
Research Article
The Construction of Type-2 Fuzzy Reasoning Relations for
Type-2 Fuzzy Logic Systems

Shan Zhao and Hongxing Li

School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China

Correspondence should be addressed to Shan Zhao; zhaoshan1984@mail.dlut.edu.cn

Received 24 November 2013; Accepted 7 January 2014; Published 9 March 2014

Academic Editor: Chong Lin

Copyright © 2014 S. Zhao and H. Li. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Type-2 fuzzy reasoning relations are the type-2 fuzzy relations obtained froma group of type-2 fuzzy reasonings by using extended t-
(co)norm, which are essential for implementing type-2 fuzzy logic systems. In this paper an algorithm is provided for constructing
type-2 fuzzy reasoning relations of SISO type-2 fuzzy logic systems. First, we give some properties of extended t-(co)norm and
simplify the expression of type-2 fuzzy reasoning relations in accordance with different input subdomains under certain conditions.
And then different techniques are discussed to solve the simplified expressions on the input subdomains by using the related
methods on solving fuzzy relation equations. Besides, it is pointed out that the computation amount level of the proposed algorithm
is the same as that of polynomials and the possibility of applying the proposed algorithm in the construction of type-2 fuzzy
reasoning relations is illustrated on several examples. Finally, the calculation of an arbitrary extended continuous t-norm can be
obtained as the special case of the proposed algorithm.

1. Introduction

Type-2 fuzzy sets first proposed by Zadeh in 1975 [1] are fuzzy
sets equipped with ordinary fuzzy subsets of [0, 1] as mem-
bership grades, henceforth called fuzzy truth values. Then
Mizumoto and Tanaka [2, 3] used Zadeh’s extension principle
to extend minimum and maximum both based on minimum
for calculating union and intersection on type-2 fuzzy sets,
respectively, and showed that the results of the union and
intersection keep the convexity and normality. Based on the
theory of type-2 fuzzy sets, Karnik et al. [4] proposed a new
fuzzy system called type-2 fuzzy system. Up to now, both
the theory and application of type-2 fuzzy systems have been
widely researched (see, e.g., [5–8]). What is more, type-2
fuzzy neural networks and type-2 fuzzy classification and
pattern recognition have been also studied (see, e.g., [9, 10]).
However, the computation process of the extended operations
on the noninterval type-2 fuzzy sets is more complex than
that of ordinary operations on type-1 fuzzy sets, which blocks
the wide use of the noninterval type-2 fuzzy logic systems,
type-2 fuzzy neural networks, and so on. In recent years, a
heated wave of research about the operation on type-2 fuzzy
sets has been set off. For example, Karnik and Mendel [11]

further generalized these definitions of operations presented
by Mizumoto and Tanaka and gave some analytical formulae
for extensions of extended maximum and minimum based
on minimum or product. Kawaguchi and Miyakoshi [12,
13] showed that extended continuous t-(co)norms based on
arbitrary t-norm satisfy the definitions of type-2 t-(co)norms.
C. L.Walker and E. A.Walker [14, 15] considered the algebras
of fuzzy truth values equipped with extended maximum
and minimum based on minimum. Coupland and John
[16, 17] presented geometric methods for performing the
operations of extended minimum and maximum based on
minimum on type-2 fuzzy sets. Starczewski [18] provided
analytical expressions for membership functions of five kinds
of extended t-norms. Ling and Zhang [19] reconstructed
the framework of set-theoretic operations on triangle type-
2 fuzzy sets by presenting polygon type-2 fuzzy sets and
gave manageable and simplified formulas for operations on
triangle type-2 fuzzy sets. Hu and Kwong [20] discussed
extended t-norm on a linearly ordered set with a unit interval
and a real number set as special cases.

From the above it can be seen that these research
works have well contributed to the properties of extended t-
(co)norms and gave many useful results for the calculations
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of some kinds of extended t-(co)norms. All of these promote
the structure of noninterval type-2 fuzzy logic systems
since extended t-(co)norms are the important tools in the
construction of type-2 fuzzy reasoning relations. Neverthe-
less, there are still many other extended t-norms whose
membership functions lack analytical expressions or feasible
algorithms. It hampers the attempt of the construction of
type-2 fuzzy reasoning relations by using these extended t-
norms. Besides, the work [18] leaves a key problem to us
that, except for extended minimum and maximum both
based on minimum, no theory guarantees that the results
of general extended t-(co)norms on two type-2 fuzzy sets
still satisfy the calculation conditions (e.g., convexity and
normality). Moreover, there are always more than two fuzzy
truth values in the calculation process of the construction of
type-2 fuzzy reasoning relations; it may be time-consuming
and laborious to proceed the calculation just on two fuzzy
truth values each time. It is a natural idea that we can solve
the computation in an integral and faster way. This paper
is devoted to deal with these problems we have mentioned
above. The following rows present our results: we show
that the results of extended continuous t-(co)norms based
on arbitrary t-norm keep the convexity and normality and
simplify the expression of type-2 fuzzy reasoning relations
of type-2 fuzzy logic systems with single input and single
output (SISO) in accordance with different input subdomains
under the condition that all the fuzzy truth values of type-
2 fuzzy sets participated in the calculation are required to
be convex and normal (Theorem 2). After that, we solve
the simplified expressions on three input subdomains (from
Theorem 3 to Theorem 9), which demonstrate an algorithm
to construct type-2 fuzzy reasoning relations.The complexity
of the algorithm is analyzed and it is pointed out that the
computation amount level of the proposed algorithm is the
same as that of polynomials. And then the possibility of
applying the proposed algorithm in the construction of type-
2 fuzzy reasoning relations is illustrated on several examples.
Besides, the calculation of a class of extended t-norms being
broader than those in [18] can be obtained as the special case
of the proposed algorithm.

This paper is organized in five sections. The follow-
ing section contains some preliminary knowledge and the
concrete expression of type-2 fuzzy reasoning relations of
SISO type-2 fuzzy logic systems. In Section 3 the method
for the construction of type-2 fuzzy reasoning relations is
investigated under certain conditions on the basis of the
properties of extended t-(co)norm and the related methods
on solvingmethod of fuzzy relation equations. Section 4 gives
several examples by using the presentedmethod. Conclusions
are given in Section 5.

2. Preliminaries

A type-2 fuzzy set 𝐴 on the domain 𝑋 is characterized by a
membership function 𝜇

̃

𝐴

: 𝑋 → F([0, 1]), 𝑥 󳨃→ 𝜇
̃

𝐴

(𝑥),
where F([0, 1]) = {𝑓 | 𝑓 : [0, 1] → [0, 1]}, and 𝑓 ∈

F([0, 1]) is called a fuzzy truth value. Convenience to the
following writing, we denote 𝜇

̃

𝐴

(𝑥) by 𝜇
̃

𝐴(𝑥)

. Moreover, 𝑓 is
normal if there exists an 𝑥 ∈ [0, 1] such that 𝑓(𝑥) = 1 and

convex if, for any 𝑥
1

, 𝑥
2

∈ [0, 1] and each 𝜆 ∈ [0, 1], 𝑓(𝜆𝑥
1

+

(1 − 𝜆)𝑥
2

) ⩾ 𝑓(𝑥
1

) ∧ 𝑓(𝑥
2

). Let F
𝐶𝑁

([0, 1]) be the set
of both convex and normal fuzzy truth values. Assume that
𝐴, 𝐵 ∈ F̃(𝑋). Let ⋆ and ⋆󸀠 be t-norm and⬦ t-conorm. Union
and intersection on type-2 fuzzy sets are given as follows. For
∀𝑥 ∈ 𝑋, ∀𝑤 ∈ [0, 1],

𝐴 ∪ 𝐵 : 𝜇
(

̃

𝐴∪

̃

𝐵)(𝑥)

(𝑤) ≜ (𝜇
̃

𝐴(𝑥)

⊔
(⬦,⋆

󸀠
)

𝜇
̃

𝐵(𝑥)

) (𝑤)

≜ sup
𝑤=𝑢⬦V

(𝜇
̃

𝐴(𝑥)

(𝑢) ⋆
󸀠

𝜇
̃

𝐵(𝑥)

(V)) ,

𝐴 ∩ 𝐵 : 𝜇
(

̃

𝐴∩

̃

𝐵)(𝑥)

(𝑤) ≜ (𝜇
̃

𝐴(𝑥)

⊓
(⋆,⋆

󸀠
)

𝜇
̃

𝐵(𝑥)

) (𝑤)

≜ sup
𝑤=𝑢⋆V

(𝜇
̃

𝐴(𝑥)

(𝑢) ⋆
󸀠

𝜇
̃

𝐵(𝑥)

(V)) ,

(1)

where ⊔(⬦,⋆
󸀠
) and ⊓

(⋆,⋆

󸀠
) are called extended t-conorm and

extended t-norm, respectively. Let 𝑋 × 𝑌 be a new domain
constructed by two domains 𝑋, 𝑌. A type-2 fuzzy set 𝑅̃ ∈

F̃(𝑋 × 𝑌) is called a type-2 fuzzy relation between 𝑋 and 𝑌,
where

𝜇
̃

𝑅

: 𝑋 × 𝑌 󳨀→ F ([0, 1]) , (𝑥, 𝑦) 󳨃󳨀→ 𝜇
̃

𝑅

(𝑥, 𝑦) ≜ 𝜇
̃

𝑅(𝑥,𝑦)

.

(2)

In the following, we will give the expression of type-2 fuzzy
relation from a group of type-2 fuzzy reasoning. This type-2
fuzzy relation is called a type-2 fuzzy reasoning relation. Let
{𝐴

𝑖

}
1⩽𝑖⩽𝑁

and {𝐵
𝑖

}
1⩽𝑖⩽𝑁

be, respectively, type-2 fuzzy sets on
input domain𝑋 and output domain 𝑌. For a group of type-2
fuzzy reasonings in a SISO type-2 fuzzy logic system

if 𝑥 is 𝐴
𝑖

then 𝑦 is 𝐵
𝑖

, 𝑖 = 1, . . . , 𝑁, (3)

which can be rewritten as {𝐴
𝑖

→ 𝐵
𝑖

, 𝑖 = 1, . . . , 𝑁} and
induce the total type-2 fuzzy reasoning relation as follows:

𝑅̃ =

𝑁

⋃
𝑖=1

𝑅̃
𝑖

=

𝑁

⋃
𝑖=1

(𝐴
𝑖

󳨀→ 𝐵
𝑖

) . (4)

By choosing the suitable ⊔(∨,⋆
󸀠
) and ⊓(⋆,⋆

󸀠
) we can obtain that

𝜇
̃

𝑅(𝑥,𝑦)

(𝑤) = 𝜇
(⋃

𝑁

𝑖=1
̃

𝑅

𝑖
)(𝑥,𝑦)

(𝑤)

= (⊔
(∨,⋆

󸀠
)

𝑁

𝑖=1

(𝜇
̃

𝐴

𝑖
(𝑥)

⊓
(⋆,⋆

󸀠
)

𝜇
̃

𝐵

𝑖
(𝑦)

)) (𝑤)

= sup
⋁

𝑁

𝑖=1(𝑢𝑖⋆V𝑖)=𝑤
(T

󸀠

𝑁

𝑖=1

(𝜇
̃

𝐴

𝑖
(𝑥)

(𝑢
𝑖

) ⋆
󸀠

𝜇
̃

𝐵

𝑖
(𝑦)

(V
𝑖

))) ,

(5)

whereT󸀠 and ⋆󸀠 indicate the same t-norm. It is clear that the
difficulty on the calculation of type-2 fuzzy reasoning relation
is to solve the expression (5). For convenience, we first fix 𝑥
and 𝑦 and denote

u = (𝑢
1

, . . . , 𝑢
𝑁

) , k = (V
1

, . . . , V
𝑁

) ,

𝐹 (𝑤) = 𝜇
̃

𝑅(𝑥,𝑦)

(𝑤) ,



Journal of Applied Mathematics 3

𝑔
𝑖

(𝑢
𝑖

) = 𝜇
̃

𝐴

𝑖
(𝑥)

(𝑢
𝑖

) , 𝑖 = 1, . . . , 𝑁,

ℎ
𝑖

(V
𝑖

) = 𝜇
̃

𝐵

𝑖
(𝑦)

(V
𝑖

) , 𝑖 = 1, . . . , 𝑁,

𝑓 (u, k) = T
󸀠

𝑁

𝑖=1

(𝑔 (𝑢
𝑖

) ⋆
󸀠

ℎ (V
𝑖

)) ,

𝑃
𝑤

= {(u, k) ∈ [0, 1]2𝑁 |

𝑁

⋁
𝑖=1

(𝑢
𝑖

⋆ V
𝑖

) = 𝑤} .

