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We establish certain fixed point results for 𝛼-𝜂-generalized convex contractions, 𝛼-𝜂-weakly Zamfirescu mappings, and 𝛼-𝜂-Ćirić
strong almost contractions. As an application, we derive some Suzuki type fixed point theorems and certain new fixed point
theorems in metric spaces endowed with a graph and a partial order. Moreover, we discuss some illustrative examples to highlight
the realized improvements.

1. Introduction

Banach contraction principle states that every contraction
mapping defined on a complete metric space 𝑋 has a unique
fixed point and that point can be obtained as a limit of
repeated iteration of the mapping at any point of 𝑋. This
fundamental fixed point theorem has laid the foundation of
metric fixed point theory which is very important due to
its applications in different fields such as image processing,
physics, computer science [1], economics, and telecommuni-
cation (see for more details [2–11]).

Istrăţescu [12] introduced and studied the notion of con-
vex contractions. Recently Miandaragh et al. [13] proved cer-
tain results for generalized convex contractions on complete
metric spaces. Salimi et al. [14] modified the concept of 𝛼-
admissible mappings introduced and studied by Samet et al.
[15], Karapınar and Samet [16], and Salimi andKarapınar [17].
We establish certain fixed point results for 𝛼-𝜂-generalized
convex contractions, 𝛼-𝜂-weakly Zamfirescu mappings, and
𝛼-𝜂-Ćirić strong almost contractions. As an application, we
shall derive corresponding results in metric spaces endowed
with a graph and a partial order.

2. Discussion on 𝛼-𝜂-𝜓-Contractive Mappings

We shall denote by Ψ the family of nondecreasing functions
𝜓 : [0, +∞) → [0, +∞) such that∑+∞

𝑛=1
𝜓
𝑛
(𝑡) < +∞ for each

𝑡 > 0, where 𝜓𝑛 is the 𝑛th iterate of 𝜓. Clearly, if 𝜓 ∈ Ψ, then
𝜓(𝑡) < 𝑡 for all 𝑡 > 0.

Samet et al. [15] introduced following concept.

Definition 1. Let (𝑋, 𝑑) be a metric space, let 𝑇 : 𝑋 → 𝑋 be
a self-mapping, and let 𝛼 : 𝑋 × 𝑋 → [0,∞) be a function.
One says that 𝑇 is an 𝛼-𝜓-contractive mapping if

𝛼 (𝑥, 𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) (1)

holds for all 𝑥, 𝑦 ∈ 𝑋, where 𝜓 ∈ Ψ.

By taking 𝛼(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ 𝑋 and 𝜓(𝑡) = 𝑟𝑡,
where 0 ≤ 𝑟 < 1, 𝛼-𝜓-contractivemapping reduces to Banach
contraction mapping.

We suggest the following notion as generalization of 𝛼-𝜓-
contractive mappings.

Definition 2. Let (𝑋, 𝑑) be a metric space, let 𝑇 : 𝑋 → 𝑋

be a self-mapping, and let 𝛼, 𝜂 : 𝑋 × 𝑋 → [0,∞) be two
functions. One says that 𝑇 is an 𝛼-𝜂-𝜓-contractive mapping
if for all 𝑥, 𝑦 ∈ 𝑋 with 𝜂(𝑥, 𝑇𝑥) ≤ 𝛼(𝑥, 𝑦) we have

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) (2)

for some 𝜓 ∈ Ψ.

Example 3. Let 𝑋 = [0,∞) be endowed with usual metric
and let 𝑇 : 𝑋 → 𝑋 be defined by 𝑇𝑥 = 𝑟𝑥, where 0 < 𝑟 < 1.
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Also, let 𝛼, 𝜂 : 𝑋 × 𝑋 → [0,∞) be two functions such that
only 𝛼(𝑥

0
, 𝑦
0
) ≥ 1/𝑟 for some 𝑥

0
, 𝑦
0
∈ 𝑋 with 𝑥

0
̸= 𝑦
0
. Then,

𝑇 is not an 𝛼-𝜓-contractive mapping while it is a Banach
contraction and 𝛼-𝜂-𝜓-contractive mapping. In fact,

𝛼 (𝑥
0
, 𝑦
0
) 𝑑 (𝑇𝑥

0
, 𝑇𝑦
0
) ≥

1

𝑟

󵄨
󵄨
󵄨
󵄨
𝑟𝑥
0
− 𝑟𝑦
0

󵄨
󵄨
󵄨
󵄨

=
󵄨
󵄨
󵄨
󵄨
𝑥
0
− 𝑦
0

󵄨
󵄨
󵄨
󵄨
> 𝜓 (

󵄨
󵄨
󵄨
󵄨
𝑥
0
− 𝑦
0

󵄨
󵄨
󵄨
󵄨
)

= 𝜓 (𝑑 (𝑥
0
, 𝑦
0
))

(3)

while 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑟𝑑(𝑥, 𝑦) holds for all 𝑥, 𝑦 ∈ 𝑋 where
𝜓(𝑡) = 𝑟𝑡.

