility

conditions
𝜑
1
(0) = 𝜑

2
(0) = 0,

𝜕
𝑗
𝜑
1
(𝑏)

𝜕𝑥
𝑗
=

𝜕
𝑗
𝜑
2
(𝑏)

𝜕𝑥
𝑗

= 0, 𝑗 = 𝑚 + 1, 2𝑚,

(𝑥
𝑘−1
∗ 𝜑
1
(𝑥))





𝑥=𝑏

= 0, (𝑥
𝑘−1
∗ 𝜑
2
(𝑥))





𝑥=𝑏

= 0,

𝑘 = 1,𝑚.

(7)

In this paper, we are concerned with the proof of well-
posedness of the nonlinear nonlocal initial boundary value
problem (1)–(6) in some weighted Sobolev spaces.

The main tools used in our proofs are mainly based
on some iterative processes, some priori bounds, and some
density arguments.

3. Functional Framework, Notations,
and Some Inequalities

For the investigation of problem (1)–(6), we need the follow-
ing function spaces.

Let 𝐿2(𝑄) be the usual Hilbert space of square integrable
functions and let𝐻(0, 𝑏) = 𝐵𝑚

2
(0, 𝑏) [24] be the Hilbert space

of Sobolev type constituted of functions 𝑢 ∈ 𝐿2(0, 𝑏) if𝑚 = 0
and of functions 𝑢 such that ∫𝑥

0
((𝑥−𝑧)

𝑚−1
𝑢(𝑧)/(𝑚−1)!)𝑑𝑧 ∈

𝐿
2
(0, 𝑏), if𝑚 ≥ 1, with inner product

(𝑢, V)
𝐻(0,𝑏)

= ∫

𝑏

0

[(∫

𝑥

0

(𝑥 − 𝑧)
𝑚−1
𝑢 (𝑧, 𝑡)

(𝑚 − 1)!

𝑑𝑧)

× (∫

𝑥

0

(𝑥 − 𝑧)
𝑚−1V (𝑧, 𝑡)

(𝑚 − 1)!

𝑑𝑧)]𝑑𝑥

(8)

and with associated norm

‖𝑢‖𝐻(0,𝑏)
=











∫

𝑥

0

(𝑥 − 𝑧)
𝑚−1
𝑢(𝑧, 𝑡)

(𝑚 − 1)!

𝑑𝑧









𝐿
2
(0,𝑏)

for 𝑚 ≥ 1. (9)

Corollary 1. For all𝑚 ∈ N∗, one has the inequality

‖𝑢‖
2

𝐻(0,𝑏)
≤

𝑏
2

2











∫

𝑥

0

(𝑥 − 𝑧)
𝑚−2
𝑢 (𝑧, 𝑡)

(𝑚 − 2)!

𝑑𝑧











2

𝐿
2
(0,𝑏)

. (10)

Proof. See Appendix A.

Corollary 2. For all𝑚 ∈ 𝐼𝑁∗, one has the inequalities

‖𝑢‖
2

𝐻(0,𝑏)
≤ (

𝑏
2

2

)

𝑚

‖𝑢‖
2

𝐿
2
(0,𝑏)
,











∫

𝑥

0

(𝑥 − 𝑧)
2𝑚−1

𝑢(𝑧, 𝑡)

(2𝑚 − 1)!

𝑑𝑧











2

𝐿
2
(0,𝑏)

≤ (

𝑏
2

2

)

𝑚

‖𝑢‖
2

𝐻(0,𝑏)
.

(11)

One denotes by 𝐿2(0, 𝑇;𝐻(0, 𝑏)) the set of all abstract
strongly measurable functions 𝑢 on [0, 𝑇] into 𝐻(0, 𝑏) such
that

‖𝑢‖
2

𝐿
2
(0,𝑇;𝐻(0,𝑏))

= ∫

𝑇

0

‖𝑢 (⋅, 𝑡)‖
2

𝐻(0,𝑏)
𝑑𝑡 < ∞. (12)

The space 𝐿2(0, 𝑇;𝐻(0, 𝑏)) is a Hilbert space having the inner
product

(𝑢, V)
𝐿
2
(0,𝑇;𝐻(0,𝑏))

= ∫

𝑇

0

(𝑢, V)
𝐻(0,𝑏)

𝑑𝑡. (13)

One can write problem (1)–(6) in an operator form 𝐿𝑢 =

F = (𝑓, 𝜑
1
, 𝜑
2
), where 𝐿 = (L, ℓ

1
, ℓ
2
) is an unbounded

operator with domain 𝐷(𝐿), acting from a Banach space 𝐸
into a Hilbert space 𝐹 constructed as below. One defines the
domain of the operator 𝐿 as the set

𝐷 (𝐿) =

{
{
{
{
{
{

{
{
{
{
{
{

{

𝑢 ∈ 𝐿
2
(0, 𝑇;𝐻 (0, 𝑏)) ,

for which 𝜕𝑢
𝜕𝑡

,

𝜕
2
𝑢

𝜕𝑡
2
,

𝜕
2
𝑢

𝜕𝑡𝜕𝑥

, . . . ,

𝜕
2(𝑚+1)

𝑢

𝜕𝑡𝜕𝑥
2𝑚+1

belong to 𝐿2 (0, 𝑇;𝐻 (0, 𝑏))
and conditions (4)–(6) are satisfied.

(14)
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The space 𝐸 is the Banach space of functions 𝑢 ∈

𝐿
2
(0, 𝑇;𝐻(0, 𝑏)) verifying conditions (4)–(6) and having the

norm

‖𝑢‖
2

𝐸
= sup
0≤𝜏≤𝑇

(‖𝑢 (𝑥, 𝜏)‖
2

𝐻(0,𝑏)
+




𝑢
𝑡
(𝑥, 𝜏)






2

𝐻(0,𝑏)
)

= ‖𝑢 (𝑥, 𝜏)‖
2

𝐻
1
(0,𝑇;𝐻(0,𝑏))

.

(15)

The space 𝐹 is the Hilbert 𝐿2(𝑄) × 𝐻(0, 𝑏) × 𝐻(0, 𝑏) of
multivalued functionsF = (𝑓, 𝜑

1
, 𝜑
2
) with finite norm

‖F‖
2

𝐹
=




𝑓





2

𝐿
2
(𝑄)
+




𝜑
1






2

𝐻(0,𝑏)
+




𝜑
2






2

𝐻(0,𝑏)
. (16)

4. Uniqueness of Solution of the Associated
Linear Problem

We first treat the following associated linear problem:

L𝑢 = 𝑢
𝑡𝑡
+ (−1)

𝑚
𝛼 (𝑡)

𝜕

𝜕𝑡

(

𝜕
2𝑚+1

𝑢

𝜕𝑥
2𝑚+1

) = 𝑓 (𝑥, 𝑡) ,

ℓ
1
𝑢 = 𝑢 (𝑥, 0) = 𝜑

1
(𝑥) , ℓ

2
𝑢 = 𝑢
𝑡
(𝑥, 0) = 𝜑

2
(𝑥) ,

𝑢 (0, 𝑡) = 0,

𝜕
𝑗
𝑢 (𝑏, 𝑡)

𝜕𝑥
𝑗

= 0, 𝑗 = 𝑚 + 1, 2𝑚,

(𝑥
𝑘−1
∗ 𝑢 (𝑥, 𝑡))





𝑥=𝑏

= 0, 𝑘 = 1,𝑚,

(17)

where 𝑓(𝑥, 𝑡, (𝑥𝑚−1 ∗ 𝑢)/(𝑚 − 1)!, (𝑥𝑚−1 ∗ 𝜕𝑢/𝜕𝑡)/(𝑚 − 1)!)
is replaced by 𝑓(𝑥, 𝑡).

We establish a priori bound from which we deduce the
uniqueness of solution of problem (17).

Theorem 3. If the coefficients 𝛼(𝑡) satisfy condition (H1), then
there exists a positive constant𝑀 independent of 𝑢 such that

‖𝑢 (𝑥, 𝜏)‖
2

𝐻
1
(0,𝑇;𝐻(0,𝑏))

≤ 𝑀(




𝑓





2

𝐿
2
(𝑄)
+




𝜑
1






2

𝐻(0,𝑏)
+




𝜑
2






2

𝐻(0,𝑏)
) ,

(18)

for all 𝑢 ∈ 𝐷(𝐿).

Proof. See Appendix B.

Proposition 4. The operator 𝐿 : 𝐸 → 𝐹 admits a closure.

Proof. See [26].