(6)

Then the expression (5) can be rewritten as

𝐹 (𝑤) = sup {𝑓 (u, k) | (u, k) ∈ 𝑃
𝑤

} . (7)

In what follows, we mainly pay attention to working out
the expression (7). When 𝑤 changes, 𝑃

𝑤

and 𝐹(𝑤) change
with it. Then in order to solve 𝐹(𝑤), we should reduce the
range of𝑃

𝑤

asmuch as possible and then obtain𝐹(𝑤) (i.e., the
maximum of 𝑓(u, k) in 𝑃

𝑤

) according to the characteristic of
elements in𝑃

𝑤

. Next, wewill focus on analyzing the condition
⋁
𝑁

𝑖=1

(𝑢
𝑖

⋆ V
𝑖

) = 𝑤, which is a fuzzy relation equation if u
is regarded as a coefficient vector and k is regarded as an
unknown vector. It is known that fuzzy relation equation
was first presented by Sanchez in 1976 [21]. Following it, a
lot of work has focused on the solvability conditions and
the solution sets. For example, these works [22–24] have
systematically introduced some theories of fuzzy relational
equations. Bourke and Fisher [25] gave solution algorithms
for fuzzy relational equations with max-product composi-
tion. Stamou and Tzafestas [26] discussed the resolution of
composite fuzzy relation equations based on Archimedean
triangular norms. Wang and Xiong [27] investigated the
solution sets of a fuzzy relation equation with sup-conjunctor
composition in a complete lattice.Next some conceptions and
conclusions on fuzzy relation equations will be given.

Let a = (𝑎
1

, . . . , 𝑎
𝑁

), b = (𝑏
1

, . . . , 𝑏
𝑁

) ∈ [0, 1]
𝑁. Define

the partial order

a ⩽ b⇐⇒ 𝑎
𝑖

⩽ 𝑏
𝑖

, 𝑖 = 1, . . . , 𝑁. (8)

There exists no partial order relation between a and b if and
only if [a, b] = [b, a] = 0.

Define
a ∨ b ≜ (𝑎

1

∨ 𝑏
1

, . . . , 𝑎
𝑁

∨ 𝑏
𝑁

) ,

a ∧ b ≜ (𝑎
1

∧ 𝑏
1

, . . . , 𝑎
𝑁

∧ 𝑏
𝑁

) .
(9)

The single fuzzy relation equation constituted by composite
relation ∨ − ⋆ is as follows:

(𝑎
1

⋆ 𝑥
1

) ∨ (𝑎
2

⋆ 𝑥
2

) ∨ ⋅ ⋅ ⋅ ∨ (𝑎
𝑁

⋆ 𝑥
𝑁

) = 𝑏, (10)

where a = (𝑎
1

, . . . , 𝑎
𝑁

) ∈ [0, 1]
𝑁 is the coefficient vector,

𝑏 ∈ [0, 1] is known, and x = (𝑥
1

, . . . , 𝑥
𝑁

) ∈ [0, 1]
𝑁 is

unknown. LetX
⋆

be the solution set of (10).The greatest and
minimal elements in X

⋆

are, respectively, called the greatest
and minimal solutions of (10). Denote

I
⋆

(𝑎, 𝑏) = sup {𝑥 ∈ [0, 1] | 𝑎 ⋆ 𝑥 ⩽ 𝑏} ,

L
⋆

(𝑎, 𝑏) = inf {𝑥 ∈ [0, 1] | 𝑎 ⋆ 𝑥 ⩾ 𝑏} .
(11)

Define inf 0 = 1. Moreover, some necessary interpretations
about the two operations are presented in the following.

(1) I
⋆

(𝑎, 𝑏) ⩾ 𝑏 since 𝑎 ⋆ 𝑏 ⩽ 1 ⋆ 𝑏 = 𝑏.
(2) If 𝑎 ⋆ 𝑐 ⩽ 𝑏 then I

⋆

(𝑎, 𝑏) ⩾ 𝑐; if 𝑎 ⋆ 𝑐 ⩾ 𝑏, then
L

⋆

(𝑎, 𝑏) ⩽ 𝑐.
(3) BothI

⋆

(𝑎, 𝑏) andL
⋆

(𝑎, 𝑏) are monotone decreasing
about the first variable, that is,

𝑎
1

⩽ 𝑎
2

󳨐⇒ I
⋆

(𝑎
1

, 𝑏) ⩾ I
⋆

(𝑎
2

, 𝑏) ,

L
⋆

(𝑎
1

, 𝑏) ⩾L
⋆

(𝑎
2

, 𝑏) ,
(12)

since {𝑥 ∈ [0, 1] | 𝑎
1

⋆ 𝑥 ⩽ 𝑏} ⊇ {𝑥 ∈ [0, 1] | 𝑎
2

⋆ 𝑥 ⩽ 𝑏} and
{𝑥 ∈ [0, 1] | 𝑎

1

⋆ 𝑥 ⩾ 𝑏} ⊆ {𝑥 ∈ [0, 1] | 𝑎
2

⋆ 𝑥 ⩾ 𝑏}.
Let

𝐺
𝑏

= {𝑖 ∈ {1, . . . , 𝑁} | 𝑎
𝑖

⩾ 𝑏} = {𝑘
𝑗

, 𝑗 = 1, . . . ,
󵄨󵄨󵄨󵄨𝐺𝑏

󵄨󵄨󵄨󵄨} . (13)

In thiswork it is assumed that⋆ is continues and the following
results presented in [27] are fitted for (10) on [0, 1].

Lemma 1. Let ⋆ be a continuous t-norm. Then the following
items are equivalent.

(1) X
⋆

̸= 0 if and only if 𝐺
𝑏

̸= 0; that is, there exists
𝑖 ∈ {1, . . . , 𝑁}, such that 𝑎

𝑖

⩾ 𝑏 if and only if
(10) has the greatest solution x⋆ = (𝑥

∗

1

, . . . , 𝑥
∗

𝑁

) ≜

(I
⋆

(𝑎
1

, 𝑏), . . . ,I
⋆

(𝑎
𝑁

, b)).
(2) If X

⋆

̸= 0, then (10) has the minimum solutions where
the 𝑗thminimum solution x0

𝑗

= (𝑥
0

𝑗1

, . . . , 𝑥
0

𝑗𝑁

) (1 ⩽ 𝑗 ⩽

|𝐺
𝑏

|) is

𝑥
0

𝑗𝑖

= {
L

⋆

(𝑎
𝑘

𝑗

, 𝑏) , 𝑖 = 𝑘
𝑗

,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
𝑖 = 1, . . . , 𝑁. (14)

Furthermore, the solution set of (10) can be written as

X
⋆

=

|𝐺

𝑏
|

⋃
𝑗=1

[x0
𝑗

, x∗] . (15)

3. The Construction of Type-2 Fuzzy
Reasoning Relations

In this section, wewill demonstrate the solving process for the
expression (7) gradually. First, we will simplify the expression
(7) in accordance with three subdomains of 𝑤. Importantly,
for two of these subdomains we will, respectively, reduce
𝑃
𝑤

into its subdomains 𝑃
𝑤1

and 𝑃
𝑤2

but keeping the values
of 𝐹(𝑤) without change (Theorem 2). Then all the elements
in 𝑃

𝑤1

and 𝑃
𝑤2

will be found out (Theorem 3). Following
it, 𝑃

𝑤1

and 𝑃
𝑤2

will be further reduced into smaller subsets
X
1

and X
2

still keeping the values of 𝐹(𝑤) without change,
respectively (Theorem 5). Finally, some theorems about how
to get the exact value of 𝐹(𝑤)will be presented on the basis of
the characteristics of the 𝑓(u, k) on X

1

and X
2

(Theorems 7
and 9).
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It needs to be stated that the proposed method to solve
𝐹(𝑤) differs from the native algorithm which is just finding
the maximal number of 𝑓(u, k) from all the elements in 𝑃

𝑤

(or 𝑃
𝑤1

and 𝑃
𝑤2

). The native algorithm is impractical due to
its huge computation. But what form of the elements in 𝑃

𝑤

is the key to solving the problem (7). Let 𝑔 ∈ F
𝐶𝑁

([0, 1]).
Denote [𝑔]

1

= {𝑢 ∈ [0, 1] | 𝑔(𝑢) = 1}.

Theorem 2. Let 𝑤 ∈ [0, 1], 𝑔
1

, . . . , 𝑔
𝑁

, ℎ
1

, . . . , ℎ
𝑁

∈

F
𝐶𝑁

([0, 1]), where [𝑔
1

]
1

= [𝑚
𝑔

1

, 𝑛
𝑔

1

], . . . , [𝑔
𝑁

]
1

=
[𝑚

𝑔

𝑁

, 𝑛
𝑔

𝑁

], [ℎ
1

]
1

= [𝑚
ℎ

1

, 𝑛
ℎ

1

], . . . , [ℎ
𝑁

]
1

= [𝑚
ℎ

𝑁

, 𝑛
ℎ

𝑁

].
Denote

𝛼 =

𝑁

⋁
𝑖=1

(𝑚
𝑔

𝑖

⋆ 𝑚
ℎ

𝑖

) , 𝛽 =

𝑁

⋁
𝑖=1

(𝑛
𝑔

𝑖

⋆ 𝑛
ℎ

𝑖

) ,

mg = (𝑚𝑔

1

, . . . , 𝑚
𝑔

𝑁

) , mh = (𝑚ℎ

1

, . . . , 𝑚
ℎ

𝑁

) ,

ng = (𝑛𝑔
1

, . . . , 𝑛
𝑔

𝑁

) , nh = (𝑛ℎ
1

, . . . , 𝑛
ℎ

𝑁

) ,

𝑃
𝑤1

= {(u, k) ∈ [0, 1]2𝑁 |

𝑁

⋁
𝑖=1

(𝑢
𝑖

⋆ V
𝑖

) = 𝑤,

u ⩽ mg, k ⩽ mh} ,

𝑃
𝑤2

= {(u, k) ∈ [0, 1]2𝑁 |

𝑁

⋁
𝑖=1

(𝑢
𝑖

⋆ V
𝑖

) = 𝑤,

u ⩾ ng, k ⩾ nh} .

(16)

Then the following items hold.

(1) If 𝑤 ∈ [0, 𝛼], then 𝐹(𝑤) = sup{𝑓(u, k) | (u, k) ∈ 𝑃
𝑤1

}.
(2) If 𝑤 ∈ [𝛼, 𝛽], then 𝐹(𝑤) = 1.
(3) If 𝑤 ∈ [𝛽, 1], then 𝐹(𝑤) = sup{𝑓(u, k) | (u, k) ∈ 𝑃

𝑤2

}.

Before the proof of Theorem 2, several conclusions and
their proofs will be given in the following and the conclusion
(a) is from [18].

(a) Let 𝑤 ∈ [0, 1], 𝑓, 𝑔 ∈ F
𝐶𝑁

([0, 1]), where [𝑓]
1

=

[𝑚
𝑓

, 𝑛
𝑓

] and [𝑔]
1

= [𝑚
𝑔

, 𝑛
𝑔

]. Assume that ⋆ is continuous.
Denote

𝐿 = {(𝑢, V) ∈ [0, 1]2 | 𝑢 ⋆ V = 𝑤} ,

𝐿
1

= {(𝑢, V) ∈ [0, 1]2 | 𝑢 ⋆ V = 𝑤, 𝑢 ⩽ 𝑚
𝑓

, V ⩽ 𝑚
𝑔

} ,

𝐿
2

= {(𝑢, V) ∈ [0, 1]2 | 𝑢 ⋆ V = 𝑤, 𝑛
𝑓

⩽ 𝑢, 𝑛
𝑔

⩽ V} .

(17)

Then the following items hold.

(1) If 𝑤 ∈ [0,𝑚
𝑓

⋆ 𝑚
𝑔

], then (𝑓⊓
(⋆,⋆

󸀠
)

𝑔)(𝑤) =

sup{𝑓(𝑢)⋆󸀠𝑔(V) | (𝑢, V) ∈ 𝐿
1

}.

(2) If 𝑤 ∈ [𝑚
𝑓

⋆ 𝑚
𝑔

, 𝑛
𝑓

⋆ 𝑛
𝑔

], then (𝑓⊓(⋆,⋆
󸀠
)

𝑔)(𝑤) = 1.