Example 4. Let 𝑋 = [0, 1] be endowed with usual metric
and let 𝑇 : 𝑋 → 𝑋 be defined by 𝑇𝑥 = (1/4)𝑥

2. Also, let
𝛼, 𝜂 : 𝑋 × 𝑋 → [0,∞) be two functions such that only
𝛼(0, 1) = 8. Then, 𝑇 is not an 𝛼-𝜓-contractive mapping while
it is a Banach contraction and 𝛼-𝜂-𝜓-contractive mapping. In
fact,

𝛼 (0, 1) 𝑑 (𝑇0, 𝑇1) = 2 > 1 > 𝜓 (1) = 𝜓 (𝑑 (0, 1)) (4)

while 𝑑(𝑇𝑥, 𝑇𝑦) ≤ (1/2)𝑑(𝑥, 𝑦) holds for all 𝑥, 𝑦 ∈ 𝑋 where
𝜓(𝑡) = (1/2)𝑡.

Similarly, one may develop other examples of self-map-
pings that are not 𝛼-𝜓-contractive mappings while they are
Banach contraction and 𝛼-𝜂-𝜓-contractive mappings.

Remark 5. It is worth to notice that there is no Banach con-
traction mapping which is not 𝛼-𝜂-𝜓-contractive. Indeed, let
𝑇 be a Banach contraction mapping on 𝑋 with contraction
constant 𝑘 such that 𝑇 is not an 𝛼-𝜂-𝜓-contractive mapping.
Then for all 𝜓 ∈ Ψ, there exists 𝑥

0
, 𝑦
0
∈ 𝑋 such that

𝛼(𝑥
0
, 𝑦
0
) ≥ 𝜂(𝑥

0
, 𝑇𝑥
0
) and 𝑑(𝑇𝑥

0
, 𝑇𝑦
0
) > 𝜓(𝑑(𝑥

0
, 𝑦
0
)). But

𝜓(𝑡) = 𝑘𝑡 produces a contradiction to the fact that 𝑇 is a
Banach contraction mapping.

More recently, Miandaragh et al. [13] introduced the
following notions.

Definition 6. Let (𝑋, 𝑑) be a metric space and let 𝑇 : 𝑋 →

𝑋 be a self-mapping. One says 𝑇 is a generalized convex
contraction if there exist 𝑎, 𝑏 ≥ 0with 𝑎+𝑏 < 1 and a function
𝛼 : 𝑋 × 𝑋 → [0,∞) such that

𝛼 (𝑥, 𝑦) 𝑑 (𝑇
2

𝑥, 𝑇
2

𝑦) ≤ 𝑎𝑑 (𝑇𝑥, 𝑇𝑦) + 𝑏𝑑 (𝑥, 𝑦) (5)

holds for all 𝑥, 𝑦 ∈ 𝑋.

Definition 7. Let (𝑋, 𝑑) be a metric space and let 𝑇 : 𝑋 →

𝑋 be a self-mapping. One says 𝑇 is a generalized convex
contraction of order 2 if there exist 𝑎

1
, 𝑎
2
, 𝑏
1
, 𝑏
2
≥ 0 with

𝑎
1
+ 𝑎
2
+ 𝑏
1
+ 𝑏
2
< 1 and a function 𝛼 : 𝑋 × 𝑋 → [0,∞)

such that

𝛼 (𝑥, 𝑦) 𝑑 (𝑇
2

𝑥, 𝑇
2

𝑦) ≤ 𝑎
1
𝑑 (𝑥, 𝑇𝑥) + 𝑎

2
𝑑 (𝑇𝑥, 𝑇

2

𝑥)

+ 𝑏
1
𝑑 (𝑦, 𝑇𝑦) + 𝑏

2
𝑑 (𝑇𝑦, 𝑇

2

𝑦)

(6)

holds for all 𝑥, 𝑦 ∈ 𝑋.

On the basis of the above facts, we suggest the notions
of generalized convex contraction and generalized convex
contraction of order 2 as follows.

Definition 8. Let (𝑋, 𝑑) be a metric space, let 𝑇 : 𝑋 → 𝑋

be a self-mapping, and let 𝛼, 𝜂 : 𝑋 × 𝑋 → [0,∞) be two
functions. Then 𝑇 is said to be an 𝛼-𝜂-generalized convex
contraction if

𝑥, 𝑦 ∈ 𝑋, 𝜂 (𝑥, 𝑇𝑥) ≤ 𝛼 (𝑥, 𝑦) 󳨐⇒ 𝑑 (𝑇
2

𝑥, 𝑇
2

𝑦)

≤ 𝑎𝑑 (𝑇𝑥, 𝑇𝑦) + 𝑏𝑑 (𝑥, 𝑦) ,

(7)

where 𝑎, 𝑏 ≥ 0 with 𝑎 + 𝑏 < 1.