We denote by 𝐿 the closure of the operator 𝐿 and by𝐷(𝐿)
the domain of definition of 𝐿 and define the strong solution of
problem (17) as the solution of the operator equation 𝐿𝑢 = F.

Inequality (18) can be extended to

‖𝑢 (𝑥, 𝜏)‖
2

𝐻
1
(0,𝑇;𝐻(0,𝑏))

≤ 𝑀






𝐿𝑢





𝐹
, ∀𝑢 ∈ 𝐷 (𝐿) . (19)

We can deduce from (19) that the strong solution of problem
(17) is unique if it exists and depends continuously on F =

(𝑓, 𝜑
1
, 𝜑
2
) ∈ 𝐹 and that the image Im(𝐿) of the operator 𝐿

coincides with the set Im(𝐿).

5. Solvability of the Associated Linear Problem

Theorem 5. Assume that conditions H1 and H2 are hold.
Then problem (17) admits a unique strong solution satisfying
𝑢 ∈ 𝐶(0, 𝑇;𝐻(0, 𝑏)), 𝑢

𝑡
∈ 𝐶(0, 𝑇;𝐻(0, 𝑏)) and 𝑢, 𝑢

𝑡
depend

continuously on the given data and verify

‖𝑢 (𝑥, 𝜏)‖
2

𝐻
1
(0,𝑇;𝐻(0,𝑏))

≤ 𝑀‖𝐿𝑢‖𝐹
,





𝑢
𝑡
(𝑥, 𝜏)






2

𝐻
1
(0,𝑇;𝐻(0,𝑏))

≤ 𝑀‖𝐿𝑢‖𝐹
.

(20)

Proof. Since Im(𝐿) ⊂ 𝐹 is closed and Im(𝐿) = Im(𝐿), then in
order to prove the existence of the strong solution, we have to
show that Im(𝐿) = 𝐹. We first prove it in the following special
case:

Theorem6. If conditions ofTheorem 3 are satisfied and for Ψ ∈
𝐿
2
(𝑄), we have

(

𝜕
2
𝑢

𝜕𝑡
2
+ (−1)

𝑚
𝛼 (𝑡)

𝜕

𝜕𝑡

(

𝜕
2𝑚+1

𝑢

𝜕𝑥
2𝑚+1

) ,Ψ)

𝐿
2
(𝑄)

= 0, (21)

for all 𝑢 ∈ 𝐷
0
(𝐿) = {𝑢/𝑢 ∈ 𝐷(𝐿), 𝜑

1
(𝑥) = 𝜑

2
(𝑥) = 0}, then Ψ

vanishes almost everywhere in 𝑄.

Proof.We first define the function 𝑉(𝑥, 𝑡) by the relation

𝑉 (𝑥, 𝑡) − ∫

𝑇

𝑡

Ψ (𝑥, 𝜏) 𝑑𝜏

= ∫

𝑇

𝑡

𝜕

𝜕𝑠

(

𝜕𝛼 (𝑥, 𝑠)

𝜕𝑠

⋅

𝑥
2𝑚−1

∗ 𝑢
𝑡
(𝑥, 𝑠)

(2𝑚 − 1)!

) 𝑑𝑠.

(22)

We now consider the equation

𝛼 (𝑡)

𝜕
2

𝜕𝑡
2
(

𝑥
2𝑚−1

∗ 𝑢 (𝑥, 𝑡)

(2𝑚 − 1)!

) = 𝑉 (𝑥, 𝑡) , (23)

and define 𝑢 by

𝑢 =

{

{

{

0, 0 ≤ 𝑡 ≤ 𝑠,

∫

𝑇

𝑡

(𝑡 − 𝜏) 𝑢
𝜏𝜏
𝑑𝜏, 𝑠 ≤ 𝑡 ≤ 𝑇.

(24)

Relations (23) and (24) imply that 𝑢 is in 𝐷
𝑠
(𝐿) ⊆ 𝐷

0
(𝐿),

where𝐷
𝑠
(𝐿) = {𝑢/𝑢 ∈ 𝐷(𝐿), 𝑢 = 0 for 𝑡 ≤ 𝑠}.

We now have

Ψ (𝑥, 𝑡) = −

𝜕
2

𝜕𝑡
2
(𝛼 (𝑡)

𝑥
2𝑚−1

∗ 𝑢
𝑡
(𝑥, 𝑡)

(2𝑚 − 1)!

) . (25)
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The following lemma shows that Ψ(𝑥, 𝑡) given by (25) is
in 𝐿2(𝑄

𝑠
), where 𝑄

𝑠
= (0, 𝑏) × (𝑠, 𝑇).

Lemma 7. If conditions of Theorem 6 are satisfied, then the
function 𝑢 defined by the relations (23) and (24) has 𝑡-
derivatives up to third order which included are in 𝐿2(𝑄

𝑠
).

Proof. See Appendix B.

We now continue to proveTheorem6.We replaceΨ given
by (25) in (21) to get

2(−1)
𝑚+1
(𝑢
𝑡𝑡
, (𝛼 (𝑡)

𝑥
2𝑚−1

∗ 𝑢
𝑡
(𝑥, 𝑡)

(2𝑚 − 1)!

)

𝑡𝑡

)

𝐿
2
(𝑄)

− 2(𝛼 (𝑡)

𝜕
2𝑚+1

𝑢
𝑡

𝜕𝑥
2𝑚+1

, (𝛼 (𝑡)

𝑥
2𝑚−1

∗ 𝑢
𝑡
(𝑥, 𝑡)

(2𝑚 − 1)!

)

𝑡𝑡

)

𝐿
2
(𝑄)

= 0.

(26)

Straight forward successive integration by parts of the two
terms in (26) gives

2(−1)
𝑚+1
(𝑢
𝑡𝑡
, (𝛼 (𝑡)

𝑥
2𝑚−1

∗ 𝑢
𝑡
(𝑥, 𝑡)

(2𝑚 − 1)!

)

𝑡𝑡

)

𝐿
2
(𝑄)

= ∫

𝑏

0

𝛼 (𝑠) (

𝑥
𝑚−1
∗ 𝑢
𝑡𝑡
(𝑥, 𝑠)

(𝑚 − 1)!

)

2

𝑑𝑥

− ∫

𝑏

0

𝛼

(𝑇) (

𝑥
𝑚−1
∗ 𝑢
𝑡
(𝑥, 𝑇)

(𝑚 − 1)!

)

2

𝑑𝑥

+ ∫

𝑄
𝑠

𝛼

(𝑡) (

𝑥
𝑚−1
∗ 𝑢
𝑡
(𝑥, 𝑡)

(𝑚 − 1)!

)

2

𝑑𝑥 𝑑𝑡

− 3∫

𝑄
𝑠

𝛼

(𝑡) (

𝑥
𝑚−1
∗ 𝑢
𝑡𝑡
(𝑥, 𝑡)

(𝑚 − 1)!

)

2

𝑑𝑥 𝑑𝑡,

− 2(𝛼 (𝑡)

𝜕
2𝑚+1

𝑢
𝑡

𝜕𝑥
2𝑚+1

, (𝛼 (𝑡)

𝑥
2𝑚−1

∗ 𝑢
𝑡
(𝑥, 𝑡)

(2𝑚 − 1)!

)

𝑡𝑡

)

𝐿
2
(𝑄)

= ∫

𝑇

𝑠

𝛼
2
(𝑡) 𝑢
2

𝑡𝑡
(𝑏, 𝑡) 𝑑𝑡 − ∫

𝑇

𝑠

𝛼 (𝑡) 𝛼

(𝑡) 𝑢
2

𝑡
(𝑏, 𝑡) 𝑑𝑡.

(27)

Substitution of (27) into (26) yields

∫

𝑏

0

𝛼 (𝑠) (

𝑥
𝑚−1
∗ 𝑢
𝑡𝑡
(𝑥, 𝑠)

(𝑚 − 1)!

)

2

𝑑𝑥

+ ∫

𝑄
𝑠

𝛼

(𝑡) (

𝑥
𝑚−1
∗ 𝑢
𝑡
(𝑥, 𝑡)

(𝑚 − 1)!

)

2

𝑑𝑥 𝑑𝑡

+ ∫

𝑇

𝑠

𝛼
2
(𝑡) (𝑢
𝑡𝑡
)
2

(𝑏, 𝑡) 𝑑𝑡

= ∫

𝑏

0

𝛼

(𝑇) (

𝑥
𝑚−1
∗ 𝑢
𝑡
(𝑥, 𝑇)

(𝑚 − 1)!