(3) If 𝑤 ∈ [𝑛
𝑓

⋆ 𝑛
𝑔

, 1], then (𝑓⊓
(⋆,⋆

󸀠
)

𝑔)(𝑤) =

sup{𝑓(𝑢)⋆󸀠𝑔(V) | (𝑢, V) ∈ 𝐿
2

}.
(b) Suppose that the conditions is the same as that of (a).

Denote
𝐶
1

= {(𝑢, V) ∈ [0, 1]2 | 𝑢 ∨ V = 𝑤, 𝑢 ⩽ 𝑚
𝑓

, V ⩽ 𝑚
𝑔

} ,

𝐶
2

= {(𝑢, V) ∈ [0, 1]2 | 𝑢 ∨ V = 𝑤, 𝑛
𝑓

⩽ 𝑢, 𝑛
𝑔

⩽ V} .
(18)

Then the following items hold.

(1) If 𝑤 ∈ [0,𝑚
𝑓

∨ 𝑚
𝑔

], then (𝑓⊔
(∨,⋆

󸀠
)

𝑔)(𝑤) =

sup{𝑓(𝑢)⋆󸀠𝑔(V) | (𝑢, V) ∈ 𝐶
1

}.

(2) If 𝑤 ∈ [𝑚
𝑓

∨ 𝑚
𝑔

, 𝑛
𝑓

∨ 𝑛
𝑔

], then (𝑓⊔(∨,⋆
󸀠
)

𝑔)(𝑤) = 1.

(3) If 𝑤 ∈ [𝑛
𝑓

∨ 𝑛
𝑔

, 1], then (𝑓⊔
(∨,⋆

󸀠
)

𝑔)(𝑤) =

sup{𝑓(𝑢)⋆󸀠𝑔(V) | (𝑢, V) ∈ 𝐶
2

}.
Proof. This proof is similar as that of (a) in [18] since ∨ is also
monotone increasing in the first and second variables.

(c) Let𝑤
1

, 𝑤
2

, 𝜏
1

, 𝜏
2

∈ [0, 1], where𝑤
1

< 𝑤
2

. Assume that
⋆ is continuous. Denote

M
1

= {(𝑎, 𝑏) ∈ [0, 1]
2

| 𝑎 ⋆ 𝑏 = 𝑤
1

, 𝑎 ⩽ 𝜏
1

, 𝑏 ⩽ 𝜏
2

} ,

M
2

= {(𝑐, 𝑑) ∈ [0, 1]
2

| 𝑐 ⋆ 𝑑 = 𝑤
2

, 𝑐 ⩽ 𝜏
1

, 𝑑 ⩽ 𝜏
2

} ,

M
3

= {(𝑎, 𝑏) ∈ [0, 1]
2

| 𝑎 ⋆ 𝑏 = 𝑤
1

, 𝜏
1

⩽ 𝑎, 𝜏
2

⩽ 𝑏} ,

M
4

= {(𝑐, 𝑑) ∈ [0, 1]
2

| 𝑐 ⋆ 𝑑 = 𝑤
2

, 𝜏
1

⩽ 𝑐, 𝜏
2

⩽ 𝑑} .

(19)

Then for every (𝑎, 𝑏) ∈ M
1

[resp. M
3

], there exists (𝑐, 𝑑) ∈
M

2

[resp.M
4

] such that 𝑎 ⩽ 𝑐 and 𝑏 ⩽ 𝑑.

Proof. Let (𝑎, 𝑏) ∈ M
1

and (𝑢, V) ∈ M
2

. Since 𝑤
1

< 𝑤
2

, by
the monotonicity of ⋆, we have 𝑎 ⩽ 𝑢 or 𝑏 ⩽ V. Assume that
𝑎 ⩽ 𝑢. If 𝑏 ⩽ V, then the conclusion is obvious. For the case of
𝑏 > V, there is

𝑎 ⋆ 𝑏 ⩽ 𝑢 ⋆ V ⩽ 𝑢 ⋆ 𝑏, (20)

that is,

𝑎 ⋆ 𝑏 ⩽ 𝑤
2

⩽ 𝑢 ⋆ 𝑏. (21)

By the continuity of ⋆, it can be inferred that there exists 𝑧 ∈
[𝑎, 𝑢] such that 𝑤

2

= 𝑧 ⋆ 𝑏. Let (𝑐, 𝑑) = (𝑧, 𝑏). Then there are
𝑐 ⋆ 𝑑 = 𝑤

2

, 𝑎 ⩽ 𝑐 ⩽ 𝜏
1

, and 𝑏 ⩽ 𝑑 ⩽ 𝜏
2

. Clearly (𝑐, 𝑑) ∈ M
2

.
Similarly, we can prove that if 𝑏 ⩽ V and 𝑎 > 𝑢, there exists
𝑥 ∈ [𝑏, V] such that 𝑤

2

= 𝑎 ⋆ 𝑥. Let (𝑐, 𝑑) = (𝑎, 𝑥). Then there
are 𝑐 ⋆ 𝑑 = 𝑤

2

, 𝑎 ⩽ 𝑐 ⩽ 𝜏
1

, and 𝑏 ⩽ 𝑑 ⩽ 𝜏
2

. To sum up, we can
conclude that for every (𝑎, 𝑏) ∈ M

1

, there exists (𝑐, 𝑑) ∈ M
2

such that 𝑎 ⩽ 𝑐, 𝑏 ⩽ 𝑑. In a similar way, we can prove that for
every (𝑎, 𝑏) ∈ M

3

, there exists (𝑐, 𝑑) ∈ M
4

such that 𝑎 ⩽ 𝑐

and 𝑏 ⩽ 𝑑.

(d) Let 𝑓, 𝑔 ∈ F
𝐶𝑁

([0, 1]), where [𝑓]
1

= [𝑚
𝑓

, 𝑛
𝑓

] and
[𝑔]

1

= [𝑚
𝑔

, 𝑛
𝑔

]. Assume that ⋆ and ⬦ are continuous.
Then 𝑓⊓

(⋆,⋆

󸀠
)

𝑔, 𝑓⊔
(⬦,⋆

󸀠
)

𝑔 ∈ F
𝐶𝑁

([0, 1]). Furthermore,
[𝑓⊓

(⋆,⋆

󸀠
)

𝑔]
1

= [𝑚
𝑓

⋆ 𝑚
𝑔

, 𝑛
𝑓

⋆ 𝑛
𝑔

] and [𝑓⊔(⬦,⋆
󸀠
)

𝑔]
1

= [𝑚
𝑓

⬦

𝑚
𝑔

, 𝑛
𝑓

⬦ 𝑛
𝑔

].
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Proof. Let [𝑓]
1

= [𝑚
𝑓

, 𝑛
𝑓

], [𝑔]
1

= [𝑚
𝑔

, 𝑛
𝑔

], 𝑤
1

, 𝑤
2

, 𝑤
3

∈

[0, 1], where 𝑤
1

⩽ 𝑤
2

⩽ 𝑤
3

. By the continuity of ⋆ and
conclusion (a), we obtain that if𝑤

2

∈ [𝑚
𝑓

⋆𝑚
𝑔

, 𝑛
𝑓

⋆𝑛
𝑔

], then
(𝑓⊓

(⋆,⋆

󸀠
)

𝑔)(𝑤
2

) = 1. For the converse, let𝑤 ∈ [0,𝑚
𝑓

⋆𝑚
𝑔

). If
there exists 𝑤

0

∈ [0,𝑚
𝑓

⋆ 𝑚
𝑔

) such that (𝑓⊓(⋆,⋆
󸀠
)

𝑔)(𝑤
0

) = 1,
that is, there exists (𝑢

0

, V
0

) ∈ [0, 1]
2 such that 𝑤

0

= 𝑢
0

⋆ V
0

<

𝑚
𝑓

⋆𝑚
𝑔

and 𝑓(𝑢
0

)⋆
󸀠

𝑔(V
0

) = 1, then there is 𝑓(𝑢
0

) = 𝑔(V
0

) =

1. By the monotonicity of ⋆, we have 𝑢
0

< 𝑚
𝑓

or V
0

< 𝑚
𝑔

.
Without loss of generality, we can assume that 𝑢

0

< 𝑚
𝑓

.
Thus 𝑓(𝑢

0

) < 𝑓(𝑚
𝑓

) = 1, which leads to a contradiction.
Therefore, (𝑓⊓(⋆,⋆

󸀠
)

𝑔)(𝑤) < 1. In a similar way, we can prove
that if 𝑤 ∈ (𝑛

𝑓

⋆ 𝑛
𝑔

, 1], then (𝑓⊓(⋆,⋆
󸀠
)

𝑔)(𝑤) < 1. To sum up,
we have [𝑓⊓(⋆,⋆

󸀠
)

𝑔]
1

= [𝑚
𝑓

⋆ 𝑚
𝑔

, 𝑛
𝑓

⋆ 𝑛
𝑔

].
Now we will give the proof of convexity. It is obvious that

(𝑓⊓
(⋆,⋆

󸀠
)

𝑔) (𝑤
2

) ⩾ (𝑓⊓
(⋆,⋆

󸀠
)

𝑔) (𝑤
1

) ∧ (𝑓⊓
(⋆,⋆

󸀠
)

𝑔) (𝑤
3

) .

(22)

If 𝑤
2

∈ [0,𝑚
𝑓

⋆ 𝑚
𝑔

), then 𝑤
1

⩽ 𝑤
2

⩽ 𝑚
𝑓

⋆ 𝑚
𝑔

.
From conclusion (a), it can be inferred that the values
of (𝑓⊓(⋆,⋆

󸀠
)

𝑔)(𝑤
1

) and (𝑓⊓
(⋆,⋆

󸀠
)

𝑔)(𝑤
2

) can be obtained on
[0, 𝑚

𝑓

] × [0,𝑚
𝑔

]. Denote

N
1

= {(𝑎, 𝑏) ∈ [0, 1]
2

| 𝑎 ⋆ 𝑏 = 𝑤
1

, 𝑎 ⩽ 𝑚
𝑓

, 𝑏 ⩽ 𝑚
𝑔

} ,

N
2

= {(𝑐, 𝑑) ∈ [0, 1]
2

| 𝑐 ⋆ 𝑑 = 𝑤
2

, 𝑐 ⩽ 𝑚
𝑓

, 𝑑 ⩽ 𝑚
𝑔

} .

(23)

Let (𝑢
1

, V
1

) ∈N
1

satisfy

𝑓 (𝑢
1

) ⋆
󸀠

𝑔 (V
1

) = (𝑓⊓
(⋆,⋆

󸀠
)

𝑔) (𝑤
1

) . (24)

By conclusion (c), there exists (𝑢
2

, V
2

) ∈N
2

such that 𝑢
1

⩽ 𝑢
2

and V
1

⩽ V
2

. Because 𝑓(𝑢
1

) ⩽ 𝑓(𝑢
2

) and 𝑔(V
1

) ⩽ 𝑔(V
2

) by the
convexity of 𝑓 and 𝑔, we have

𝑓 (𝑢
1

) ⋆
󸀠

𝑔 (V
1

) ⩽ 𝑓 (𝑢
2

) ⋆
󸀠

𝑔 (V
2

) ⩽ (𝑓⊓
(⋆,⋆

󸀠
)

𝑔) (𝑤
2

) . (25)

From (24) and (25), we get

(𝑓⊓
(⋆,⋆

󸀠
)

𝑔) (𝑤
1

) ⩽ (𝑓⊓
(⋆,⋆

󸀠
)

𝑔) (𝑤
2

) (26)

which implies that (22) holds. If 𝑤
2

∈ (𝑛
𝑓

⋆ 𝑛
𝑔

, 1], then
𝑛
𝑓

⋆ 𝑛
𝑔

⩽ 𝑤
2

⩽ 𝑤
3

. In a similar way, we can prove
that (𝑓⊓(⋆,⋆

󸀠
)

𝑔)(𝑤
3

) ⩽ (𝑓⊓
(⋆,⋆

󸀠
)

𝑔)(𝑤
2

). Thus (22) holds.
To sum up, there is 𝑓⊓(⋆,⋆

󸀠
)

𝑔 ∈ F
𝐶

([0, 1]). It is easy to
prove that the conclusion (c) is valid if ⋆ is replaced with ⬦
since ⬦ is also monotone increasing in the first and second
variables.Therefore, in a similar way, we can give the proof of
𝑓⊔

(⬦,⋆

󸀠
)

𝑔 ∈ F
𝐶𝑁

([0, 1]).

Next we will give the proof of Theorem 2.