Definition 9. Let (𝑋, 𝑑) be a metric space, let 𝑇 : 𝑋 → 𝑋

be a self-mapping, and let 𝛼, 𝜂 : 𝑋 × 𝑋 → [0,∞) be two
functions. Then 𝑇 is said to be an 𝛼-𝜂-generalized convex
contraction of order 2 if

𝑥, 𝑦 ∈ 𝑋, 𝜂 (𝑥, 𝑇𝑥) ≤ 𝛼 (𝑥, 𝑦) 󳨐⇒ 𝑑 (𝑇
2

𝑥, 𝑇
2

𝑦)

≤ 𝑎
1
𝑑 (𝑥, 𝑇𝑥) + 𝑎

2
𝑑 (𝑇𝑥, 𝑇

2

𝑥)

+ 𝑏
1
𝑑 (𝑦, 𝑇𝑦) + 𝑏

2
𝑑 (𝑇𝑦, 𝑇

2

𝑦) ,

(8)

where, 𝑎
1
, 𝑎
2
, 𝑏
1
, 𝑏
2
≥ 0 and 𝑎

1
+ 𝑎
2
+ 𝑏
1
+ 𝑏
2
< 1.

Example 10. Let 𝑋 = [0,∞) be endowed with usual metric
and let 𝑇 : 𝑋 → 𝑋 be defined by 𝑇𝑥 = 𝑟𝑥, where 0 < 𝑟 < 1.
Also, let 𝛼, 𝜂 : 𝑋 × 𝑋 → [0,∞) be two functions such that
𝛼(𝑥
0
, 𝑦
0
) ≥ 1/𝑟

2 for some 𝑥
0
, 𝑦
0
∈ 𝑋 with 𝑥

0
̸= 𝑦
0
. Then, 𝑇

is not a generalized convex contraction while it is a convex
contraction and 𝛼-𝜂-generalized convex contraction. Indeed,

𝛼 (𝑥
0
, 𝑦
0
) 𝑑 (𝑇

2

𝑥
0
, 𝑇
2

𝑦
0
) =

1

𝑟
2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑟
2

𝑥
0
− 𝑟
2

𝑦
0

󵄨
󵄨
󵄨
󵄨
󵄨

=
󵄨
󵄨
󵄨
󵄨
𝑥
0
− 𝑦
0

󵄨
󵄨
󵄨
󵄨

> (𝑎 + 𝑏)
󵄨
󵄨
󵄨
󵄨
𝑥
0
− 𝑦
0

󵄨
󵄨
󵄨
󵄨

≥ 𝑎
󵄨
󵄨
󵄨
󵄨
𝑟𝑥
0
− 𝑟𝑦
0

󵄨
󵄨
󵄨
󵄨
+ 𝑏

󵄨
󵄨
󵄨
󵄨
𝑥
0
− 𝑦
0

󵄨
󵄨
󵄨
󵄨

= 𝑎𝑑 (𝑇𝑥
0
, 𝑇𝑦
0
) + 𝑏𝑑 (𝑥

0
, 𝑦
0
)

(9)

for all 𝑎, 𝑏 ∈ R
+
with 𝑎 + 𝑏 < 1. That is, 𝑇 is not a generalized

convex contraction mapping. But if we choose 𝑎 = 𝑟2/2 and
𝑏 = 𝑟/2 then,

𝑑 (𝑇
2

𝑥, 𝑇
2

𝑦) = 𝑟
2 󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

= (

𝑟
2

2

+

𝑟
2

2

)
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

=

𝑟
2

2

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
+

𝑟
2

2

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

≤

𝑟
2

2

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
+

𝑟

2

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

= 𝑎𝑑 (𝑇𝑥, 𝑇𝑦) + 𝑏𝑑 (𝑥, 𝑦)

(10)

holds for all 𝑥, 𝑦 ∈ 𝑋. That is, 𝑇 is a convex contraction and
𝛼-𝜂-generalized convex contraction mapping.
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Example 11. Let𝑋 = [0,∞) be endowed with metric

𝑑 (𝑥, 𝑦) = {

max {𝑥, 𝑦} , if 𝑥 ̸= 𝑦

0 if 𝑥 = 𝑦.
(11)

Let 𝑇 : 𝑋 → 𝑋 be defined by 𝑇𝑥 = (1/4)𝑥 and let 𝛼, 𝜂 :
𝑋 × 𝑋 → [0,∞) be two functions such that 𝛼(0, 1) = 16.
Then 𝑇 is not a generalized convex contraction of order 2
while it is a convex contraction of order 2 and𝛼-𝜂-generalized
convex contraction of order 2 mapping. Indeed, if we choose
𝑥 = 0 and 𝑦 = 1 then,

𝛼 (0, 1) 𝑑 (𝑇
2

0, 𝑇
2

1)

= 1 > 𝑏
1
+

𝑏
2

4

= 𝑎
1
𝑑 (0, 𝑇0)

+ 𝑎
2
𝑑 (𝑇0, 𝑇

2

0) + 𝑏
1
𝑑 (1, 𝑇1) + 𝑏

2
𝑑 (𝑇1, 𝑇

2

1)