)

2

𝑑𝑥

+ 3∫

𝑄
𝑠

𝛼

(𝑡) (

𝑥
𝑚−1
∗ 𝑢
𝑡𝑡
(𝑥, 𝑡)

(𝑚 − 1)!

)

2

𝑑𝑥 𝑑𝑡

+ ∫

𝑇

𝑠

𝛼 (𝑡) 𝛼

(𝑡) (𝑢
𝑡
)
2

(𝑏, 𝑡) 𝑑𝑡.

(28)

By dropping the second term on the left-hand side (28) and
by using conditions H1 and H2, we obtain

𝑐
0
∫

𝑏

0

(

𝑥
𝑚−1
∗ 𝑢
𝑡𝑡
(𝑥, 𝑠)

(𝑚 − 1)!

)

2

𝑑𝑥 + 𝑐
2

0
∫

𝑇

𝑠

𝑢
2

𝑡𝑡
(𝑏, 𝑡) 𝑑𝑡

≤ 𝑐
4
∫

𝑏

0

(

𝑥
𝑚−1
∗ 𝑢
𝑡
(𝑥, 𝑇)

(𝑚 − 1)!

)

2

𝑑𝑥

+ 3𝑐
3
∫

𝑄
𝑠

(

𝑥
𝑚−1
∗ 𝑢
𝑡𝑡
(𝑥, 𝑡)

(𝑚 − 1)!

)

2

𝑑𝑥 𝑑𝑡

+ 𝑐
1
𝑐
4
∫

𝑇

𝑠

𝑢
2

𝑡
(𝑏, 𝑡) 𝑑𝑡.

(29)

We now consider the two elementary inequalities

2𝑐
4
∫

𝑏

0

(

𝑥
𝑚−1
∗ 𝑢
𝑡
(𝑥, 𝑇)

(𝑚 − 1)!

)

2

𝑑𝑥

≤ 2𝑐
4
∫

𝑄
𝑠

(

𝑥
𝑚−1
∗ 𝑢
𝑡
(𝑥, 𝑡)

(𝑚 − 1)!

)

2

𝑑𝑥 𝑑𝑡

+ 2𝑐
4
∫

𝑄
𝑠

(

𝑥
𝑚−1
∗ 𝑢
𝑡𝑡
(𝑥, 𝑡)

(𝑚 − 1)!

)

2

𝑑𝑥 𝑑𝑡,

𝑐
2

0
𝑢
2

𝑡
(𝑏, 𝑇) ≤ 𝑐

2

0
∫

𝑇

𝑠

𝑢
2

𝑡
(𝑏, 𝑡) 𝑑𝑡 + 𝑐

2

0
∫

𝑇

𝑠

𝑢
2

𝑡𝑡
(𝑏, 𝑡) 𝑑𝑡.

(30)

Combination of inequalities (29)-(30) leads to

∫

𝑏

0

(

𝑥
𝑚−1
∗ 𝑢
𝑡𝑡
(𝑥, 𝑠)

(𝑚 − 1)!

)

2

𝑑𝑥

+ ∫

𝑏

0

(

𝑥
𝑚−1
∗ 𝑢
𝑡
(𝑥, 𝑇)

(𝑚 − 1)!

)

2

𝑑𝑥 + 𝑢
2

𝑡
(𝑏, 𝑇)

≤ 𝑐
7
(∫

𝑄
𝑠

(

𝑥
𝑚−1
∗ 𝑢
𝑡𝑡
(𝑥, 𝑡)

(𝑚 − 1)!

)

2

𝑑𝑥 𝑑𝑡

+ ∫

𝑄
𝑠

(

𝑥
𝑚−1
∗ 𝑢
𝑡
(𝑥, 𝑡)

(𝑚 − 1)!

)

2

𝑑𝑥 𝑑𝑡

+ ∫

𝑇

𝑠

𝑢
2

𝑡
(𝑏, 𝑡) 𝑑𝑡) ,

(31)

where

𝑐
7
=

max (𝑐2
0
+ 𝑐
1
𝑐
4
, 3𝑐
3
+ 2𝑐
4
)

min (𝑐
0
, 𝑐
2

0
, 𝑐
4
)

. (32)
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We now introduce a new function 𝛽 defined by 𝛽(𝑥, 𝑡) =
∫

𝑇

𝑡
𝑢
𝜏𝜏
𝑑𝜏, then 𝜕𝑢(𝑥, 𝑡)/𝜕𝑡 = 𝛽(𝑥, 𝑠) − 𝛽(𝑥, 𝑡), and

𝜕𝑢(𝑥, 𝑇)/𝜕𝑡 = 𝛽(𝑥, 𝑠), and we have

∫

𝑏

0

(

𝑥
𝑚−1
∗ 𝑢
𝑡𝑡
(𝑥, 𝑠)

(𝑚 − 1)!

)

2

𝑑𝑥 + (1 − 2𝑐
7
(𝑇 − 𝑠))

× (∫

𝑏

0

(

𝑥
𝑚−1
∗ 𝛽(𝑥, 𝑠)

(𝑚 − 1)!

)

2

𝑑𝑥 + 𝛽
2
(𝑏, 𝑠))

≤ 2𝑐
7
(∫

𝑄
𝑠

(

𝑥
𝑚−1
∗ 𝑢
𝑡𝑡
(𝑥, 𝑡)

(𝑚 − 1)!

)

2

𝑑𝑥 𝑑𝑡

+ ∫

𝑄
𝑠

(

𝑥
𝑚−1
∗ 𝛽 (𝑥, 𝑡)

(𝑚 − 1)!

)

2

𝑑𝑥 𝑑𝑡

+ ∫

𝑇

𝑠

𝛽
2
(𝑏, 𝑡) 𝑑𝑡) .

(33)

If we choose 𝑠
0
> 0 such that 1 − 2𝑐(𝑇 − 𝑠

0
) = 1/2, then

for all 𝑠 ∈ [𝑇 − 𝑠
0
, 𝑇], inequality (33) implies that

∫

𝑏

0

(

𝑥
𝑚−1
∗ 𝑢
𝑡𝑡
(𝑥, 𝑠)

(𝑚 − 1)!

)

2

𝑑𝑥

+ ∫

𝑏

0

(

𝑥
𝑚−1
∗ 𝛽(𝑥, 𝑠)

(𝑚 − 1)!

)

2

𝑑𝑥 + 𝛽
2
(𝑏, 𝑠)

≤ 4𝑐
7
(∫

𝑄
𝑠

(

𝑥
𝑚−1
∗ 𝑢
𝑡𝑡
(𝑥, 𝑡)

(𝑚 − 1)!

)

2

𝑑𝑥 𝑑𝑡

+ ∫

𝑄
𝑠

(

𝑥
𝑚−1
∗ 𝛽 (𝑥, 𝑡)

(𝑚 − 1)!

)

2

𝑑𝑥 𝑑𝑡

+ ∫

𝑇

𝑠

𝛽
2
(𝑏, 𝑡) 𝑑𝑡) .

(34)

Inequality (34) can be written in the form of

−

𝜕𝑀

𝜕𝑠

≤ 4𝑐
7
𝑀(𝑠) , (35)

where

𝑀(𝑥) = ∫

𝑄
𝑠

(

𝑥
𝑚−1
∗ 𝑢
𝑡𝑡
(𝑥, 𝑡)

(𝑚 − 1)!

)

2

𝑑𝑥 𝑑𝑡

+ ∫

𝑄
𝑠

(

𝑥
𝑚−1
∗ 𝛽 (𝑥, 𝑡)

(𝑚 − 1)!

)

2

𝑑𝑥 𝑑𝑡

+ ∫

𝑇

𝑠

𝛽
2
(𝑏, 𝑡) 𝑑𝑡.

(36)

It follows from (35) that 𝑀(𝑠) exp(4𝑐
7
𝑠) ≤ 0 from which it

follows thatΨ = 0 almost everywhere in𝑄
𝑇−𝑠
0

. By reiterating
the same procedure, we deduce thatΨ = 0 a.e., in𝑄. We now
continue the proof of Theorem 5.

We consider a function𝑊 = (Ψ,𝑁
1
, 𝑁
2
) in Im(𝐿)⊥. The

function 𝑢 satisfies

(𝐿𝑢,𝑊)
𝐹
= (L𝑢, Ψ)

𝐿
2
(𝑄)
+ (ℓ
1
𝑢,𝑁
1
)
𝐻(0,𝑏)

+ (ℓ
2
𝑢,𝑁
2
)
𝐻(0,𝑏)

= 0.