Proof. It is known that 𝐹(𝑤) = (⊔
(∨,⋆

󸀠
)

𝑁

𝑖=1

(𝑓
𝑖

⊓
(⋆,⋆

󸀠
)

𝑔
𝑖

))(𝑤).
From conclusion (d) it can be obtained that [𝑓

𝑖

⊓
(⋆,⋆

󸀠
)

𝑔
𝑖

] ∈

F
𝐶𝑁

([0, 1]) and [𝑓
𝑖

⊓
(⋆,⋆

󸀠
)

𝑔
𝑖

]
1

= [𝑚
𝑓

𝑖

⋆ 𝑚
𝑔

𝑖

, 𝑛
𝑓

𝑖

⋆ 𝑛
𝑔

𝑖

], 𝑖 =
1, . . . , 𝑁. Moreover, denote

𝐺
𝑖1

= {(𝑢
𝑖

, V
𝑖

) ∈ [0, 1]
2

| 𝑢
𝑖

⋆ V
𝑖

= 𝑧
𝑖

, 𝑢
𝑖

⩽ 𝑚
𝑔

𝑖

, V
𝑖

⩽ 𝑚
ℎ

𝑖

} ,

𝐺
𝑖2

= {(𝑢
𝑖

, V
𝑖

) ∈ [0, 1]
2

| 𝑢
𝑖

⋆ V
𝑖

= 𝑧
𝑖

, 𝑢
𝑖

⩾ 𝑛
𝑔

𝑖

, V
𝑖

⩾ 𝑛
ℎ

𝑖

} .

(27)

From conclusion (a), we obtain that if 𝑧
𝑖

∈ [0,𝑚
𝑓

𝑖

⋆

𝑚
𝑔

𝑖

], then (𝑓
𝑖

⊓
(⋆,⋆

󸀠
)

𝑔
𝑖

)(𝑧
𝑖

) = sup{𝑓
𝑖

(𝑢
𝑖

)⋆
󸀠

𝑔
𝑖

(V
𝑖

) | (𝑢
𝑖

, V
𝑖

) ∈

𝐺
𝑖1

}; if 𝑧
𝑖

∈ [𝑛
𝑓

𝑖

⋆ 𝑛
𝑔

𝑖

, 1], then (𝑓
𝑖

⊓
(⋆,⋆

󸀠
)

𝑔
𝑖

)(𝑧
𝑖

) =
sup{𝑓

𝑖

(𝑢
𝑖

)⋆
󸀠

𝑔
𝑖

(V
𝑖

) | (𝑢
𝑖

, V
𝑖

) ∈ 𝐺
𝑖2

}. From conclusion
(d) we have ⊔

(∨,⋆

󸀠
)

𝑁

𝑖=1

(𝑓
𝑖

⊓
(⋆,⋆

󸀠
)

𝑔
𝑖

) ∈ F
𝐶𝑁

([0, 1]) and
[⊔

(∨,⋆

󸀠
)

𝑁

𝑖=1

(𝑓
𝑖

⊓
(⋆,⋆

󸀠
)

𝑔
𝑖

)]
1

= [⋁𝑁

𝑖=1

(𝑚
𝑓

𝑖

⋆𝑚
𝑔

𝑖

), ⋁
𝑁

𝑖=1

(𝑛
𝑓

𝑖

⋆ 𝑛
𝑔

𝑖

)] =

[𝛼, 𝛽]. Denote z = (𝑧
1

, . . . , 𝑧
𝑁

) and

𝐸
1

= {z ∈ [0, 1]𝑁 |

𝑁

⋁
𝑖=1

𝑧
𝑖

= 𝑤, 𝑧
𝑖

⩽ 𝑚
𝑓

𝑖

⋆ 𝑚
𝑔

𝑖

, 𝑖 = 1, . . . , 𝑁} ,

𝐸
2

= {z ∈ [0, 1]𝑁 |

𝑁

⋁
𝑖=1

𝑧
𝑖

= 𝑤, 𝑧
𝑖

⩾ 𝑛
𝑓

𝑖

⋆ 𝑛
𝑔

𝑖

, 𝑖 = 1, . . . , 𝑁} .

(28)

From the above discussion and conclusion (b), we have that
if 𝑤 ∈ [0, 𝛼], then

𝐹 (𝑤) = sup {T󸀠

𝑁

𝑖=1

(𝑓
𝑖

⊓
(⋆,⋆

󸀠
)

𝑔
𝑖

) (𝑧
𝑖

) | z ∈ 𝐸
1

}

= sup {T󸀠

𝑁

𝑖=1

(𝑓
𝑖

⊓
(⋆,⋆

󸀠
)

𝑔
𝑖

) (𝑧
𝑖

)

|

𝑁

⋁
𝑖=1

𝑧
𝑖

= 𝑤, 𝑧
𝑖

⩽ 𝑚
𝑓

𝑖

⋆ 𝑚
𝑔

𝑖

,

𝑖 = 1, . . . , 𝑁}

= sup {T󸀠

𝑁

𝑖=1

(𝑔
𝑖

(𝑢
𝑖

) ⋆ ℎ
𝑖

(V
𝑖

))

|

𝑁

⋁
𝑖=1

(𝑢
𝑖

⋆ V
𝑖

) = 𝑤,

𝑢
𝑖

⩽ 𝑚
𝑔

𝑖

, V
𝑖

⩽ 𝑚
ℎ

𝑖

,

𝑖 = 1, . . . , 𝑁}

= sup {𝑓 (u, k) | (u, k) ∈ 𝑃
𝑤1

} .

(29)

Similarly, if 𝑤 ∈ [𝛽, 1], then 𝐹(𝑤) =

sup{T󸀠

𝑁

𝑖=1

(𝑓
𝑖

⊓
(⋆,⋆

󸀠
)

𝑔
𝑖

)(𝑧
𝑖

) | z ∈ 𝐸
2

} = sup{𝑓(u, k) |

(u, k) ∈ 𝑃
𝑤2

}.

From Theorem 2, it can be seen that when 𝑤 ∈ [𝛼, 𝛽],
we can omit the calculation process of 𝐹(𝑤) since 𝐹(𝑤) = 1,
and for other situations 𝐹(𝑤) can be obtained from 𝑃

𝑤1

or
𝑃
𝑤2

independently. From now on, we will focus on analyzing
the cases of 𝑤 ∈ [0, 𝛼) and 𝑤 ∈ (𝛽, 1] and assume that
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𝑔
𝑖

(𝑡), ℎ
𝑖

(𝑡) ∈ F
𝐶𝑁

([0, 1]), where [𝑔
𝑖

]
1

= [𝑚
𝑔

𝑖

, 𝑛
𝑔

𝑖

], [ℎ
𝑖

]
1

=

[𝑚
ℎ

𝑖

, 𝑛
ℎ

𝑖

], 𝑖 = 1, . . . , 𝑁. Denote

𝑃
𝑜1

= {u ∈ [0, 1]𝑁 | u ⩽ mg} ,

𝑃
󸀠

𝑜1

= {k ∈ [0, 1]𝑁 | k ⩽ mh} ,

𝑃
𝑜2

= {u ∈ [0, 1]𝑁 | u ⩾ ng} ,

𝑃
󸀠

𝑜2

= {k ∈ [0, 1]𝑁 | k ⩾ nh} .

(30)

The idea about how to find the elements in 𝑃
𝑤1

[𝑃
𝑤2

, resp.] is
to solve the fuzzy relation equation

(𝑢
1

⋆ 𝑥
1

) ∨ (𝑢
2

⋆ 𝑥
2

) ∨ ⋅ ⋅ ⋅ ∨ (𝑢
𝑁

⋆ 𝑥
𝑁

) = 𝑤, (31)

by taking u ∈ 𝑃
𝑜1

[resp. 𝑃
𝑜2

] and then obtain the solution x in
𝑃
󸀠

𝑜1

[𝑃󸀠
𝑜2

, resp.]. Thus (u, x) ∈ 𝑃
𝑤1

[𝑃
𝑤2

, resp.]. In this way, all
the elements in 𝑃

𝑤1

[𝑃
𝑤2

, resp.] can be found. Denote

𝐺
𝑤

= {𝑖 ∈ {1, . . . , 𝑁} | 𝑢
𝑖

⩾ 𝑤} . (32)

Now we will provide all the elements of 𝑃
𝑤1

and 𝑃
𝑤2

.

Theorem 3. Assume that ⋆ is continuous. For every u ∈ 𝑃
𝑜1

or 𝑃
𝑜2

denote the greatest solution of (31) in [0, 1]𝑁 as xu∗ and
minimal solution of (31) in [0, 1]𝑁 as xu0

1

, . . . , xu0
|𝐺

𝑤
|

(if any).
The following items hold.

(1) Suppose that 𝑤 ∈ [0, 𝛼). Then for every u ∈ 𝑃
𝑜1

the
solution set of (31) in𝑃󸀠

𝑜1

is⋃|𝐺

𝑤
|

𝑗=1

[xu0
𝑗

, xu∗∧mh] denot-
ed byV1

u and

𝑃
𝑤1

= {(u, k) ∈ [0, 1]2𝑁 | k ∈V
1

u, u ⩽ mg} . (33)

(2) Suppose that 𝑤 ∈ (𝛽, 1]. Then for every u ∈ 𝑃
𝑜2

the
solution set of (31) in𝑃󸀠

𝑜2

is⋃|𝐺

𝑤
|

𝑗=1

[xu0
𝑗

∨nh, xu∗] denoted
byV2

u and

𝑃
𝑤2

= {(u, k) ∈ [0, 1]2𝑁 | k ∈V
2

u,ng ⩽ u} . (34)

Proof. (1) From Lemma 1 it is obvious thatV1

u is the solution
set of (31) in 𝑃󸀠

𝑜1

. For every (u, k) ∈ {(u, k) ∈ [0, 1]2𝑁 | k ∈
V1

u, u ⩽ mg}, we have u ∈ 𝑃
𝑜1

and k ∈ V1

u ⊆ 𝑃
󸀠

𝑜1

. Then
from Lemma 1 it can be inferred that ⋁𝑁

𝑖=1

(𝑢
𝑖

⋆ V
𝑖

) = 𝑤.
Thus (u, k) ∈ 𝑃

𝑤1

; that is, {(u, k) ∈ [0, 1]
2𝑁

| k ∈ V1

u, u ⩽

mg} ⊆ 𝑃
𝑤1

. For the converse case, let (u, k) ∈ 𝑃
𝑤1

. Then
⋁
𝑁

𝑖=1

(𝑢
𝑖

⋆V
𝑖

) = 𝑤. Obviously k ⩽ mh and k is a solution of (31)
with the coefficient vector u. Denote the solution set of (31) in
[0, 1]

𝑁 as ⋃|𝐺

𝑤
|

𝑗=1

[x0
𝑗

, x∗]. Clearly there exists 𝑗 ∈ {1, . . . , |𝐺
𝑤

|}

such that k ∈ [x0
𝑗

, x∗].Thereby k ∈ [x0
𝑗

, x∗∧mh] ⊆V1

u; that is,
(u, k) ∈ {(u, k) ∈ [0, 1]2𝑁 | k ∈ V1

u, u ⩽ mg}; that is, {(u, k) ∈
[0, 1]

2𝑁

| k ∈ V1

u, u ⩽ mg} ⊇ 𝑃𝑤1. To sum up, the conclusion
(1) holds. In a similar way, we can prove the case (2).

Corollary 4. Assume that ⋆ is continuous. Let u ∈ 𝑃
𝑜1

or
𝑃
𝑜2

. Denote the greatest solution of (31) in [0, 1]𝑁 as xu∗ and
minimal solution of (31) in [0, 1]𝑁 as xu0

1

, . . . , xu0
|𝐺

𝑤
|

(if any).
The following hold.

(1) Let u ∈ 𝑃
𝑜1

. Equation (31) has a solution in 𝑃󸀠
𝑜1

if and
only if there exists 𝑗 ∈ 𝐺

𝑤

such that xu0
𝑗

⩽ mh.

(2) Let u ∈ 𝑃
𝑜2

. Equation (31) has a solution in 𝑃󸀠
𝑜2

if and
only if nh ⩽ xu∗.

Proof. (1) Equation (31) has a solution in 𝑃󸀠
𝑜1

, if and only if
V1

u ̸= 0, and if and only if there exists 𝑗 ∈ 𝐺
𝑤

such that xu0
𝑗

⩽

mh.
(2) Equation (31) has a solution in 𝑃

󸀠

𝑜2

, if and only if
V2

u ̸= 0, and if and only if nh ⩽ xu∗.