(12)

holds for all 𝑎
1
, 𝑎
2
, 𝑏
1
, 𝑏
2
≥ 0 with 𝑎

1
+ 𝑎
2
+ 𝑏
1
+ 𝑏
2
< 1. That

is, 𝑇 is not a generalized convex contraction of order 2. But,
if we choose 𝑎

1
= 𝑏
1
= 1/32 and 𝑎

2
= 𝑏
2
= 1/8 then,

𝑑 (𝑇
2

𝑥, 𝑇
2

𝑦) =

1

16

max {𝑥, 𝑦} ≤ 1

16

𝑥 +

1

16

𝑦

=

1

32

𝑥 +

1

32

𝑥 +

1

32

𝑦 +

1

32

𝑦

=

1

32

max {𝑥, 1
4

𝑥} +

1

8

max {1
4

𝑥,

1

16

𝑥}

+

1

32

max {𝑦, 1
4

𝑦} +

1

8

max {1
4

𝑦,

1

16

𝑦}

≤ 𝑎
1
𝑑 (𝑥, 𝑇𝑥) + 𝑎

2
𝑑 (𝑇𝑥, 𝑇

2

𝑥)

+ 𝑏
1
𝑑 (𝑦, 𝑇𝑦) + 𝑏

2
𝑑 (𝑇𝑦, 𝑇

2

𝑦)

(13)

holds for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ̸= 𝑦. Moreover, if 𝑥 = 𝑦, then

𝑑 (𝑇
2

𝑥, 𝑇
2

𝑦) = 0 ≤ 𝑎
1
𝑑 (𝑥, 𝑇𝑥) + 𝑎

2
𝑑 (𝑇𝑥, 𝑇

2

𝑥)

+ 𝑏
1
𝑑 (𝑦, 𝑇𝑦) + 𝑏

2
𝑑 (𝑇𝑦, 𝑇

2

𝑦)

(14)

and so,

𝑑 (𝑇
2

𝑥, 𝑇
2

𝑦) ≤ 𝑎
1
𝑑 (𝑥, 𝑇𝑥) + 𝑎

2
𝑑 (𝑇𝑥, 𝑇

2

𝑥)

+ 𝑏
1
𝑑 (𝑦, 𝑇𝑦) + 𝑏

2
𝑑 (𝑇𝑦, 𝑇

2

𝑦)

(15)

holds for all 𝑥, 𝑦 ∈ 𝑋. That is, 𝑇 is a convex contraction of
order 2 and 𝛼-𝜂-generalized convex contraction of order 2
mapping.

Remark 12. We cannot find a self-mapping 𝑇 and functions
𝛼, 𝜂 : 𝑋 × 𝑋 → [0,∞) such that 𝑇 is a convex contraction
mapping (or convex contraction of order 2) which is not
a 𝛼-𝜂-generalized convex contraction (or 𝛼-𝜂-generalized
convex contraction of order 2).

3. Fixed Point Results for
Modified Convex Contractions

Let 𝜖 > 0 be given. A point 𝑥 in a metric space (𝑋, 𝑑) is called
an 𝜖-fixed point of the self-map 𝑇 on𝑋 whenever 𝑑(𝑥, 𝑇𝑥) <
𝜖. We say that 𝑇 has an approximate fixed point (or 𝑇 has the
approximate fixed point property) whenever 𝑇 has an 𝜖-fixed
point for all 𝜖 > 0; see [18, 19].

Definition 13 (see [14]). Let 𝑇 be a self-mapping on𝑋 and let
𝛼, 𝜂 : 𝑋 ×𝑋 → [0, +∞) be two functions. One says that 𝑇 is
an 𝛼-admissible mapping with respect to 𝜂 if

𝑥, 𝑦 ∈ 𝑋, 𝛼 (𝑥, 𝑦) ≥ 𝜂 (𝑥, 𝑦) 󳨐⇒ 𝛼 (𝑇𝑥, 𝑇𝑦) ≥ 𝜂 (𝑇𝑥, 𝑇𝑦) .

(16)

Note that if we take 𝜂(𝑥, 𝑦) = 1, then 𝑇 is called 𝛼-admissible
mapping.

We shall need the following result.

Lemma 14 (see [18]). Let (𝑋, 𝑑) be a metric space and let 𝑇 be
an asymptotic regular self-map on𝑋; that is, 𝑑(𝑇𝑛𝑥, 𝑇𝑛+1𝑥) →
0 as 𝑛 → ∞ for all 𝑥 ∈ 𝑋. Then 𝑇 has the approximate fixed
point property.

Theorem 15. Let (𝑋, 𝑑) be a complete metric space and let 𝑇
be amodified generalized convex contraction on𝑋. If𝑇 is an 𝛼-
admissible mapping with respect to 𝜂 and 𝛼(𝑥, 𝑇𝑥) ≥ 𝜂(𝑥, 𝑇𝑥)
for all 𝑥 ∈ 𝑋, then 𝑇 has an approximate fixed point.