(37)

If we pick an element 𝑢 in𝐷
0
(𝐿), equality (37) becomes

(L𝑢,Ψ)
𝐿
2
(𝑄)
= 0, ∀𝑢 ∈ 𝐷

0
(𝐿) . (38)

By virtue of Theorem 6, we deduce that Ψ = 0, and (37)
then takes the form

(ℓ
1
𝑢,𝑁
1
)
𝐻(0,𝑏)

+ (ℓ
2
𝑢,𝑁
2
)
𝐻(0,𝑏)

= 0, ∀𝑢 ∈ 𝐷 (𝐿) . (39)

It follows from (39) that𝑁
1
= 0,𝑁

2
= 0.This results from

the fact that the quantities ℓ
1
𝑢 and ℓ

2
𝑢 vanish independently

and that the set of values of the trace operators ℓ
1
and ℓ
2
is

dense in𝐻(0, 𝑏).

6. The Nonlinear Problem

On the basis of the results obtained for the linear case, we are
now able to establish the existence and uniqueness results for
the nonlinear problem (1)–(6).

Observe that the function 𝑦 = 𝑢 − 𝑌 solves the problem

L𝑦 = 𝑦
𝑡𝑡
+ (−1)

𝑚
𝛼 (𝑡)

𝜕

𝜕𝑡

(

𝜕
2𝑚+1

𝑦

𝜕𝑥
2𝑚+1

)

= 𝐹(𝑥, 𝑡,

𝑥
𝑚−1
∗ 𝑦

(𝑚 − 1)!

,

𝑥
𝑚−1
∗ 𝑦
𝑡

(𝑚 − 1)!

) ,

𝑦 (𝑥, 0) = 0, 𝑦
𝑡
(𝑥, 0) = 0,

𝑦 (0, 𝑡) = 0,

𝜕
𝑗
𝑦 (𝑏, 𝑡)

𝜕𝑥
𝑗

= 0,

(𝑥
𝑘−1
∗ 𝑦 (𝑥, 𝑡))





𝑥=𝑏

= 0,

𝑘 = 1,𝑚, 𝑗 = 𝑚 + 1, 2𝑚,

(40)

where

𝐹(𝑥, 𝑡,

𝑥
𝑚−1
∗ 𝑦

(𝑚 − 1)!

,

𝑥
𝑚−1
∗ 𝑦
𝑡

(𝑚 − 1)!

)

= 𝑓(𝑥, 𝑡,

𝑥
𝑚−1
∗ (𝑦 + 𝑌)

(𝑚 − 1)!

,

𝑥
𝑚−1
∗ (𝑦
𝑡
+ 𝑌
𝑡
)

(𝑚 − 1)!

) ,

(41)
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whenever 𝑢 and 𝑌 are, respectively, solutions of the problems

L𝑢 = 𝑢
𝑡𝑡
+ (−1)

𝑚
𝛼 (𝑡)

𝜕

𝜕𝑡

(

𝜕
2𝑚+1

𝑢

𝜕𝑥
2𝑚+1

)

= 𝑓(𝑥, 𝑡,

𝑥
𝑚−1
∗ 𝑢

(𝑚 − 1)!

,

𝑥
𝑚−1
∗ 𝑢
𝑡

(𝑚 − 1)!

) ,

𝑢 (𝑥, 0) = 𝜑
1
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝜑

2
(𝑥) ,

𝑢 (0, 𝑡) = 0,

𝜕
𝑗
𝑢 (𝑏, 𝑡)

𝜕𝑥
𝑗

= 0,

(𝑥
𝑘−1
∗ 𝑢 (𝑥, 𝑡))





𝑥=𝑏

= 0,

𝑘 = 1,𝑚, 𝑗 = 𝑚 + 1, 2𝑚,

(42)

L𝑌 = 𝑌
𝑡𝑡
+ (−1)

𝑚
𝛼 (𝑡)

𝜕

𝜕𝑡

(

𝜕
2𝑚+1

𝑌

𝜕𝑥
2𝑚+1

) = 0,

𝑌 (𝑥, 0) = 𝜑
1
(𝑥) , 𝑌

𝑡
(𝑥, 0) = 𝜑

2
(𝑥) ,

𝑌 (0, 𝑡) = 0,

𝜕
𝑗
𝑌 (𝑏, 𝑡)

𝜕𝑥
𝑗

= 0,

(𝑥
𝑘−1
∗ 𝑌 (𝑥, 𝑡))





𝑥=𝑏

= 0,

𝑘 = 1,𝑚, 𝑗 = 𝑚 + 1, 2𝑚.

(43)

The function 𝐹 satisfies the condition





𝐹 (𝑥, 𝑡, 𝜎

0
, 𝜎
1
) − 𝐹 (𝑥, 𝑡, 𝜔

0
, 𝜔
1
)





≤ 𝑑 (




𝜎
0
− 𝜔
0





+




𝜎
1
− 𝜔
1





) ,

(44)

for all (𝑥, 𝑡) ∈ 𝑄 = (0, 𝑏) × (0, 𝑇).
According to Theorem 5, problem (43) has a unique

solution 𝑌 depending continuously on 𝜑
1
(𝑥) ∈ 𝐻(0, 𝑏),

𝜑
2
(𝑥) ∈ 𝐻(0, 𝑏). It remains to prove that problem (40) has

a unique weak solution.
Consider the inner product

(L𝑦,
𝑥
2𝑚−1

∗ V
(2𝑚 − 1)!

)

𝐿
2
(𝑄)

= (𝑦
𝑡𝑡
,

𝑥
2𝑚−1

∗ V
(2𝑚 − 1)!

)

𝐿
2
(𝑄)

+ (−1)
𝑚
𝛼 (𝑡) (

𝜕
2𝑚+1

𝑦
𝑡

𝜕𝑥
2𝑚+1

,

𝑥
2𝑚−1

∗ V
(2𝑚 − 1)!

)

𝐿
2
(𝑄)

(45)

with V, 𝑦 ∈ 𝐶2(𝑄), such that 𝑦(𝑥, 0) = 0, 𝑦
𝑡
(𝑥, 0) = 0,

𝑦(0, 𝑡) = 0, V(𝑥, 𝑇) = 0, V
𝑡
(𝑥, 𝑇) = 0, V(𝑏, 𝑡) = 0, 𝑥𝑘−1∗

𝑦(𝑥, 𝑡)|
𝑥=𝑏

= 0, 𝑘 = 1,𝑚, 𝑥𝑘−1 ∗ V(𝑥, 𝑡)|
𝑥=𝑏

= 0, and 𝑘 =
0, 2𝑚 − 1.

By using the above conditions on V and 𝑦, we can write
(45) in the form of

− (

𝑥
2𝑚−1

∗ V
𝑡

(2𝑚 − 1)!

, 𝑦
𝑡
)

𝐿
2
(𝑄)

+ (−1)
𝑚+1
𝛼 (𝑡) (𝑦

𝑡
, V
𝑥
)
𝐿
2
(𝑄)

= (L𝑦,
𝑥
2𝑚−1

∗ V
(2𝑚 − 1)!

)

𝐿
2
(𝑄)

.

(46)

On the other hand, we have

(L𝑦,
𝑥
2𝑚−1

∗ V
(2𝑚 − 1)!

)

𝐿
2
(𝑄)

= (

𝑥
2𝑚−1

∗L𝑦

(2𝑚 − 1)!

, V)
𝐿
2
(𝑄)

. (47)

It follows from (46) and (47) that

Λ (V, 𝑦) = (
𝑥
2𝑚−1

∗L𝑦

(2𝑚 − 1)!

, V)
𝐿
2
(𝑄)

, (48)

where

Λ (V, 𝑦) = − (
𝑥
2𝑚−1

∗ 𝑦
𝑡

(2𝑚 − 1)!

, V
𝑡
)

𝐿
2
(𝑄)

+ (−1)
𝑚+1
𝛼 (𝑡) (𝑦

𝑡
, V
𝑥
)
𝐿
2
(𝑄)
.

(49)

Definition 8. One calls a function 𝑦 ∈ 𝐻
1
(0, 𝑇; 𝐿

2
(0, 𝑏))

a weak solution of problem (40) if (48) and conditions
𝜕
𝑗
𝑦(𝑏, 𝑡)/𝜕𝑥

𝑗
= 0, 𝑗 = 𝑚 + 1, 2𝑚, are satisfied.

One now considers the following iterated problems:

L𝑦 = 𝑦
(𝑛)

𝑡𝑡
+ (−1)

𝑚
𝛼 (𝑡)

𝜕

𝜕𝑡

(

𝜕
2𝑚+1

𝑦
(𝑛)

𝜕𝑥
2𝑚+1

)

= 𝐹(𝑥, 𝑡,

𝑥
𝑚−1
∗ 𝑦
(𝑛−1)

(𝑚 − 1)!