Next, on the basis of Theorem 3 we will further find sub-
sets of 𝑃

𝑤1

and 𝑃
𝑤2

but keeping the values of 𝐹(𝑤) without
change.

Theorem 5. Assume that ⋆ is continuous. The following items
hold.

(1) Suppose that 𝑤 ∈ [0, 𝛼) and for every u ∈ 𝑃
𝑜1

the
greatest solution of (31) in [0, 1]

𝑁 is xu∗ (if any).
Denote

U
1

= {u ∈ 𝑃
𝑜1

| ∃k ∈ 𝑃󸀠
𝑜1

, s.t. (u, k) ∈ 𝑃
𝑤1

} ,

X
1

= {(u, k) ∈ [0, 1]2𝑁 | k = xu
∗

∧mh, u ∈ U
1

} .

(35)

Then

𝐹 (𝑤) = sup {𝑓 (u, k) | (u, k) ∈ X
1

} . (36)

(2) Suppose that 𝑤 ∈ (𝛽, 1] and for every u ∈ 𝑃
𝑜2

minimal
solutions of (31) in [0, 1]𝑁 are xu0

𝑗

, 𝑗 = 1, . . . , |𝐺
𝑤

|, (if
any). Denote

U
2

= {u ∈ 𝑃
𝑜2

| ∃k ∈ 𝑃󸀠
𝑜2

, s.t. (u, k) ∈ 𝑃
2𝑤

} ,

X
2

= {(u, k) ∈ [0, 1]2𝑁 | k ∈ {xu
0

𝑗

∨ nh, 𝑗 = 1, . . . ,
󵄨󵄨󵄨󵄨𝐺𝑤

󵄨󵄨󵄨󵄨} ,

u ∈ U
2

} .

(37)

Then

𝐹 (𝑤) = sup {𝑓 (u, k) | (u, k) ∈ X
2

} . (38)

Proof. (1) Clearly, for every u ∈ U
1

, (31) has a solution in
𝑃
󸀠

𝑜1

. From Theorem 3, there is (u, xu∗ ∧ mh) ∈ 𝑃
𝑤1

; that is,
X
1

⊆ 𝑃
𝑤1

. Then

sup {𝑓 (u, k) | (u, k) ∈ X
1

}

⩽ sup {𝑓 (u, k) | (u, k) ∈ 𝑃
𝑤1

} = 𝐹 (𝑤) .
(39)

For the converse case, let (u, k) ∈ 𝑃
𝑤1

. Then u ∈ U
1

and
k ∈V1

u. We have k ⩽ xu∗ ∧mh. Denote vu = xu∗ ∧mh. From
the convexity of 𝑔

𝑖

and ℎ
𝑖

and the monotonicity of t-norm,
there is

𝑓 (u, k) = T
𝑁

𝑖=1

(𝑔
𝑖

(𝑢
𝑖

) ⋆
󸀠

ℎ
𝑖

(V
𝑖

))

⩽ T
𝑁

𝑖=1

(𝑔
𝑖

(𝑢
𝑖

) ⋆
󸀠

ℎ
𝑖

(Vu𝑖)) = 𝑓 (u, ku) .
(40)
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That is, for every (u, k) ∈ 𝑃
𝑤1

there exists (u, ku) ∈ X
1

, such
that 𝑓(u, k) ⩽ 𝑓(u, ku). Thus

𝐹 (𝑤) = sup {𝑓 (u, k) | (u, k) ∈ 𝑃
𝑤1

}

⩽ sup {𝑓 (u, k) | (u, k) ∈ X
1

} .
(41)

Combinedwith (39) and (41), it can be shown that the conclu-
sion (1) holds.

(2) Clearly, for every u ∈ U
2

, (31) has a solution in 𝑃󸀠
𝑜2

.
From Theorem 3, there is (u, xu0 ∨ nh) ∈ 𝑃

𝑤2

, where xu0 ∈
{xu0

𝑗

, 𝑗 = 1, . . . , |𝐺
𝑤

|}; that is,X
2

⊆ 𝑃
𝑤2

. Thus

sup {𝑓 (u, k) | (u, k) ∈ X
2

}

⩽ sup {𝑓 (u, k) | (u, k) ∈ 𝑃
𝑤2

} = 𝐹 (𝑤) .
(42)

For the converse case, let (u, k) ∈ 𝑃
𝑤2

. Then u ∈ U
2

and
k ∈ V2

u. There exists x0u ∈ {xu0
𝑗

, 𝑖 = 1, . . . , |𝐺
𝑤

|}, such that
x0u ∨ nh ⩽ k. Denote ku = x0u ∨ nh. From the convexity of 𝑔

𝑖

and ℎ
𝑖

and the monotonicity of t-norm, there is

𝑓 (u, k) = T
𝑁

𝑖=1

(𝑔
𝑖

(𝑢
𝑖

) ⋆
󸀠

ℎ
𝑖

(V
𝑖

))

⩽ T
𝑁

𝑖=1

(𝑔
𝑖

(𝑢
𝑖

) ⋆
󸀠

ℎ
𝑖

(Vu𝑖)) = 𝑓 (u, ku) .
(43)

That is, for every (u, k) ∈ 𝑃
𝑤2

, there exists (u, ku) ∈ X
2

, such
that 𝑓(u, k) ⩽ 𝑓(u, ku). Thus

𝐹 (𝑤) = sup {𝑓 (u, k) | (u, k) ∈ 𝑃
𝑤2

}

⩽ sup {𝑓 (u, k) | (u, k) ∈ X
2

} .
(44)

Combined with (42) and (44), conclusion (2) holds.

If𝑤 ∈ [0, 𝛼), fromTheorem 5 it can be seen that all of the
elements in X

1

can be obtained when all of the elements in
U

1

and the greatest solutions of the corresponding equation
(31) in [0, 1]𝑁 are obtained. The following lemma describes
the characteristics of the elements inU

1

. Denote

𝐽 = {𝑖 ∈ {1, . . . , 𝑁} | 𝑚
𝑔

𝑖

⋆ 𝑚
ℎ

𝑖

⩾ 𝑤} ,

𝑢̌
𝑗

= inf {𝑥 ∈ [0,𝑚
𝑔

𝑗

] |L
⋆

(𝑥, 𝑤) ⩽ 𝑚
ℎ

𝑗

} , 𝑗 ∈ 𝐽.

(45)

Lemma 6. Let 𝑤 ∈ [0, 𝛼) and u ∈ 𝑃
𝑜1

. Assume that ⋆ is
continuous. Then (31) has a solution in 𝑃󸀠

𝑜1

if and only if there
exists 𝑗 ∈ 𝐽 such that

(0, . . . , 0, 𝑢̌
𝑗

∨ 𝑤, 0, . . . , 0) ⩽ u ⩽ mg. (46)

Proof. For the first, wewill prove that𝑤 ⩽ 𝑢̌
𝑗

∨𝑤 ⩽ 𝑚
𝑔

𝑗

, 𝑗 ∈ 𝐽.
It can be seen that L

⋆

(𝑚
𝑔

𝑗

, 𝑤) ⩽ 𝑚
ℎ

𝑗

since 𝑚
𝑔

𝑗

⋆ 𝑚
ℎ

𝑗

⩾ 𝑤

for every 𝑗 ∈ 𝐽. Therefore, 𝑚
𝑔

𝑗

∈ {𝑥 ∈ [0,𝑚
𝑔

𝑗

] | L
⋆

(𝑥, 𝑤) ⩽

𝑚
ℎ

𝑗

}; that is, 𝑢̌
𝑗

= inf{𝑥 ∈ [0,𝑚
𝑔

𝑗

] | L
⋆

(𝑥, 𝑤) ⩽ 𝑚
ℎ

𝑗

} ⩽ 𝑚
𝑔

𝑗

.
Obviously 𝑤 ⩽ 𝑢̌

𝑗

∨ 𝑤 ⩽ 𝑚
𝑔

𝑗

.
Let u satisfy (46). Since 𝑤 ⩽ 𝑢̌

𝑗

∨ 𝑤 ⩽ 𝑢
𝑗

, it
can be inferred that (31) is solvable in [0, 1]

𝑁 and x0u is
a minimal solution in [0, 1]

𝑁 from Lemma 1, where x0u =

(0, . . . , 0,L
⋆

(𝑢
𝑗

, 𝑤), 0, . . . , 0). Then we have L
⋆

(𝑢
𝑗

, 𝑤) ⩽

L
⋆

(𝑢̌
𝑗

, 𝑤) ⩽ 𝑚
ℎ

𝑗

since 𝑢̌
𝑗

⩽ 𝑢̌
𝑗

∨ 𝑤 ⩽ 𝑢
𝑗

⩽ 𝑚
𝑔

𝑗

. That is,
x0u ⩽ mh, which verifies that (31) has a solution in 𝑃󸀠

𝑜1

by
Corollary 4.

For the converse case, let k ∈ 𝑃
󸀠

𝑜1

be a solution of (31).
Then (𝑢

1

⋆V
1

)∨⋅ ⋅ ⋅∨(𝑢
𝑁

⋆V
𝑁

) = 𝑤.There exists 𝑗 ∈ {1, . . . , 𝑁}
such that 𝑢

𝑗

⋆ V
𝑗

= 𝑤. Thereby 𝑚
𝑔

𝑗

⩾ 𝑢
𝑗

⩾ 𝑤, 𝑚
ℎ

𝑗

⩾ V
𝑗

⩾ 𝑤

and 𝑚
𝑔

𝑗

⋆ 𝑚
ℎ

𝑗

⩾ 𝑢
𝑗

⋆ V
𝑗

= 𝑤. Thus 𝑗 ∈ 𝐽. It can be seen that
equation 𝑢

𝑗

⋆ 𝑥 = 𝑤 is solvable and its minimal solution is
L

⋆

(𝑢
𝑗

, 𝑤) by Lemma 1. Because V
𝑗

is also a solution, we have
L

⋆

(𝑢
𝑗

, 𝑤) ⩽ V
𝑗

⩽ 𝑚
ℎ

𝑗

. So 𝑢
𝑗

∈ {𝑥 ∈ [0,𝑚
𝑔

𝑗

] | L
⋆

(𝑥, 𝑤) ⩽

𝑚
ℎ

𝑗

}. Thereby, 𝑢̌
𝑗

⩽ 𝑢
𝑗

⩽ 𝑚
𝑔

𝑗

. To sum up, 𝑢̌
𝑗

∨ 𝑤 ⩽ 𝑢
𝑗

⩽ 𝑚
𝑔

𝑗

;
that is, u satisfies (46).

Now we will solve the formula (5) with the situation
of 𝑤 ∈ [0, 𝛼). For every u ∈ [0, 1]

𝑁 denote the greatest
solution of (31) in [0, 1]

𝑁 by x∗u (if any), where x∗u =

(I
⋆

(𝑢
1

, 𝑤), . . . ,I
⋆

(𝑢
𝑁

, 𝑤)). From Theorem 5 and Lemma 6
it can be inferred that

X
1

= {(u, k) ∈ [0, 1]2𝑁

| k = (I
⋆

(𝑢
1

, 𝑤) ∧ 𝑚
ℎ

1

, . . . ,I
⋆

(𝑢
𝑁

, 𝑤) ∧ 𝑚
ℎ

𝑁

) ,

(0, . . . , 0, 𝑢̌
𝑗

∨ 𝑤, 0, . . . , 0) ⩽ u ⩽ mg, 𝑗 ∈ 𝐽} .

(47)

Denote

H
1

= {𝑔
1

(𝑢
1

) ⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

𝑔
𝑁

(𝑢
𝑁

) ⋆
󸀠

ℎ
1

(V
1

)

⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

ℎ
𝑁

(V
𝑁

) | (u, k) ∈ X
1

} .

(48)

ObviouslyH
1

can be viewed as a union of |𝐽| subsets, where
the 𝑗th subset is as follows:

G
𝑗

= {𝑔
1

(𝑢
1

) ⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

𝑔
𝑁

(𝑢
𝑁

) ⋆
󸀠

ℎ
1

(𝐼
⋆

(𝑢
1

, 𝑤) ∧ 𝑚
ℎ

1

)

⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

ℎ
𝑁

(𝐼
⋆

(𝑢
𝑁

, 𝑤) ∧ 𝑚
ℎ

𝑁

) | (0, . . ., 0, 𝑢̌
𝑗

∨ 𝑤, 0, . . . , 0)

⩽ u ⩽ mg} , 𝑗 ∈ 𝐽.