Proof. Let 𝛼(𝑤, 𝑇𝑤) ≥ 𝜂(𝑤, 𝑇𝑤) for all 𝑤 ∈ 𝑋. Since 𝑇 is
an 𝛼-admissible mapping with respect to 𝜂, then we deduce
that 𝛼(𝑇𝑤, 𝑇2𝑤) ≥ 𝜂(𝑇𝑤, 𝑇2𝑤) for all 𝑤 ∈ 𝑋. By continuing
this process, we get 𝛼(𝑇𝑛𝑤, 𝑇𝑛+1𝑤) ≥ 𝜂(𝑇

𝑛
𝑤, 𝑇
𝑛+1
𝑤) for all

𝑛 ∈ N ∪ {0} and for all 𝑤 ∈ 𝑋. By taking 𝜗 = 𝑑(𝑇2𝑤, 𝑇𝑤) +
𝑑(𝑇𝑤,𝑤) and 𝑟 = 𝑎 + 𝑏 we have 𝑑(𝑇𝑤, 𝑇2𝑤) ≤ 𝜗. Let 𝑥 = 𝑤
and 𝑦 = 𝑇𝑤; then by (7),

𝑑 (𝑇
3

𝑤, 𝑇
2

𝑤) ≤ 𝑎𝑑 (𝑇
2

𝑤, 𝑇𝑤) + 𝑏𝑑 (𝑤, 𝑇𝑤) ≤ 𝑟𝜗. (17)

By continuing this process we get

𝑑 (𝑇
𝑚

𝑤, 𝑇
𝑚+1

𝑤) ≤ 2𝑟
𝑙

𝜗, (18)

where 𝑚 = 2𝑙 or 𝑚 = 2𝑙 + 1. This implies that 𝑑(𝑇𝑚𝑤,
𝑇
𝑚+1

𝑤) → 0 for all 𝑤 ∈ 𝑋. By applying Lemma 14, 𝑇 has
an approximate fixed point.

Let 𝑇 be a self-mapping and let 𝛼, 𝜂 : 𝑋×𝑋 → [0,∞) be
two functions. We say that 𝑋 has the𝐻⋆-property whenever
for all 𝑥, 𝑦 ∈ Fix (𝑇) with 𝛼(𝑥, 𝑦) < 𝜂(𝑥, 𝑇𝑥), and there exists
𝑧 ∈ 𝑋 such that 𝛼(𝑥, 𝑧) ≥ 𝜂(𝑥, 𝑧) and 𝛼(𝑦, 𝑧) ≥ 𝜂(𝑦, 𝑧). Also
for all 𝑥, 𝑦 ∈ 𝑋 we have, 𝜂(𝑥, 𝑇𝑥) ≤ 𝜂(𝑥, 𝑦).

Theorem 16. Let (𝑋, 𝑑) be a completemetric space and let𝑇 be
a modified generalized convex contraction on 𝑋. Also suppose
that 𝑇 is continuous and 𝛼-admissible mapping with respect to
𝜂. If there exists an 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 𝜂(𝑥

0
, 𝑇𝑥
0
),

then 𝑇 has a fixed point. Moreover, 𝑇 has a unique fixed point
when𝑋 has𝐻⋆-property.
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Proof. Define a sequence {𝑥
𝑛
} in𝑋 by 𝑥

𝑛
= 𝑇
𝑛
𝑥
0
for all 𝑛 ∈ N.

Since 𝑇 is an 𝛼-admissible mapping with respect to 𝜂 and
𝛼(𝑥
0
, 𝑇𝑥
0
) = 𝛼(𝑥

0
, 𝑥
1
) ≥ 𝜂(𝑥

0
, 𝑇𝑥
0
) = 𝜂(𝑥

0
, 𝑥
1
), we deduce

that 𝛼(𝑥
1
, 𝑥
2
) = 𝛼(𝑇𝑥

0
, 𝑇𝑥
1
) ≥ 𝜂(𝑥

1
, 𝑥
2
) = 𝜂(𝑇𝑥

0
, 𝑇𝑥
1
). By

continuing this process, we get 𝛼(𝑥
𝑛
, 𝑥
𝑛+1
) ≥ 𝜂(𝑥

𝑛
, 𝑥
𝑛+1
) =

𝜂(𝑥
𝑛
, 𝑇𝑥
𝑛
) for all 𝑛 ∈ N ∪ {0}. Since 𝑇 is a modified general-

ized convex contraction, so from (7) we get

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) ≤ 𝑎𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
) + 𝑏𝑑 (𝑥

𝑛−2
, 𝑥
𝑛−1
) . (19)

By taking 𝜗 = 𝑑(𝑥
2
, 𝑥
1
) + 𝑑(𝑥

1
, 𝑥
0
) and 𝑟 = 𝑎 + 𝑏 we have

𝑑 (𝑥
𝑚
, 𝑥
𝑚+1

) ≤ 𝑟
𝑙

𝜗, (20)

where𝑚 = 2𝑙 or𝑚 = 2𝑙 + 1. Let𝑚 = 2𝑙. Then for 𝑛 = 2𝑝 with
𝑝 > 2, 𝑙 ≥ 1, and𝑚 < 𝑛 we deduce

𝑑 (𝑥
𝑚
, 𝑥
𝑛
) ≤ 𝑑 (𝑥

𝑚
, 𝑥
𝑚+1

) + 𝑑 (𝑥
𝑚+1

, 𝑥
𝑚+2

)