,

𝑥
𝑚−1
∗ 𝑦
(𝑛−1)

𝑡

(𝑚 − 1)!

) ,

𝑦
(𝑛)
(𝑥, 0) = 0, 𝑦

(𝑛)

𝑡
(𝑥, 0) = 0,

𝑦
(𝑛)
(0, 𝑡) = 0,

𝜕
𝑗
𝑦
(𝑛)
(𝑏, 𝑡)

𝜕𝑥
𝑗

= 0,

(𝑥
𝑘−1
∗ 𝑦
(𝑛)
(𝑥, 𝑡))





𝑥=𝑏

= 0,

𝑘 = 1,𝑚, 𝑗 = 𝑚 + 1, 2𝑚.

(50)
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Theorem 5 asserts that each problem (50) admits a unique
solution 𝑦(𝑛)(𝑥, 𝑡). By setting 𝑍(𝑛)(𝑥, 𝑡) = 𝑦

(𝑛+1)
(𝑥, 𝑡) −

𝑦
(𝑛)
(𝑥, 𝑡), one gets the following mixed iterated problem:

L𝑍
(𝑛)
= 𝑍
(𝑛)

𝑡𝑡
+ (−1)

𝑚
𝛼 (𝑡)

𝜕

𝜕𝑡

(

𝜕
2𝑚+1

𝑍
(𝑛)

𝜕𝑥
2𝑚+1

)

= 𝑃
(𝑛−1)

(𝑥, 𝑡) ,

𝑍
(𝑛)
(𝑥, 0) = 0, 𝑍

(𝑛)

𝑡
(𝑥, 0) = 0,

𝑍
(𝑛)
(0, 𝑡) = 0,

𝜕
𝑗
𝑍
(𝑛)
(𝑏, 𝑡)

𝜕𝑥
𝑗

= 0,

(𝑥
𝑘−1
∗ 𝑍
(𝑛)
(𝑥, 𝑡))





𝑥=𝑏

= 0,

𝑘 = 1,𝑚, 𝑗 = 𝑚 + 1, 2𝑚,

(51)

where

𝑃
(𝑛−1)

(𝑥, 𝑡) =𝐹(𝑥, 𝑡,

𝑥
𝑚−1
∗ 𝑦
(𝑛)

(𝑚 − 1)!

,

𝑥
𝑚−1
∗ 𝑦
(𝑛)

𝑡

(𝑚 − 1)!

)

− 𝐹(𝑥, 𝑡,

𝑥
𝑚−1
∗ 𝑦
(𝑛−1)

(𝑚 − 1)!

,

𝑥
𝑚−1
∗ 𝑦
(𝑛−1)

𝑡

(𝑚 − 1)!

) .

(52)

Theorem9. Assume that condition (44) holds then there exists
a positive constant 𝜆 such that the solution𝑍(𝑛) of problem (51)
satisfies the inequality






𝑍
(𝑛)


𝐻
1
(0,𝑇;𝐿

2
(0,𝑏))

≤ 𝜆






𝑍
(𝑛−1)


𝐻
1
(0,𝑇;𝐿

2
(0,𝑏))
, (53)

where 𝜆 = 𝑑√𝑇(𝑏𝑚/2𝑚/2)𝑒𝑇.

Proof. By considering the scalar product in 𝐿2(0, 𝜏; 𝐿2(0, 𝑏)),
0 ≤ 𝜏 ≤ 𝑇 of the partial differential equation in (51) and the
intgrodifferential operator ℘𝑍(𝑛) = 𝑍(𝑛)

𝑡
and by using initial

and boundary conditions in (51), we obtain

1

2

∫

𝑏

0

(𝑍
(𝑛)

𝑡
(𝑥, 𝜏))

2

𝑑𝑥 + ∫

𝑄
𝜏

𝛼 (𝑡) (

𝜕
𝑚
𝑍
(𝑛)

𝜕𝑥
𝑚
)

2

𝑑𝑥 𝑑𝑡

= (𝑃
(𝑛−1)
, 𝑍
(𝑛)

𝑡
)
𝐿
2
(0,𝜏;𝐿

2
(0,𝑏))
.

(54)

It is easy to show the elementary inequality

∫

𝑏

0

(𝑍
(𝑛)
(𝑥, 𝜏))

2

𝑑𝑥

≤ ∫

𝑏

0

(𝑍
(𝑛)
(𝑥, 0))

2

𝑑𝑥 + ∫

𝑄
𝜏

(𝑍
(𝑛)
)

2

𝑑𝑥 𝑑𝑡

+ ∫

𝑄
𝜏

(𝑍
(𝑛)

𝑡
)

2

𝑑𝑥 𝑑𝑡

= ∫

𝑄
𝜏

(𝑍
(𝑛)
)

2

𝑑𝑥 𝑑𝑡 + ∫

𝑄
𝜏

(𝑍
(𝑛)

𝑡
)

2

𝑑𝑥 𝑑𝑡.

(55)

Combination of (54) and (55) after discarding the second
term on the left-hand side of (54) and using Cauchy inequal-
ity lead to






𝑍
(𝑛)
(𝑥, 𝜏)







2

𝐿
2
(0,𝑏)
+






𝑍
(𝑛)

𝑡
(𝑥, 𝜏)







2

𝐿
2
(0,𝑏)

≤






𝑍
(𝑛)




2

𝐿
2
(𝑄
𝜏
)
+ 2






𝑍
(𝑛)

𝑡







2

𝐿
2
(𝑄
𝜏
)
+






𝑃
(𝑛−1)




2

𝐿
2
(𝑄
𝜏
)
.

(56)

On the other hand, we have





𝑃
(𝑛−1)




2

𝐿
2
(𝑄
𝜏
)

≤ 𝑑
2
(











𝑥
𝑚−1
∗ 𝑍
(𝑛−1)

(𝑚 − 1)!











2

𝐿
2
(𝑄
𝜏
)

+












𝑥
𝑚−1
∗ 𝑍
(𝑛−1)

𝑡

(𝑚 − 1)!












2

𝐿
2
(𝑄
𝜏
)

)

≤ (

𝑏
2

2

)

𝑚

𝑑
2
(






𝑍
(𝑛−1)




2

𝐿
2
(𝑄𝜏)

+






𝑍
(𝑛−1)

𝑡







2

𝐿
2
(𝑄𝜏)
) .

(57)

Combining inequalities (56) and (57) and using (11), we
obtain






𝑍
(𝑛)
(𝑥, 𝜏)







2

𝐿
2
(0,𝑏)
+






𝑍
(𝑛)

𝑡
(𝑥, 𝜏)







2

𝐿
2
(0,𝑏)

≤ 2 [






𝑍
(𝑛)




2

𝐿
2
(𝑄
𝜏
)
+






𝑍
(𝑛)

𝑡







2

𝐿
2
(𝑄
𝜏
)
]

+ 𝑑
2 𝑏
2𝑚

2
𝑚
(






𝑍
(𝑛−1)




2

𝐿
2
(𝑄
𝜏
)
+






𝑍
(𝑛−1)

𝑡







2

𝐿
2
(𝑄
𝜏
)
) .

(58)

By applying Gronwall’s lemma (see [22]) to inequality (58),
we have






𝑍
(𝑛)
(𝑥, 𝜏)







2

𝐿
2
(0,𝑏)
+






𝑍
(𝑛)

𝑡
(𝑥, 𝜏)







2

𝐿
2
(0,𝑏)

≤ 𝑑
2 𝑏
2𝑚

2
𝑚
𝑒
2𝜏
(






𝑍
(𝑛−1)




2

𝐿
2
(𝑄
𝜏
)
+






𝑍
(𝑛−1)

𝑡







2

𝐿
2
(𝑄
𝜏
)
) .

(59)

Integration of both sides of (59) with respect to 𝜏 over [0, 𝑇],
yields






𝑍
(𝑛)
(𝑥, 𝜏)





𝐻
1
(0,𝑇;𝐿

2
(0,𝑏))





𝑍
(𝑛−1)
(𝑥, 𝜏)




𝐻
1
(0,𝑇;𝐿

2
(0,𝑏))

≤ 𝑑√𝑇

𝑏
𝑚

2
𝑚/2
𝑒
𝑇
. (60)

Inequality (60) implies that the series ∑∞
𝑛=1
𝑍
(𝑛) converges

if 𝑑√𝑇(𝑏𝑚/2𝑚/2)𝑒𝑇 < 1. It is obvious that the sequence
(𝑦
(𝑛)
)
𝑛∈𝑁

defined by

𝑦
(𝑛)
(𝑥, 𝑡) = 𝑦

(0)
(𝑥, 𝑡) +

𝑛−1

∑

𝑘=0

𝑍
(𝑘)

= 𝑦
(0)
(𝑥, 𝑡) +

𝑛−1

∑

𝑘=0

(𝑦
(𝑘+1)

− 𝑦
(𝑘)
) , 𝑛 = 1, 2, . . .