(49)

That is, H
1

= ⋃
𝑗∈𝐽

G
𝑗

. Notice that, for any 𝑗
1

, 𝑗
2

∈ 𝐽 and
𝑗
1

̸= 𝑗
2

, it may appear that G
𝑗

1

∩ G
𝑗

2

̸= 0. However, it will
not affect our final results. The following theorem provides
a method to obtain 𝐹(𝑤) when 𝑤 ∈ [0, 𝛼).

Theorem 7. Let 𝑤 ∈ [0, 𝛼). Assume that ⋆ is continuous.
Denote

𝐹
1

𝑖

= sup {𝑔
𝑖

(𝑢
𝑖

) ⋆
󸀠

ℎ
𝑖

(I
⋆

(𝑢
𝑖

, 𝑤) ∧ 𝑚
ℎ

𝑖

) | 𝑢
𝑖

∈ [0,𝑚
𝑔

𝑖

]} ,

𝑖 ∈ {1, . . . , 𝑁} ,
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𝐹̌
1

𝑗

= sup {𝑔
𝑗

(𝑢
𝑗

) ⋆
󸀠

ℎ
𝑗

(I
⋆

(𝑢
𝑗

, 𝑤) ∧ 𝑚
ℎ

𝑗

)

| 𝑢
𝑗

∈ [𝑢̌
𝑗

∨ 𝑤,𝑚
𝑔

𝑗

]}

𝑗 ∈ 𝐽.

(50)

Then the following items hold:

(1) supG
𝑗

= 𝐹
1

1

⋆
󸀠

𝐹
1

𝑗−1

⋆
󸀠

𝐹̌
1

𝑗

⋆
󸀠

𝐹
1

𝑗+1

⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

𝐹
1

𝑁

, 𝑗 ∈ 𝐽,
(2) 𝐹(𝑤) = sup{supG

𝑗

, 𝑗 ∈ 𝐽}.

Proof. (1) Without loss of the generality, we prove the
case of G

1

. Clearly, 𝑔
𝑖

(𝑢
𝑖

)⋆
󸀠

ℎ
𝑖

(I
⋆

(𝑢
𝑖

, 𝑤) ∧ 𝑚
ℎ

𝑖

) is bounded
in [0, 𝑚

𝑔

𝑖

]. Then there exists 𝑢
󸀠

𝑖

∈ [0,𝑚
𝑔

𝑖

] such that
𝑔
𝑖

(𝑢
𝑖

)⋆
󸀠

ℎ
𝑖

(I
⋆

(𝑢
𝑖

, 𝑤) ∧ 𝑚
ℎ

𝑖

) reaches the maximum 𝐹
1

𝑖

, 𝑖 ∈
{1, . . . , 𝑁}. Similarly, there exists 𝑢󸀠󸀠

𝑗

∈ [𝑢̌
𝑗

∨𝑤,𝑚
𝑔

𝑗

] such that
𝑔
𝑗

(𝑢
𝑗

)⋆
󸀠

ℎ
𝑗

(I
⋆

(𝑢
𝑗

, 𝑤)∧𝑚
ℎ

𝑗

) reaches themaximum 𝐹̌
1

𝑗

, 𝑗 ∈ 𝐽.
From Lemma 6, it is easy to see that

(𝑢
󸀠󸀠

1

, 𝑢
󸀠

2

, . . . , 𝑢
󸀠

𝑁

,I
⋆

(𝑢
󸀠󸀠

1

, 𝑤) ∧ 𝑚
ℎ

1

,

I
⋆

(𝑢
󸀠

2

, 𝑤) ∧ 𝑚
ℎ

2

, . . . ,I
⋆

(𝑢
󸀠

𝑁

, 𝑤) ∧ 𝑚
ℎ

𝑁

) ∈ X
1

.

(51)

Let u satisfy (46). Then there are

𝑔
1

(𝑢
1

) ⋆
󸀠

ℎ
1

(I
⋆

(𝑢
1

, 𝑤) ∧ 𝑚
ℎ

1

)

⩽ 𝑔
1

(𝑢
󸀠󸀠

1

) ⋆
󸀠

ℎ
1

(I
⋆

(𝑢
󸀠󸀠

1

, 𝑤) ∧ 𝑚
ℎ

1

) = 𝐹̌
1

1

,

𝑔
𝑖

(𝑢
𝑖

) ⋆
󸀠

ℎ
𝑖

(I
⋆

(𝑢
𝑖

, 𝑤) ∧ 𝑚
ℎ

𝑖

)

⩽ 𝑔
𝑖

(𝑢
󸀠

𝑖

) ⋆
󸀠

ℎ
𝑖

(I
⋆

(𝑢
󸀠

𝑖

, 𝑤) ∧ 𝑚
ℎ

𝑖

) = 𝐹
1

𝑖

,

𝑖 = 2, . . . , 𝑁.

(52)

Thus

𝑔
1

(𝑢
1

) ⋆
󸀠

𝑔
2

(𝑢
2

) ⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

𝑔
𝑁

(𝑢
𝑁

)

⋆
󸀠

ℎ
1

(L
⋆

(𝑢
1

, 𝑤) ∧ 𝑚
ℎ

1

)

⋆
󸀠

ℎ
2

(L
⋆

(𝑢
2

, 𝑤) ∧ 𝑚
ℎ

2

)

⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

ℎ
𝑁

(L
⋆

(𝑢
𝑁

, 𝑤) ∧ 𝑚
ℎ

𝑁

)

⩽ 𝑔
1

(𝑢
󸀠󸀠

1

) ⋆
󸀠

𝑔
2

(𝑢
󸀠

2

) ⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

𝑔
𝑁

(𝑢
󸀠

𝑁

)

⋆
󸀠

ℎ
1

(I
⋆

(𝑢
󸀠󸀠

1

, 𝑤) ∧ 𝑚
ℎ

1

)

⋆
󸀠

ℎ
2

(I
⋆

(𝑢
󸀠

2

, 𝑤) ∧ 𝑚
ℎ

2

)

⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

ℎ
𝑁

(I
⋆

(𝑢
󸀠

𝑁

, 𝑤) ∧ 𝑚
ℎ

𝑁

)

= 𝐹̌
1

1

⋆
󸀠

𝐹
1

2

⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

𝐹
1

𝑁

.

(53)

Therefore, supG
1

= 𝐹̌
1

1

⋆
󸀠

𝐹
1

2

⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

𝐹
1

𝑁

.
(2) Clearly, 𝐹(𝑤) = sup{supG

𝑗

| 𝑗 ∈ 𝐽} since H
1

=

⋃
𝑗∈𝐽

G
𝑗

and 𝐹(𝑤) = supH
1

.

If 𝑤 ∈ (𝛽, 1], then by Theorem 5 all elements in X
2

can
be obtained when all of the elements in U

2

and minimal
solutions of the corresponding equation (31) in [0, 1]

𝑁 are
obtained. The following lemma describes the characteristics
of the elements inU

2

. Denote
𝑢̂
𝑖

= sup {𝑥 ∈ [𝑛
𝑔

𝑖

, 1] | I
⋆

(𝑥, 𝑤) ⩾ 𝑛
ℎ

𝑖

} ,

𝑖 = 1, . . . , 𝑁.

(54)

Lemma 8. Let 𝑤 ∈ [𝛽, 1] and u ∈ 𝑃
𝑜2

. Assume that ⋆ is
continuous. Then (31) has a solution in 𝑃󸀠

𝑜2

and if and only if
there exists 𝑖 ∈ {1, . . . , 𝑁} such that

(𝑛
𝑔

1

, . . . , 𝑛
𝑔

𝑖−1

, 𝑛
𝑔

𝑖

∨ 𝑤, 𝑛
𝑔

𝑖+1

, . . . , 𝑛
𝑔

𝑁

)

⩽ u ⩽ (𝑢̂
1

, . . . , 𝑢̂
𝑖−1

, 𝑢̂
𝑖

, 𝑢̂
𝑖+1

, . . . , 𝑢̂
𝑁

) .

(55)

Proof. For the first, we will give the proof of𝑤 ⩽ 𝑛
𝑔

𝑖

∨𝑤 ⩽ 𝑢̂
𝑖

for every 𝑖 ∈ {1, . . . , 𝑁}. Note that 𝑛
𝑔

𝑖

⋆ 𝑛
ℎ

𝑖

⩽ 𝑤 since
⋁
𝑁

𝑖=1

(𝑛
𝑔

𝑖

⋆ 𝑛
ℎ

𝑖

) ⩽ 𝑤. Then I
⋆

(𝑛
𝑔

𝑖

, 𝑤) ⩾ 𝑛
ℎ

𝑖

. Therefore,
I

⋆

(𝑛
𝑔

𝑖

∨𝑤,𝑤) ⩾ 𝑛
ℎ

𝑖

sinceI
⋆

(𝑤, 𝑤) = 1 ⩾ 𝑛
ℎ

𝑖

.We obtain that
𝑛
𝑔

𝑖

∨𝑤 ∈ {𝑥 ∈ [𝑛
𝑔

𝑖

, 1] | I
⋆

(𝑥, 𝑤) ⩾ 𝑛
ℎ

𝑖

}, which indicates that
𝑢̂
𝑖

always exists and 𝑢̂
𝑖

⩾ 𝑛
𝑔

𝑖

∨𝑤. Obviously𝑤 ⩽ 𝑛
𝑔

𝑖

∨𝑤 ⩽ 𝑢̂
𝑖

.
Letu satisfy (55). Because𝑤 ⩽ 𝑛

𝑔

𝑖

∨𝑤 ⩽ 𝑢
𝑖

, fromLemma 1
it can be inferred that (31) has a solution in [0, 1]𝑁 and the
greatest solution is
x∗u = (I⋆

(𝑢
1

, 𝑤) , . . . ,I
⋆

(𝑢
𝑖

, 𝑤) , . . . ,I
⋆

(𝑢
𝑁

, 𝑤)) . (56)

Furthermore, for every 𝑗 ∈ {1, . . . , 𝑁} we have I
⋆

(𝑢
𝑗

, 𝑤) ⩾

I
⋆

(𝑢̂
𝑗

, 𝑤) ⩾ 𝑛
ℎ

𝑗

since u ⩽ (𝑢̂
1

, . . . , 𝑢̂
𝑁

). Then x∗u ⩾ nh, which
indicates that (31) has a solution in 𝑃󸀠

𝑜2

by Corollary 4.
For the conversion, assume that (31) has a solution in 𝑃󸀠

𝑜2

.
There exists 𝑖

0

∈ {1, . . . , 𝑁} such that 𝑢
𝑖

0

⩾ 𝑤. Then 𝑢
𝑖

0

⩾

𝑛
𝑔

𝑖0

∨𝑤 since𝑢
𝑖

0

⩾ 𝑛
𝑔

𝑖0

.That is to say,u ⩾ (𝑛
𝑔

1

, . . . , 𝑛
𝑔

𝑖0−1

, 𝑛
𝑔

𝑖0

∨

𝑤, 𝑛
𝑔

𝑖0+1

, . . . , 𝑛
𝑔

𝑁

). On the other hand, there is x∗u ⩾ nh by
Corollary 4. Thus for every 𝑗 ∈ {1, . . . , 𝑁}, we have 𝑢

𝑗

∈ {𝑥 ∈

[𝑛
𝑔

𝑗

, 1] | I
⋆

(𝑥, 𝑤) ⩾ 𝑛
ℎ

𝑗

}, which indicates that 𝑢
𝑗

⩽ 𝑢̂
𝑗

.
Therefore, u ⩽ (𝑢̂

1

, . . . , 𝑢̂
𝑁

).

Next we will solve the formula (5) with the situation of
𝑤 ∈ (𝛽, 1]. For every u ∈ [0, 1]

𝑁, denote minimal solutions
of (31) in [0, 1]

𝑁 by xu0
𝑗

, 𝑗 ∈ {1, . . . , |𝐺
𝑤

|} (if any). From
Theorem 5 and Lemma 8, it can be seen that
X
2

= {(u, k) ∈ [0, 1]2𝑁 | k ∈ {xu
0

𝑗

∨ nh, 𝑗 = 1, . . . ,
󵄨󵄨󵄨󵄨𝐺𝑤

󵄨󵄨󵄨󵄨} ,

(𝑛
𝑔

1

, . . . , 𝑛
𝑔

𝑖−1

, 𝑛
𝑔

𝑖

∨ 𝑤,

𝑛
𝑔

𝑖+1

, . . . , 𝑛
𝑔

𝑁

)

⩽ u ⩽ (𝑢̂
1

, . . . , 𝑢̂
𝑖−1

, 𝑢̂
𝑖

,

𝑢̂
𝑖+1

, . . . , 𝑢̂
𝑁

) ,

𝑖 ∈ {1, . . . , 𝑁} } .