+ 𝑑 (𝑥
𝑚+2

, 𝑥
𝑚+3

) + ⋅ ⋅ ⋅ + 𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
)

= 𝑑 (𝑥
2
𝑙, 𝑥
2𝑙+1
) + 𝑑 (𝑥

2𝑙+1
, 𝑥
2𝑙+2
)

+ 𝑑 (𝑥
2𝑙+2
, 𝑥
2𝑙+3
) + ⋅ ⋅ ⋅ + 𝑑 (𝑥

2𝑝−1
, 𝑥
2𝑝
)

≤ 𝑟
𝑙

𝜗 + 𝑟
𝑙

𝜗 + 𝑟
𝑙+1

𝜗 + ⋅ ⋅ ⋅ + 𝑟
𝑝−1

𝜗

= 2𝑟
𝑙

𝜗 + 2𝑟
𝑙+1

𝜗 + ⋅ ⋅ ⋅ + 2𝑟
𝑝−1

𝜗 ≤

2𝑟
𝑙

1 − 𝑟

𝜗.

(21)

Similarly, for 𝑚 = 2𝑙 and 𝑛 = 2𝑝 + 1 with 𝑝 ≥ 1, 𝑙 ≥ 1, and
𝑚 < 𝑛 we get

𝑑 (𝑥
𝑚
, 𝑥
𝑛
) ≤

2𝑟
𝑙

1 − 𝑟

𝜗. (22)

Now, assume that 𝑚 = 2𝑙 + 1. Then for 𝑛 = 2𝑝 with 𝑝 ≥ 2,
𝑙 ≥ 1, and𝑚 < 𝑛 we have

𝑑 (𝑥
𝑚
, 𝑥
𝑛
) ≤ 𝑑 (𝑥

𝑚
, 𝑥
𝑚+1

) + 𝑑 (𝑥
𝑚+1

, 𝑥
𝑚+2

)

+ 𝑑 (𝑥
𝑚+2

, 𝑥
𝑚+3

) + ⋅ ⋅ ⋅ + 𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
)

= 𝑑 (𝑥
2𝑙
, 𝑥
2𝑙+1
) + 𝑑 (𝑥

2𝑙+1
, 𝑥
2𝑙+2
)

+ 𝑑 (𝑥
2𝑙+2
, 𝑥
2𝑙+3
) + ⋅ ⋅ ⋅ + 𝑑 (𝑥

2𝑝−1
, 𝑥
2𝑝
)

≤ 𝑟
𝑙

𝜗 + 𝑟
𝑙+𝑙

𝜗 + 𝑟
𝑙+1

𝜗 + ⋅ ⋅ ⋅ + 𝑟
𝑝

𝜗

≤ 2𝑟
𝑙

𝜗 + 2𝑟
𝑙+1

𝜗 + ⋅ ⋅ ⋅ + 2𝑟
𝑝

𝜗 ≤

2𝑟
𝑙

1 − 𝑟

𝜗.

(23)

Similarly, for𝑚 = 2𝑙 + 1 and 𝑛 = 2𝑝 + 1 with 𝑝 ≥ 1, 𝑙 ≥ 1,
and𝑚 < 𝑛 we deduce

𝑑 (𝑥
𝑚
, 𝑥
𝑛
) ≤

2𝑟
𝑙

1 − 𝑟

𝜗. (24)

Hence, for all𝑚, 𝑛 ∈ N with𝑚 < 𝑛 we have

𝑑 (𝑥
𝑚
, 𝑥
𝑛
) ≤

2𝑟
𝑙

1 − 𝑟

𝜗. (25)

Taking limit as 𝑙 → ∞ in the above inequality we get
𝑑(𝑥
𝑚
, 𝑥
𝑛
) → 0. That is, {𝑥

𝑛
} is a Cauchy sequence. Since

(𝑋, 𝑑) is a complete metric space, then there exists 𝑧 ∈ 𝑋

such that 𝑥
𝑛
→ 𝑧 as 𝑛 → ∞. Since 𝑇 is continuous, then

𝑧 = 𝑇𝑧.
Let 𝑥, 𝑦 ∈ Fix (𝑇), where 𝑥 ̸= 𝑦. For prove of uniqueness

we consider the following cases.

Case 1. Let 𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑇𝑥). Since 𝑇 is a modified
generalized convex contraction, then we have

𝑑 (𝑥, 𝑦) = 𝑑 (𝑇
2

𝑥, 𝑇
2

𝑦) ≤ 𝑎𝑑 (𝑇𝑥, 𝑇𝑦) + 𝑏𝑑 (𝑥, 𝑦)

= 𝑎𝑑 (𝑥, 𝑦) + 𝑏𝑑 (𝑥, 𝑦)

= (𝑎 + 𝑏) 𝑑 (𝑥, 𝑦) < 𝑑 (𝑥, 𝑦)

(26)

which is a contradiction.