(61)

converges to a limit function 𝑦 ∈ 𝐻1(0, 𝑇; 𝐿2(0, 𝑏)) which
must satisfy (48) and conditions 𝜕𝑗𝑦(𝑏, 𝑡)/𝜕𝑥𝑗 = 0, 𝑗 =
𝑚 + 1, 2𝑚.
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It is obvious that from the partial differential equation in
(50) we have

Λ(𝑦
(𝑛)
− 𝑦, V)

= (

𝜕
2

𝜕𝑡
2

𝑥
2𝑚−1

∗ (𝑦
(𝑛)
− 𝑦)

(2𝑚 − 1)!

, V)
𝐿
2
(𝑄)

+ (−1)
𝑚

× (𝛼 (𝑡)

𝑥
2𝑚−1

∗ ((𝜕
2𝑚+1

/𝜕𝑥
2𝑚+1

)(𝑦
(𝑛)

𝑡
− 𝑦
𝑡
))

(2𝑚 − 1)!

, V)
𝐿
2
(𝑄)

(62)

and we also have

Λ(𝑦
(𝑛)
, V)

= ((𝑥
2𝑚−1

∗ 𝐹(𝑥, 𝑡,

𝑥
𝑚−1
∗ 𝑦
(𝑛−1)

(𝑚 − 1)!

,

𝑥
𝑚−1
∗ 𝑦
(𝑛−1)

𝑡

(𝑚 − 1)!

))

× ((2𝑚 − 1)!)
−1
, V)
𝐿
2
(𝑄)

.

(63)

Equality (63) gives

Λ (𝑦, V) + Λ (𝑦(𝑛) − 𝑦, V)

= ((𝑥
2𝑚−1

∗ 𝐹(𝑥, 𝑡,

𝑥
𝑚−1
∗ 𝑦

(𝑚 − 1)!

,

𝑥
𝑚−1
∗ 𝑦
𝑡

(𝑚 − 1)!

))

× ((2𝑚 − 1)!)
−1
, V)
𝐿
2
(𝑄)

+ ((𝑥
2𝑚−1

∗ 𝐹(𝑥, 𝑡,

𝑥
𝑚−1
∗ 𝑦
(𝑛−1)

(𝑚 − 1)!

,

𝑥
𝑚−1
∗ 𝑦
(𝑛−1)

𝑡

(𝑚 − 1)!

))

× ((2𝑚 − 1)!)
−1

− (𝑥
2𝑚−1

∗ 𝐹(𝑥, 𝑡,

𝑥
𝑚−1
∗ 𝑦

(𝑚 − 1)!

,

𝑥
𝑚−1
∗ 𝑦
𝑡

(𝑚 − 1)!

))

× ((2𝑚 − 1)!)
−1
, V)
𝐿
2
(𝑄)

.

(64)

By using conditions on V, evaluation of the right-hand side of
(62) gives

(

𝜕
2

𝜕𝑡
2

𝑥
2𝑚−1

∗ (𝑦
(𝑛)
− 𝑦)

(2𝑚 − 1)!

, V)
𝐿
2
(𝑄)

= −(

𝑥
2𝑚−1

∗ (𝑦
(𝑛)

𝑡
− 𝑦
𝑡
)

(2𝑚 − 1)!

, V
𝑡
)

𝐿
2
(𝑄)

,

(−1)
𝑚
(𝛼 (𝑡)

𝑥
2𝑚−1

∗ ((𝜕
2𝑚+1

/𝜕𝑥
2𝑚+1

)(𝑦
(𝑛)

𝑡
− 𝑦
𝑡
))

(2𝑚 − 1)!

, V)
𝐿
2
(𝑄)

= (−1)
𝑚+1
(𝛼 (𝑡) (𝑦

(𝑛)

𝑡
− 𝑦
𝑡
) , V
𝑥
)
𝐿
2
(𝑄)
.

(65)

Combination of (62) and (65) leads to

Λ(𝑦
(𝑛)
− 𝑦, V) = − (

𝑥
2𝑚−1

∗ (𝑦
(𝑛)

𝑡
− 𝑦
𝑡
)

(2𝑚 − 1)!

, V
𝑡
)

𝐿
2
(𝑄)

+ (−1)
𝑚+1
(𝛼 (𝑡) (𝑦

(𝑛)

𝑡
− 𝑦
𝑡
) , V
𝑥
)
𝐿
2
(𝑄)
.

(66)

Application of Cauchy Shwartz to the two terms of the right-
hand side of (66) gives

− (

𝑥
2𝑚−1

∗ (𝑦
(𝑛)

𝑡
− 𝑦
𝑡
)

(2𝑚 − 1)!

, V
𝑡
)

𝐿
2
(𝑄)

≤













𝑥
2𝑚−1

∗ (𝑦
(𝑛)

𝑡
− 𝑦
𝑡
)

(2𝑚 − 1)!











𝐿
2
(𝑄)

⋅




V
𝑡




𝐿
2
(𝑄)

≤

𝑏
4𝑚

2
2𝑚






(𝑦
(𝑛)

𝑡
− 𝑦
𝑡
)





𝐿
2
(𝑄)
⋅




V
𝑡




𝐿
2
(𝑄)

≤

𝑏
4𝑚

2
2𝑚






𝑦
(𝑛)
− 𝑦





𝐻
1
(0,𝑇;𝐿

2
(0,𝑏))

⋅




V
𝑡




𝐿
2
(𝑄)
,

(−1)
𝑚+1
(𝛼 (𝑡) (𝑦

(𝑛)

𝑡
− 𝑦
𝑡
) , V
𝑥
)
𝐿
2
(𝑄)

≤ 𝑐
1






(𝑦
(𝑛)

𝑡
− 𝑦
𝑡
)





𝐿
2
(𝑄)
⋅




V
𝑥




𝐿
2
(𝑄)

≤ 𝑐
1






𝑦
(𝑛)
− 𝑦





𝐻
1
(0,𝑇;𝐿

2
(0,𝑏))

⋅




V
𝑥




𝐿
2
(𝑄)
.

(67)

It follows from (66)-(67) that

Λ(𝑦
(𝑛)
− 𝑦, V)

≤ max(𝑏
4𝑚

2
2𝑚
, 𝑐
1
)






𝑦
(𝑛)
− 𝑦





𝐻
1
(0,𝑇;𝐿

2
(0,𝑏))

⋅ (




V
𝑥




𝐿
2
(𝑄)
+




V
𝑡




𝐿
2
(𝑄)
) .

(68)

On the other hand we have

((𝑥
2𝑚−1

∗ 𝐹(𝑥, 𝑡,

𝑥
𝑚−1
∗ 𝑦
(𝑛−1)

(𝑚 − 1)!

,

𝑥
𝑚−1
∗ 𝑦
(𝑛−1)

𝑡

(𝑚 − 1)!

))

× ((2𝑚 − 1)!)
−1

− (𝑥
2𝑚−1

∗ 𝐹(𝑥, 𝑡,

𝑥
𝑚−1
∗ 𝑦

(𝑚 − 1)!

,

𝑥
𝑚−1
∗ 𝑦
𝑡

(𝑚 − 1)!

))
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× ((2𝑚 − 1)!)
−1
, V)
𝐿
2
(𝑄)

≤ (

𝑏
4𝑚

2
2𝑚
)𝑑‖V‖𝐿2(𝑄)

× {











𝑥
𝑚−1
∗ (𝑦
(𝑛)
− 𝑦)

(𝑚 − 1)!









𝐻
1
(0,𝑇;𝐿

2
(0,𝑏))

}

≤ (

𝑏
6𝑚+1

2
3𝑚
)𝑑‖V‖𝐿2(𝑄)

× {






𝑦
(𝑛)
− 𝑦





𝐻
1
(0,𝑇;𝐿

2
(0,𝑏))
} .

(69)

Now taking into account inequalities (68) and (69) and
passing to limit inequality (64) as 𝑛 → ∞, we obtain

Λ (𝑦, V) = ((𝑥2𝑚−1 ∗ 𝐹(𝑥, 𝑡,
𝑥
𝑚−1
∗ 𝑦

(𝑚 − 1)!