(57)

For every u satisfying (55) there must exist xu0 ∈ {xu0
𝑗

, 𝑗 =

1, . . . , |𝐺
𝑤

|} such that it has the following form:

xu
0

= (0, . . . , 0,L
⋆

(𝑢
𝑖

, 𝑤) , 0, 0, . . . , 0) . (58)
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Then

k = xu
0

∨ nh = (𝑛ℎ
1

, . . . , 𝑛
ℎ

𝑖−1

,L
⋆

(𝑢
𝑖

, 𝑤) ∨ 𝑛
ℎ

𝑖

,

𝑛
ℎ

𝑖+1

, . . . , 𝑛
ℎ

𝑁

) .

(59)

Denote

H
2

= {𝑔
1

(𝑢
1

) ⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

𝑔
𝑁

(𝑢
𝑁

) ⋆
󸀠

ℎ
1

(V
1

)

⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

ℎ
𝑁

(V
𝑁

) | (u, k) ∈ X
2

} ,

(60)

𝛿
𝑖

= ℎ
1

(𝑛
ℎ

1

) ⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

ℎ
𝑖−1

(𝑛
ℎ

𝑖−1

) ⋆
󸀠

ℎ
𝑖+1

(𝑛
ℎ

𝑖+1

)

⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

ℎ
𝑁

(𝑛
ℎ

𝑁

) , 𝑖 ∈ {1, . . . , 𝑁} .

(61)

ThusH
2

can be viewed as a union of𝑁 subsets, where the 𝑖th
subset is as follows:

F
𝑖

= {𝑔
1

(𝑢
1

) ⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

𝑔
𝑖

(𝑢
𝑖

) ⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

𝑔
𝑁

(𝑢
𝑁

)

⋆
󸀠

ℎ
𝑖

(L
⋆

(𝑢
𝑖

, 𝑤) ∨ 𝑛
ℎ

𝑖

)

⋆
󸀠

𝛿
𝑖

| (𝑛
𝑔

1

, . . . , 𝑛
𝑔

𝑖−1

, 𝑛
𝑔

𝑖

∨ 𝑤, 𝑛
𝑔

𝑖+1

, . . . , 𝑛
𝑔

𝑁

)

⩽ u ⩽ (𝑢̂
1

, . . . , 𝑢̂
𝑖−1

, 𝑢̂
𝑖

, 𝑢̂
𝑖+1

, . . . , 𝑢̂
𝑁

)}

𝑖 ∈ {1, 2, . . . , 𝑁} ,

(62)

that is,H
2

= ⋃
𝑁

𝑖=1

F
𝑖

. In fact, it is natural thatH
2

⊇ ⋃
𝑁

𝑖=1

F
𝑖

since H
2

⊇ F
𝑖

, 𝑖 = 1, . . . , 𝑁. For the converse, take a
𝑔
1

(𝑢
1

)⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

𝑔
𝑁

(𝑢
𝑁

)⋆
󸀠

ℎ
1

(V
1

)⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

ℎ
𝑁

(V
𝑁

) ∈ H
2

. From
the form of the elements in X

2

, there exists 𝑖
0

∈ {1, . . . , 𝑁}

such that

k = (𝑛
ℎ

1

, . . . , 𝑛
ℎ

𝑖0−1

,L
⋆

(𝑢
𝑖

0

, 𝑤) ∨ 𝑛
ℎ

𝑖0

, 𝑛
ℎ

𝑖0+1

, . . . , 𝑛
ℎ

𝑁

) ,

(63)

which indicates that 𝑢
𝑖

0

⩾ 𝑤 by Lemma 1. Clearly 𝑢
𝑖

0

⩾ 𝑛
𝑔

𝑖0

.
Therefore,

(𝑛
𝑔

1

, . . . , 𝑛
𝑔

𝑖0−1

, 𝑛
𝑔

𝑖0

∨ 𝑤, 𝑛
𝑔

𝑖0+1

, . . . , 𝑛
𝑔

𝑁

)

⩽ u ⩽ (𝑢̂
1

, . . . , 𝑢̂
𝑖

0
−1

, 𝑢̂
𝑖

0

, 𝑢̂
𝑖

0
+1

, . . . , 𝑢̂
𝑁

) .

(64)

From the above, we have 𝑔
1

(𝑢
1

)⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

𝑔
𝑁

(𝑢
𝑁

)⋆
󸀠

ℎ
1

(V
1

)⋆
󸀠

⋅ ⋅ ⋅

⋆
󸀠

ℎ
𝑁

(V
𝑁

) ∈ F
𝑖

0

; that is, 𝑔
1

(𝑢
1

)⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

𝑔
𝑁

(𝑢
𝑁

)⋆
󸀠

ℎ
1

(V
1

)

⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

ℎ
𝑁

(V
𝑁

) ∈ ⋃
𝑁

𝑖=1

F
𝑖

. Thus H
2

⊆ ⋃
𝑁

𝑖=1

F
𝑖

. To sum up,
we obtain thatH

2

= ⋃
𝑁

𝑖=1

F
𝑖

.
Notice that, for any 𝑖

1

, 𝑖
2

∈ {1, 2, . . . , 𝑁} and 𝑖
1

̸= 𝑖
2

, it may
appear thatF

𝑖

1

∩F
𝑖

2

̸= 0. However, it will not affect our final
results. The following theorem provides a method to obtain
𝐹(𝑤) when 𝑤 ∈ (𝛽, 1].

Theorem9. Let𝑤 ∈ (𝛽, 1]. Assume that ⋆ is continuous.Then
the following items hold:

(1) supF
𝑖

= sup{𝑔
𝑖

(𝑢
𝑖

)⋆
󸀠

ℎ
𝑖

(L
⋆

(𝑢
𝑖

, 𝑤)∨𝑛
ℎ

𝑖

) | 𝑢
𝑖

∈ [𝑛
𝑔

𝑖

∨

𝑤, 𝑢̂
𝑖

]}, 𝑖 = 1, . . . , 𝑁,
(2) 𝐹(𝑤) = sup{supF

𝑖

, 𝑖 = 1, . . . , 𝑁}.

Proof. (1) Similar to the proof of Theorem 7, it can be
obtained that there exists 𝑢󸀠

𝑖

∈ [𝑛
𝑔

𝑖

∨ 𝑤, 𝑢̂
𝑖

] such that

𝑔
𝑖

(𝑢
󸀠

𝑖

) ⋆
󸀠

ℎ
𝑖

(L
⋆

(𝑢
󸀠

𝑖

, 𝑤) ∨ 𝑛
ℎi
)

= sup {𝑔
𝑖

(𝑢
𝑖

) ⋆
󸀠

ℎ
𝑖

(𝑛
ℎ

1

L
⋆

(𝑢
𝑖

, 𝑤)

∨𝑛
ℎ

1

) | 𝑢
𝑖

∈ [𝑛
𝑔

𝑖

∨ 𝑤, 𝑢̂
𝑖

]} ,

𝑖 ∈ {1, . . . , 𝑁} .

(65)

Without loss of the generality, we prove the situation of F
1

.
From Lemma 8, it is easy to see that

(𝑢
󸀠

1

, 𝑛
𝑔

2

, . . . , 𝑛
𝑔

𝑁

,L
⋆

(𝑢
󸀠

1

, 𝑤) ∨ 𝑛
ℎ

1

, 𝑛
ℎ

2

, . . . , 𝑛
ℎ

𝑁

) ∈ X
2

.

(66)

Denote
𝛿
1

= ℎ
2

(𝑛
ℎ

2

) ⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

ℎ
𝑁

(𝑛
ℎ

𝑁

) ,

𝜎
1

= 𝑔
2

(𝑛
𝑔

2

) ⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

𝑔
𝑁

(𝑛
𝑔

𝑁

) .

(67)

It is easy to see 𝜎
1

= 𝛿
1

= 1. Here we shall prove that
𝑔
1

(𝑢
󸀠

1

)⋆
󸀠

ℎ
1

(L
⋆

(𝑢
󸀠

1

, 𝑤) ∨ 𝑛
ℎ

1

) ⋆ 𝛿
1

⋆ 𝜎
1

is the greatest element
inF

1

. Take 𝑔
1

(𝑢
1

)⋆
󸀠

𝑔
2

(𝑢
2

)⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

𝑔
𝑁

(𝑢
𝑁

)⋆
󸀠

ℎ
1

(L
⋆

(𝑢
1

, 𝑤) ∨

𝑛
ℎ

1

) ⋆ 𝛿
1

∈ F
1

. By the convexity of 𝑔
𝑖

, we have

𝑔
2

(𝑢
2

) ⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

𝑔
𝑁

(𝑢
𝑁

) ⩽ 𝑔
2

(𝑛
𝑔

2

) ⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

𝑔
𝑁

(𝑛
𝑔

𝑁

) . (68)

Moreover, from the assumptions, there is

𝑔
1

(𝑢
1

) ⋆
󸀠

ℎ
1

(L
⋆

(𝑢
1

, 𝑤))

⩽ 𝑔
1

(𝑢
󸀠

1

) ⋆
󸀠

ℎ
1

(L
⋆

(𝑢
󸀠

1

, 𝑤) ∨ 𝑛
ℎ

1

) .
(69)

Thus
𝑔
1

(𝑢
1

) ⋆
󸀠

𝑔
2

(𝑢
2

) ⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

𝑔
𝑁

(𝑢
𝑁

)

⋆
󸀠

ℎ
1

(L
⋆

(𝑢
1

, 𝑤) ∨ 𝑛
ℎ

1

) ⋆
󸀠

𝛿
1

⩽ 𝑔
1

(𝑢
󸀠

1

) ⋆
󸀠

𝑔
2

(𝑛
𝑔

2

) ⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

𝑔
𝑁

(𝑛
𝑔

𝑁

)

⋆
󸀠

ℎ
1

(L
⋆

(𝑢
󸀠

1

, 𝑤) ∨ 𝑛
ℎ

1

) ⋆
󸀠

𝛿
1

.

(70)

It can be obtained that
supF

1

= 𝑔
1

(𝑢
󸀠

1

) ⋆
󸀠

𝑔
1

(𝑛
𝑔

2

) ⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

⋅ ⋅ ⋅

⋆
󸀠

𝑔
𝑁

(𝑛
𝑔

𝑁

) ⋆
󸀠

ℎ
1

(L
⋆

(𝑢
󸀠

1

, 𝑤) ∨ 𝑛
ℎ

1

) ⋆
󸀠

𝛿
1

= 𝑔
1

(𝑢
󸀠

1

) ⋆
󸀠

ℎ
1

(L
⋆

(𝑢
󸀠

1

, 𝑤)) ⋆
󸀠

𝛿
1

⋆
󸀠

𝜎
1

= 𝑔
1

(𝑢
󸀠

1

) ⋆
󸀠

ℎ
1

(L
⋆

(𝑢
󸀠

1

, 𝑤)) .

(71)

(2) It is clear that supH
2

= sup{supF
𝑖

, 𝑖 = 1, . . . , 𝑁}

sinceH
2

= ⋃
𝑁

V F
𝑖

and 𝐹(𝑤) = supH
2

.

Up to now, we can get all the values of expression (5).That
is to say, for every fixed 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌, we can calculate
the function 𝜇

̃

𝑅(𝑥,𝑦)

(𝑤) when ⋆ is continuous and 𝜇
̃

𝐴(𝑥)

and
𝜇
̃

𝐵(𝑦)

are both convex andnormal.On the basis ofTheorems 2,
7, and 9, we will give the implementation procedures in the
following.



10 Journal of Applied Mathematics

Start

𝛼, 𝛽

Judging ww < 𝛼 w > 𝛽

No

Yes

Output F

Meeting the
termination condition

F(w) = 1

𝛼 ≤ w ≤ 𝛽
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Calculating

Calculating

Calculating

Calculating

Calculating
N, j ∈ J

Figure 1: The structure of Algorithm 10.

Algorithm 10. Consider the following (Figure 1):
Step 1. Calculate 𝛼 = ⋁𝑁

𝑖=1

(𝑚
𝑔

𝑖

⋆𝑚
ℎ

𝑖

), 𝛽 = ⋁𝑁

𝑖=1

(𝑛
𝑔

𝑖

⋆𝑛
ℎ

𝑖

). For
every 𝑤 ∈ [0, 1] employ Step 2∼Step 4.
Step 2. When 𝑤 ∈ [0, 𝛼), step size Δ and calculate the
variables

𝐽 = {𝑖 ∈ {1, . . . , 𝑁} | 𝑚
𝑔

𝑖

⋆ 𝑚
ℎ

𝑖

⩾ 𝑤} ,

𝑢̌
𝑗

= inf {𝑥 ∈ [0,𝑚
𝑔

𝑗

] |L
⋆

(𝑥, 𝑤) ⩽ 𝑚
ℎ

𝑗

} , 𝑗 ∈ 𝐽.