Case 2. Let 𝛼(𝑥, 𝑦) < 𝜂(𝑥, 𝑇𝑥). Since𝑋 has𝐻⋆-property, then
there exists 𝑧 ∈ 𝑋 such that 𝛼(𝑥, 𝑧) ≥ 𝜂(𝑥, 𝑧) and 𝛼(𝑦, 𝑧) ≥
𝜂(𝑦, 𝑧). Now, since𝑇 is an 𝛼-admissiblemapping with respect
to 𝜂, then we can deduce 𝛼(𝑥, 𝑇𝑛𝑧) ≥ 𝜂(𝑥, 𝑇

𝑛
𝑧) ≥ 𝜂(𝑥, 𝑇𝑥)

and 𝛼(𝑦, 𝑇𝑛𝑧) ≥ 𝜂(𝑦, 𝑇𝑛𝑧) ≥ 𝜂(𝑦, 𝑇𝑦). First we assume that
𝛼(𝑥, 𝑇

𝑛
𝑧) ≥ 𝜂(𝑥, 𝑇𝑥). So by hypothesis we get

𝑑 (𝑥, 𝑇
𝑛+2

𝑧) ≤ 𝑎𝑑 (𝑥, 𝑇
𝑛+1

𝑧) + 𝑏𝑑 (𝑥, 𝑇
𝑛

𝑧) . (27)

By taking 𝜗 = 𝑑(𝑥, 𝑇𝑧) + 𝑑(𝑥, 𝑧) and 𝑟 = 𝑎 + 𝑏 we have

𝑑 (𝑥, 𝑇
𝑚

𝑥) ≤ 𝑟
𝑙

𝜗, (28)

where𝑚 = 2𝑙 or𝑚 = 2𝑙 + 1. Therefore, 𝑇𝑚𝑧 → 𝑥. Similarly,
we can show that 𝑇𝑚𝑧 → 𝑦. That is, 𝑥 = 𝑦 which is a
contradiction. Therefore, 𝑇 has a unique fixed point.

Theorem 17. Let (𝑋, 𝑑) be a metric space and let 𝑇 be a
modified generalized convex contraction of order 2 on 𝑋. If 𝑇
is an 𝛼-admissible mapping with respect to 𝜂 and 𝛼(𝑥, 𝑇𝑥) ≥
𝜂(𝑥, 𝑇𝑥) for all 𝑥 ∈ 𝑋, then 𝑇 has an approximate fixed point.

Proof. As in proof of Theorem 15 we can conclude that
𝛼(𝑇
𝑛
𝑤, 𝑇
𝑛+1
𝑤) ≥ 𝜂(𝑇

𝑛
𝑤, 𝑇
𝑛+1
𝑤) for all 𝑛 ∈ N and all 𝑤 ∈ 𝑋.

Put 𝑟 = 𝑎
1
+𝑎
2
+𝑏
1
,𝛽 = 1−𝑏

2
, and 𝜗 = 𝑑(𝑇2𝑤, 𝑇𝑤)+𝑑(𝑇𝑤,𝑤).

From (8) with 𝑥 = 𝑤 and 𝑦 = 𝑇𝑤 we have

𝑑 (𝑇
2

𝑤, 𝑇
3

𝑤) ≤ 𝑎
1
𝑑 (𝑤, 𝑇𝑤) + 𝑎

2
𝑑 (𝑇𝑤, 𝑇

2

𝑤)

+ 𝑏
1
𝑑 (𝑇𝑤, 𝑇

2

𝑤) + 𝑏
2
𝑑 (𝑇
2

𝑤, 𝑇
3

𝑤)

≤ 𝑟𝜗 + 𝑏
2
𝑑 (𝑇
2

𝑤, 𝑇
3

𝑤)

(29)

which implies that (1−𝑏
2
)𝑑(𝑇
2
𝑤, 𝑇
3
𝑤) ≤ (𝑎

1
+𝑎
2
+𝑏
1
)𝜗.That

is, 𝑑(𝑇2𝑤, 𝑇3𝑤) ≤ (𝑟/𝛽)𝜗. Again from (8) with 𝑥 = 𝑇𝑤 and
𝑦 = 𝑇

2
𝑤 we get

𝑑 (𝑇
3

𝑤, 𝑇
4

𝑤) ≤ 𝑎
1
𝑑 (𝑇𝑤, 𝑇

2

𝑤) + 𝑎
2
𝑑 (𝑇
2

𝑤, 𝑇
3

𝑤)

+ 𝑏
1
𝑑 (𝑇
2

𝑤, 𝑇
3

𝑤) + 𝑏
2
𝑑 (𝑇
3

𝑤, 𝑇
4

𝑤)

≤ 𝑟𝜗 + 𝑏
2
𝑑 (𝑇
3

𝑤, 𝑇
4

𝑤)

(30)
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which implies that 𝑑(𝑇3𝑤, 𝑇4𝑤) ≤ (𝑟/𝛽)𝜗. Similarly, 𝑑(𝑇4𝑤,
𝑇
5
𝑤) ≤ (𝑟/𝛽)

2

𝜗 and 𝑑(𝑇5𝑤, 𝑇6𝑤) ≤ (𝑟/𝛽)2𝜗. By continuing
this process, we get 𝑑(𝑇𝑚𝑤, 𝑇𝑚+1𝑤) ≤ (𝑟/𝛽)

𝑙

𝜗 for all 𝑤 ∈

𝑋 when 𝑚 = 2𝑙 or 𝑚 = 2𝑙 + 1. This implies that
𝑑(𝑇
𝑚
𝑤, 𝑇
𝑚+1

𝑤) → 0 for all 𝑤 ∈ 𝑋. By Lemma 14 𝑇 has an
approximate fixed point.