,

𝑥
𝑚−1
∗ 𝑦
𝑡

(𝑚 − 1)!

))

× ((2𝑚 − 1)!)
−1
, V)
𝐿
2
(𝑄)

(70)

which is exactly inequality (48). Now since 𝑦 ∈

𝐻
1
(0, 𝑇; 𝐿

2
(0, 𝑏)), then ∫𝑡

0
(𝜕
𝑗
𝑦(𝑏, 𝑡)/𝜕𝑥

𝑗
)𝑑𝑠 ∈ 𝐶(𝑄), and

we conclude that 𝜕𝑗𝑦(𝑏, 𝑡)/𝜕𝑥𝑗 = 0, 𝑗 = 𝑚 + 1, 2𝑚, almost
everywhere.

Wenowprove the uniqueness of solution of problem (40).

Theorem 10. Assume that condition (44) is fulfilled, then the
initial boundary value problem (40) admits a unique solution.

Proof. Suppose that 𝑆
1
, 𝑆
2
∈ 𝐻

1
(0, 𝑇; 𝐿

2
(0, 𝑏)) are two

solutions of problem (40), then 𝑆 = 𝑆
1
−𝑆
2
∈ 𝐻
1
(0, 𝑇; 𝐿

2
(0, 𝑏))

and satisfies

𝑆
𝑡𝑡
+ (−1)

𝑚
𝛼 (𝑡)

𝜕

𝜕𝑡

(

𝜕
2𝑚+1

𝑆

𝜕𝑥
2𝑚+1

) = 𝐻 (𝑥, 𝑡) ,

𝑆 (𝑥, 0) = 0, 𝑆
𝑡
(𝑥, 0) = 0,

𝑆 (0, 𝑡) = 0,

𝜕
𝑗
𝑆 (𝑏, 𝑡)

𝜕𝑥
𝑗

= 0,

(𝑥
𝑘−1
∗ 𝑆 (𝑥, 𝑡))





𝑥=𝑏

= 0,

𝑘 = 1,𝑚, 𝑗 = 𝑚 + 1, 2𝑚,

(71)

where

𝐻(𝑥, 𝑡) = 𝐹(𝑥, 𝑡,

𝑥
𝑚−1
∗ 𝑆
1

(𝑚 − 1)!

,

𝑥
𝑚−1
∗ 𝜕𝑆
1
/𝜕𝑡

(𝑚 − 1)!

)

− 𝐹(𝑥, 𝑡,

𝑥
𝑚−1
∗ 𝑆
2

(𝑚 − 1)!

,

𝑥
𝑚−1
∗ 𝜕𝑆
2
/𝜕𝑡

(𝑚 − 1)!

) .

(72)

As we have proceeded in the proof ofTheorem 9, we consider
the scalar product in 𝐿2(0, 𝜏; 𝐿2(0, 𝑏)) of the differential
equation in (71) and the operator ℘𝑆 = 𝜕𝑆/𝜕𝑡, we obtain

‖𝑆‖𝐻
1
(0,𝑇;𝐿

2
(0,𝑏))

≤ 𝜆‖𝑆‖𝐻
1
(0,𝑇;𝐿

2
(0,𝑏))
, (73)

where 𝜆 = 𝑑√𝑇(𝑏𝑚/2𝑚/2)𝑒𝑇.
Since it is assumed that 𝜆 < 1, then it follows that 𝑆 = 𝑆

1
−

𝑆
2
= 0. Therefore 𝑆

1
= 𝑆
2
. Hence the uniqueness of solution

of problem (40) is in 𝐻1(0, 𝑇; 𝐿2(0, 𝑏)).

Appendices

A.

Proof of Corollary 1. We have

(

𝑥
𝑚−1
∗ 𝑢(𝑥, 𝑡)

(𝑚 − 1)!

)

2

= (∫

𝑥

0

𝜉
𝑚−2
∗ 𝑢(𝜉, 𝑡)

(𝑚 − 2)!

𝑑𝜉)

2

≤ (∫

𝑥

0

𝑑𝜉)(∫

𝑥

0

(

𝜉
𝑚−2
∗ 𝑢(𝜉, 𝑡)

(𝑚 − 2)!

)

2

𝑑𝜉)

≤ 𝑥∫

𝑥

0

(

𝜉
𝑚−2
∗ 𝑢(𝜉, 𝑡)

(𝑚 − 2)!

)

2

𝑑𝜉

≤ 𝑥∫

𝑏

0

(

𝜉
𝑚−2
∗ 𝑢(𝜉, 𝑡)

(𝑚 − 2)!

)

2

𝑑𝜉.

(A.1)

Consequently,

‖𝑢‖
2

𝐻(0,𝑏)
≤ ∫

𝑏

0

(

𝜉
𝑚−2
∗ 𝑢 (𝜉, 𝑡)

(𝑚 − 2)!

)

2

𝑑𝑥 ⋅ ∫

𝑏

0

𝑥 𝑑𝑥

≤

𝑏
2

2











∫

𝑥

0

(𝑥 − 𝑧)
𝑚−2
𝑢(𝑧, 𝑡)

(𝑚 − 2)!

𝑑𝑧











2

𝐿
2
(0,𝑏)

.

(A.2)

Proof of Theorem 3. We consider the scalar product in 𝐿2(𝑄𝜏)
of the differential equation in problem (17) and the integrod-
ifferential operator

𝑀𝑢 = 2(−1)
𝑚 𝑥
2𝑚−1

∗ 𝑢
𝑡
(𝑥, 𝑡)

(2𝑚 − 1)!

, (A.3)

where 𝑄𝜏 = (0, 𝑏) × (0, 𝜏) and 0 ≤ 𝜏 ≤ 𝑇, we obtain

(L𝑢,𝑀𝑢)
𝐿
2
(𝑄
𝜏
)

= 2(−1)
𝑚
(𝑢
𝑡𝑡
,

𝑥
2𝑚−1

∗ 𝑢
𝑡
(𝑥, 𝑡)

(2𝑚 − 1)!

)

𝐿
2
(𝑄
𝜏
)

+ 2(𝛼 (𝑡)

𝜕
2𝑚+1

𝑢
𝑡

𝜕𝑥
2𝑚+1

,

𝑥
2𝑚−1

∗ 𝑢
𝑡
(𝑥, 𝑡)

(2𝑚 − 1)!

)

𝐿
2
(𝑄
𝜏
)

.

(A.4)
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We separately consider the integrals in the right-hand side
of (A.4) and we integrate by parts and taking into account
boundary and initial conditions in (17), we obtain

2(−1)
𝑚
(𝑢
𝑡𝑡
,

𝑥
2𝑚−1

∗ 𝑢
𝑡
(𝑥, 𝑡)

(2𝑚 − 1)!

)

𝐿
2
(𝑄
𝜏
)

= ∫

𝑏

0

(

𝑥
𝑚−1
∗ 𝑢
𝑡
(𝑥, 𝜏)

(𝑚 − 1)!

)

2

𝑑𝑥

− ∫

𝑏

0

(

𝑥
𝑚−1
∗ 𝜑
2

(𝑚 − 1)!

)

2

𝑑𝑥,

2(𝛼 (𝑡)

𝜕
2𝑚+1

𝑢
𝑡

𝜕𝑥
2𝑚+1

,

𝑥
2𝑚−1

∗ 𝑢
𝑡
(𝑥, 𝑡)

(2𝑚 − 1)!

)

𝐿
2
(𝑄
𝜏
)

= ∫

𝜏

0

𝛼 (𝑡) 𝑢
2

𝑡
(𝑏, 𝑡) 𝑑𝑡.

(A.5)

Substitution of (A.5) into (A.4) yields

∫

𝜏

0

𝛼 (𝑡) 𝑢
2

𝑡
(𝑏, 0) 𝑑𝑡 + ∫

𝑏

0

(

𝑥
𝑚−1
∗ 𝑢
𝑡
(𝑥, 𝜏)

(𝑚 − 1)!

)

2

𝑑𝑥

= (L𝑢,𝑀𝑢)
𝐿
2
(𝑄
𝜏
)
+ ∫

𝑏

0

(

𝑥
𝑚−1
∗ 𝜑
2

(𝑚 − 1)!

)

2

𝑑𝑥.

(A.6)

By Corollary 1, we have

(L𝑢,𝑀𝑢)
𝐿
2
(𝑄
𝜏
)

≤




𝑓





2

𝐿
2
(𝑄
𝜏
)
+ (

𝑏
2

2

)

𝑚





𝑢
𝑡






2

𝐿
2
(0,𝜏;𝐻(0,𝑏))

.