(72)

Find the greatest value of 𝑔
𝑖

(𝑢
𝑖

)⋆
󸀠

ℎ
𝑖

(I
⋆

(𝑢
𝑖

, 𝑤) ∧ 𝑚
ℎ

𝑖

) in
[0, 𝑚

𝑔

𝑖

], denoted by 𝐹1
𝑖

, 𝑖 ∈ {1, . . . , 𝑁}; find the greatest value
of 𝑔

𝑗

(𝑢
𝑗

)⋆
󸀠

ℎ
𝑗

(I
⋆

(𝑢
𝑗

, 𝑤) ∧ 𝑚
ℎ

𝑗

) in [𝑢̌
𝑗

∨ 𝑤,𝑚
𝑔

𝑗

], denoted by
𝐹̌
1

𝑗

, 𝑗 ∈ 𝐽. Let

𝜆
𝑗

= 𝐹
1

1

⋆
󸀠

𝐹
1

𝑗−1

⋆
󸀠

𝐹̌
1

𝑗

⋆
󸀠

𝐹
1

𝑗+1

⋆
󸀠

⋅ ⋅ ⋅ ⋆
󸀠

𝐹
1

𝑁

, 𝑗 ∈ 𝐽. (73)

Then 𝐹(𝑤) = sup{𝜆
𝑗

, 𝑗 ∈ 𝐽}.
Step 3. When 𝑤 ∈ [𝛼, 𝛽], 𝐹(𝑤) = 1.
Step 4. When 𝑤 ∈ (𝛽, 1], step size Δ and calculate the
variables

𝑢̂
𝑖

= sup {𝑥 ∈ [𝑛
𝑔

𝑖

, 1] | I
⋆

(𝑥, 𝑤) ⩾ 𝑛
ℎ

𝑖

} , 𝑖 = 1, . . . , 𝑁.

(74)

For every 𝑖 ∈ {1, . . . , 𝑁}, find the greatest value of
𝑔
𝑖

(𝑢
𝑖

)⋆
󸀠

ℎ
𝑖

(L
⋆

(𝑢
𝑖

, 𝑤) ∨ 𝑛
ℎ

𝑖

) in [𝑛
𝑔

𝑖

∨𝑤, 𝑢̂
𝑖

], denoted by 𝐹2
𝑖

, 𝑖 ∈
{1, . . . , 𝑁}. Then 𝐹(𝑤) = sup{𝐹2

𝑖

, 𝑖 = 1, . . . , 𝑁}.

Remark 11. The above algorithm can be applied in calculating
extended continuous t-norm based on arbitrary t-norm on
two type-2 fuzzy sets once setting 𝑁 = 1 and extended
maximum based on arbitrary t-norm on𝑁 type-2 fuzzy sets
once setting ℎ

𝑖

(𝑢) = 1, 𝑖 = 1, . . . , 𝑁. Hence the type-2
fuzzy reasoning relations of type-2 fuzzy logic systems with
multiple input and single output can be calculated.

Remark 12. It can be seen from the operation steps above that
the presented method to calculate the formula (5) is much
simpler than the native algorithm (i.e., finding the maximum
of 𝑓(u, k) from all of the combination (u, k) in 𝑃

𝑤

(or 𝑃
𝑤1

and 𝑃
𝑤2

)) which is a huge operation process undoubtedly.
Take 𝑤 from [0, 1] with step size Δ

0

. Then the amount of
computation is no more than

4𝑁 +
𝛼

Δ
0

⋅ (

𝑁

∑
𝑖=1

4𝑚
𝑔

𝑖

Δ
+ 𝑁

2

)

+
1 − 𝛽

Δ
0

⋅ (

𝑁

∑
𝑖=1

(1 − 𝑢̂
𝑖

) + 3 (𝑢̂
𝑖

− 𝑛
𝑔

𝑖

∨ 𝑤)

Δ
+ 𝑁) ,

(75)
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where I
⋆

(𝑎, 𝑏),L
⋆

(𝑎, 𝑏), ⋆ or ⋆󸀠 is considered one compu-
tation and the step size Δ is small enough. According to
above analysis, we can draw the following conclusions: the
computation amount level of the proposed algorithm is the
same as that of polynomials.

4. Examples

In this section some concrete examples for the construction
of type-2 fuzzy reasoning relations of SISO type-2 fuzzy logic
systems on the proposed algorithm will be given. All of them
are realized by using MATLAB2010 (b).

Example 1. Let input domain 𝑋 = {𝑥} and output domain
𝑌 = {𝑦}. Then each type-2 fuzzy reasoning relation 𝑅̃

𝑖

(𝑖 ∈

{1, . . . , 𝑁}) and the total type-2 fuzzy reasoning relation 𝑅̃ are
only defined on𝑋×𝑌 = {(𝑥, 𝑦)}. In the group of type-2 fuzzy
reasonings (3) we choose 𝐴

𝑖

, 𝐵i, 𝑖 = 1, . . . , 7 as follows:

𝜇
̃

𝐴

1
(𝑥)

(𝑢) = exp{−(𝑢 − 0.3)
2

2 × 0.22
} ,

𝜇
̃

𝐴

2
(𝑥)

(𝑢) = exp{−(𝑢 − 0.34)
2

2 × 0.22
} ,

𝜇
̃

𝐴

3
(𝑥)

(𝑢) = exp{−(𝑢 − 0.36)
2

2 × 0.22
} ,

𝜇
̃

𝐴

4
(𝑥)

(𝑢) = exp{−(𝑢 − 0.4)
2

2 × 0.22
} ,

𝜇
̃

𝐴

5
(𝑥)

(𝑢) = exp{−(𝑢 − 0.5)
2

2 × 0.22
} ,

𝜇
̃

𝐴

6
(𝑥)

(𝑢) = exp{−(𝑢 − 0.55)
2

2 × 0.22
} ,

𝜇
̃

𝐴

7
(𝑥)

(𝑢) = exp{−(𝑢 − 0.6)
2

2 × 0.22
} ,

𝜇
̃

𝐵

1
(𝑦)

(V) = exp{−(V − 0.5)
2

2 × 0.12
} ,

𝜇
̃

𝐵

2
(𝑦)

(V) = exp{−(V − 0.55)
2

2 × 0.12
} ,

𝜇
̃

𝐵

3
(𝑦)

(V) = exp{−(V − 0.6)
2

2 × 0.12
} ,

𝜇
̃

𝐵

4
(𝑦)

(V) = exp{−(V − 0.65)
2

2 × 0.12
} ,

𝜇
̃

𝐵

5
(𝑦)

(V) = exp{−(V − 0.68)
2

2 × 0.12
} ,

𝜇
̃

𝐵

6
(𝑦)

(V) = exp{−(V − 0.7)
2

2 × 0.12
} ,

𝜇
̃

𝐵

7
(𝑦)

(V) = exp{−(V − 75)
2

2 × 0.12
} .

(76)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

𝜇R̃(x,y)(w)

Figure 2: The function graph of 𝜇
̃

𝑅(𝑥,𝑦)

(𝑤) in (77).

Choose ⊔(∨,⋆
󸀠
)

= ⊔
(∨,⊕) and ⊓(⋆,⋆

󸀠
)

= ⊓
(⊕,⊕), where 𝑎 ⊕ 𝑏 =

0 ∨ (𝑎 + 𝑏 − 1), 𝐴
𝑖

, and 𝐵
𝑖

as stated in Example 1, 𝑖 = 1, . . . , 7.
Then expression (5) is reduced as

𝜇
̃

𝑅(𝑥,𝑦)

(𝑤)

= sup
⋁

7

𝑖=1
(0∨(𝑢

𝑖
+V
𝑖
−1))=𝑤

(

7

⨁
𝑖=1

(0 ∨ (𝜇
̃

𝐴

𝑖
(𝑥)

(𝑢
𝑖

)

+𝜇
̃

𝐵

𝑖
(𝑦)

(V
𝑖

) − 1))) ,

(77)

where ⨁ and ⊕ indicate the same t-norm. Here we shall
calculate (77) by using our method. Clearly I

⊕

(𝑎, 𝑏) =

L
⊕

(𝑎, 𝑏) = 1 ∧ (𝑏 − 𝑎 + 1) and 𝛼 = 𝛽 = 0.35. The function
graph of 𝜇

̃

𝑅(𝑥,𝑦)

(𝑤) in (77) is shown in Figure 2.

Example 2. Choose ⊔(∨,⋆
󸀠
)

= ⊔
(∨,⊙) and ⊓(⋆,⋆

󸀠
)

= ⊓
(⊕,⊙), where

𝑎 ⊙ 𝑏 = {
𝑎 ∧ 𝑏, 𝑎 ∨ 𝑏 = 1,

0, 𝑎 ∨ 𝑏 < 1.
(78)

Let 𝐴
𝑖

and 𝐵
𝑖

be the same as stated in Example 1, 𝑖 =
1, . . . , 7. Then expression (5) is reduced as

𝜇
̃

𝑅(𝑥,𝑦)

(𝑤)

= sup
⋁

7

𝑖=1(0∨(𝑢𝑖+V𝑖−1))=𝑤
(

7

⨀
𝑖=1

(𝜇
̃

𝐴

𝑖
(𝑥)

(𝑢
𝑖

) ⊙ 𝜇
̃

𝐵

𝑖
(𝑦)

(V
𝑖

))) ,

(79)

where ⨀ and ⊙ indicate the same t-norm. Here we will
calculate (79) by using our method. Clearly 𝛼 = 𝛽 = 0.35.
The function graph of 𝜇

̃

𝑅(𝑥,𝑦)

(𝑤) in (79) is shown in Figure 3.
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Figure 3: The function graph of 𝜇
̃

𝑅(𝑥,𝑦)

(𝑤) in (79).
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Figure 4: The function graph of 𝜇
̃

𝑅(𝑥,𝑦)

(𝑤) in (80).

Example 3. Choose ⊔(∨,⋆
󸀠
)

= ⊔
(∨,⊙) and ⊓(⋆,⋆

󸀠
)

= ⊓
(⋅,⊙), where

𝑎 ⋅ 𝑏 = 𝑎𝑏. Let 𝐴
𝑖

and 𝐵
𝑖

be the same as stated in Example 1,
𝑖 = 1, . . . , 7. Then expression (5) is reduced as

𝜇
̃

𝑅(𝑥,𝑦)

(𝑤)

= sup
⋁

7

𝑖=1(𝑢𝑖V𝑖)=𝑤
(

7

⨀
𝑖=1

(𝜇
̃

𝐴

𝑖
(𝑥)

(𝑢
𝑖

) ⊙ 𝜇
̃

𝐵

𝑖
(𝑦)

(V
𝑖

))) .
(80)

Here we will calculate (80) by using our method. Clearly
I

⋅

(𝑎, 𝑏) = L
⋅

(𝑎, 𝑏) = 1 ∧ (𝑏/𝑎) and 𝛼 = 𝛽 = 0.45. The
function graph of 𝜇

̃

𝑅(𝑥,𝑦)

(𝑤) in (80) is shown in Figure 4.

5. Conclusions

In this paper, an algorithm for constructing type-2 fuzzy
reasoning relations of SISO type-2 fuzzy logic systems has
been given under certain conditions. The results may serve
to establish many new type-2 fuzzy logic systems by using
different extended t-(co)norms. An important conclusion
has been given that the results of extended continuous t-
(co)norms based on arbitrary t-norm keep the convexity

and normality, which guarantees the operation conditions
of extended t-(co)norms for the next turn. It can be seen
that the proposed algorithm deals with the antecedents
and consequents of the group of type-2 fuzzy reasoning in
an integral way and the computation amount level of the
proposed algorithm is the same as that of polynomials, which
indicates that the proposed algorithm may be well applied
in type-2 fuzzy logic systems. Besides, it can be seen that
the calculations of an extended continuous t-norm based
on arbitrary t-norms can be obtained as the special case of
the proposed algorithm, which is a new idea to calculate
the membership functions of a class of extended t-norm.
However, all the fuzzy truth values of type-2 fuzzy sets that
participated in the calculation are required to be convex and
normal. Obviously, by using our proposed algorithm more
applications about noninterval type-2 fuzzy logic system and
type-2 fuzzy neural network could be attemptable.
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