(A.7)

If we discard the first term in (A.6), and by using (A.7), we
obtain





𝑢
𝑡
(𝑥, 𝜏)






2

𝐻(0,𝑏)
≤




𝑓





2

𝐿
2
(𝑄
𝜏
)
+




𝜑
2






2

𝐻(0,𝑏)

+ (

𝑏
2

2

)

𝑚





𝑢
𝑡






2

𝐿
2
(0,𝜏;𝐻(0,𝑏))

.

(A.8)

By virtue of the elementary inequality

‖𝑢 (𝑥, 𝜏)‖
2

𝐻(0,𝑏)

≤




𝜑
1






2

𝐻(0,𝑏)
+ ‖𝑢‖
2

𝐿
2
(0,𝜏;𝐻(0,𝑏))

+




𝑢
𝑡






2

𝐿
2
(0,𝜏;𝐻(0,𝑏))

,

(A.9)

and (A.8), we have

‖𝑢 (𝑥, 𝜏)‖
2

𝐻(0,𝑏)
+




𝑢
𝑡
(𝑥, 𝜏)






2

𝐻(0,𝑏)

≤




𝑓





2

𝐿
2
(𝑄
𝜏
)
+




𝜑
1






2

𝐵
𝑚

2
(0,𝑏)
+




𝜑
2






2

𝐵
𝑚

2
(0,𝑏)

+ 𝑐
5
(‖𝑢‖
2

𝐿
2
(0,𝜏;𝐻(0,𝑏))

+




𝑢
𝑡






2

𝐿
2
(0,𝜏;𝐻(0,𝑏))

) ,

(A.10)

where

𝑐
5
= 1 + (

𝑏
2

2

)

𝑚

. (A.11)

Let

ℎ
1
(𝑡) = 0,

ℎ
2
(𝑡) = ‖𝑢 (𝑥, 𝜏)‖

2

𝐻(0,𝑏)
+




𝑢
𝑡
(𝑥, 𝜏)






2

𝐻(0,𝑏)
,

ℎ
3
(𝑡) =





𝑓





2

𝐿
2
(𝑄
𝜏
)
+




𝜑
1






2

𝐻(0,𝑏)
+




𝜑
2






2

𝐻(0,𝑏)
,

(A.12)

then it follows from Gronwall’s lemma (see [3]) that

‖𝑢 (𝑥, 𝜏)‖
2

𝐻(0,𝑏)
+




𝑢
𝑡
(𝑥, 𝜏)






2

𝐻(0,𝑏)

≤ exp (𝑐
5
𝜏) ⋅ (





𝑓





2

𝐿
2
(𝑄
𝜏
)
+




𝜑
1






2

𝐻(0,𝑏)
+




𝜑
2






2

𝐻(0,𝑏)
)

≤ exp (𝑐
5
𝑇) ⋅ (





𝑓





2

𝐿
2
(𝑄)
+




𝜑
1






2

𝐻(0,𝑏)
+




𝜑
2






2

𝐻(0,𝑏)
) .

(A.13)

The right-hand side in (A.13) is independent of 𝜏, hence
replacing the left-hand side by its upper bound with respect
to 𝜏 over [0, 𝑇], we obtain (18), with 𝑀 = exp(𝑐

5
𝑇), and

Theorem 3 follows.

B.

Proof of Lemma 7. We have

Ψ (𝑥, 𝑡) = 𝛼

(𝑡)

𝑥
2𝑚−1

∗ 𝑢
𝑡
(𝑥, 𝑡)

(2𝑚 − 1)!

+ 2𝛼

(𝑡)

𝑥
2𝑚−1

∗ 𝑢
𝑡𝑡
(𝑥, 𝑡)

(2𝑚 − 1)!

+ 𝛼 (𝑡)

𝜕

𝜕𝑡

(

𝑥
2𝑚−1

∗ 𝑢
𝑡
(𝑥, 𝑡)

(2𝑚 − 1)!

) .

(B.1)

It is obvious that the first and second terms on the
right-side of (B.1) are in 𝐿2(𝑄). To prove that the term
𝛼(𝑡)(𝜕/𝜕𝑡)((𝑥

2𝑚−1
∗ 𝑢
𝑡
(𝑥, 𝑡))/(2𝑚 − 1)!) ∈ 𝐿

2
(𝑄), we use the

𝑡-averaging operators 𝜌
𝜀
of the form

(𝜌
𝜀
V) (𝑥, 𝑡) =

1

𝜀

∫

+∞

−∞

𝑊(

𝑠 − 𝑡

𝜀

) V (𝑥, 𝑠) 𝑑𝑠, (B.2)

where𝑊 ∈ 𝐶∞
0
(0, 𝑇),𝑊(𝑡) ≥ 0, ∫

𝐼𝑅
𝑊(𝑡)𝑑𝑡 = 1.

If we apply the operators 𝜌
𝜀
and 𝜕/𝜕𝑡 to (23), we obtain

𝛼 (𝑡)

𝜕

𝜕𝑡

𝜌
𝜀

𝑥
2𝑚−1

∗ 𝑢
𝑡𝑡
(𝑥, 𝑡)

(2𝑚 − 1)!

= −𝛼

(𝑡) 𝜌
𝜀

𝑥
2𝑚−1

∗ 𝑢
𝑡𝑡
(𝑥, 𝑡)

(2𝑚 − 1)!

+

𝜕

𝜕𝑡

𝜌
𝜀
𝑔

+

𝜕

𝜕𝑡

(𝛼 (𝑡) 𝜌
𝜀

𝑥
2𝑚−1

∗ 𝑢
𝑡𝑡
(𝑥, 𝑡)

(2𝑚 − 1)!

−𝜌
𝜀
𝛼 (𝑡)

𝑥
2𝑚−1

∗ 𝑢
𝑡𝑡
(𝑥, 𝑡)

(2𝑚 − 1)!

) .

(B.3)



Journal of Applied Mathematics 11

It follows from (B.3) that

𝑐
2

0











𝜕

𝜕𝑡

𝜌
𝜀

𝑥
2𝑚−1

∗ 𝑢
𝑡𝑡
(𝑥, 𝑡)

(2𝑚 − 1)!











2

𝐿
2
(𝑄
𝑠
)

≤ 3𝑐
2

3











𝜌
𝜀

𝑥
2𝑚−1

∗ 𝑢
𝑡𝑡
(𝑥, 𝑡)

(2𝑚 − 1)!











2

𝐿
2
(𝑄
𝑠
)

+ 3










𝜕

𝜕𝑡

𝜌
𝜀
𝑔










2

𝐿
2
(𝑄
𝑠
)

+ 3











𝜕

𝜕𝑡

(𝛼 (𝑡) 𝜌
𝜀

𝑥
2𝑚−1

∗ 𝑢
𝑡𝑡
(𝑥, 𝑡)

(2𝑚 − 1)!

−𝜌
𝜀
𝛼 (𝑡)

𝑥
2𝑚−1

∗ 𝑢
𝑡𝑡
(𝑥, 𝑡)

(2𝑚 − 1)!

)











2

𝐿
2
(𝑄
𝑠
)

.

(B.4)

Now by using the properties of the 𝑡-averaging operators
𝜌
𝜀
, conditions (H1) and (H2), and Corollary 2, we see from

(B.4) that











𝑥
2𝑚−1

∗ 𝑢
𝑡𝑡𝑡
(𝑥, 𝑡)

(2𝑚 − 1)!











2

𝐿
2
(𝑄
𝑠
)

≤ 𝑐
6
[




𝑢
𝑡𝑡






2

𝐿
2
(𝑄
𝑠
)
+










𝜕

𝜕𝑡

𝜌
𝜀
𝑔










2

𝐿
2
(𝑄
𝑠
)

] ,

(B.5)

where

𝑐
6
=

3

𝑐
2

0

max(1,
𝑐
2

3
𝑏
4𝑚

2
2𝑚
) . (B.6)

Since 𝜌
𝜀
ℎ → ℎ in 𝐿2(𝑄) as 𝜀 → 0 and the norm of (𝑥2𝑚−1 ∗

𝑢
××
(𝑥, 𝑡))/(2𝑚 − 1)! in 𝐿2(𝑄) is bounded, we conclude that

𝛼(𝑡)(𝜕/𝜕𝑡)((𝑥
2𝑚−1

∗ 𝑢
𝑡𝑡𝑡
(𝑥, 𝑡))/(2𝑚 − 1)!) ∈ 𝐿

2
(𝑄).
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