Theorem 18. Let (𝑋, 𝑑) be a complete metric space and let
𝑇 be a modified generalized convex contraction of order 2 on
𝑋. Also suppose that 𝑇 is an 𝛼-admissible with respect to 𝜂
and continuous mapping. If there exists an 𝑥

0
∈ 𝑋 such that

𝛼(𝑥
0
, 𝑇𝑥
0
) ≥ 𝜂(𝑥

0
, 𝑇𝑥
0
), then 𝑇 has a fixed point. Moreover, 𝑇

has a unique fixed point when𝑋 has𝐻⋆-property.

Proof. Define a sequence {𝑥
𝑛
} in𝑋 by 𝑥

𝑛
= 𝑇
𝑛
𝑥
0
for all 𝑛 ∈ N.

Put 𝑟 = 𝑎
1
+ 𝑎
2
+ 𝑏
1
and 𝛽 = 1 − 𝑏

2
and 𝜗 = 𝑑(𝑇2𝑥

0
, 𝑇𝑥
0
) +

𝑑(𝑇𝑥
0
, 𝑥
0
). From (8) with 𝑥 = 𝑥

0
and 𝑦 = 𝑇𝑥

0
we have

𝑑 (𝑇
2

𝑥
0
, 𝑇
3

𝑥
0
) ≤ 𝑎
1
𝑑 (𝑥
0
, 𝑇𝑥
0
) + 𝑎
2
𝑑 (𝑇𝑥

0
, 𝑇
2

𝑥
0
)

+ 𝑏
1
𝑑 (𝑇𝑥

0
, 𝑇
2

𝑥
0
) + 𝑏
2
𝑑 (𝑇
2

𝑥
0
, 𝑇
3

𝑥
0
)

≤ 𝑟𝜗 + 𝑏
2
𝑑 (𝑇
2

𝑥
0
, 𝑇
3

𝑥
0
)

(31)

which implies that (1−𝑏
2
)𝑑(𝑇
2
𝑥
0
, 𝑇
3
𝑥
0
) ≤ (𝑎

1
+𝑎
2
+𝑏
1
)𝜗.That

is, 𝑑(𝑇2𝑥
0
, 𝑇
3
𝑥
0
) ≤ (𝑟/𝛽)𝜗. Again from (8) with 𝑥 = 𝑇𝑥

0
and

𝑦 = 𝑇
2
𝑥
0
we get

𝑑 (𝑇
3

𝑥
0
, 𝑇
4

𝑥
0
) ≤ 𝑎
1
𝑑 (𝑇𝑥

0
, 𝑇
2

𝑥
0
) + 𝑎
2
𝑑 (𝑇
2

𝑥
0
, 𝑇
3

𝑥
0
)

+ 𝑏
1
𝑑 (𝑇
2

𝑥
0
, 𝑇
3

𝑥
0
) + 𝑏
2
𝑑 (𝑇
3

𝑥
0
, 𝑇
4

𝑥
0
)

≤ 𝑟𝜗 + 𝑏
2
𝑑 (𝑇
3

𝑥
0
, 𝑇
4

𝑥
0
)

(32)

which implies that𝑑(𝑇3𝑥
0
, 𝑇
4
𝑥
0
) ≤ (𝑟/𝛽)𝜗. Similarly,𝑑(𝑇4𝑥

0
,

𝑇
5
𝑥
0
) ≤ (𝑟/𝛽)

2

𝜗 and 𝑑(𝑇5𝑥
0
, 𝑇
6
𝑥
0
) ≤ (𝑟/𝛽)

2

𝜗. By continuing
this process, we get 𝑑(𝑇𝑚𝑥

0
, 𝑇
𝑚+1

𝑥
0
) ≤ (𝑟/𝛽)

𝑙

𝜗 when𝑚 = 2𝑙

or𝑚 = 2𝑙 + 1. Let𝑚 = 2𝑙. Then for 𝑛 = 2𝑝 with 𝑝 > 2, 𝑙 ≥ 1,
and𝑚 < 𝑛 we deduce

𝑑 (𝑥
𝑚
, 𝑥
𝑛
)

≤ 𝑑 (𝑥
𝑚
, 𝑥
𝑚+1

) + 𝑑 (𝑥
𝑚+1

, 𝑥
𝑚+2

)

+ 𝑑 (𝑥
𝑚+2

, 𝑥
𝑚+3

) + ⋅ ⋅ ⋅ + 𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
)

= 𝑑 (𝑥
2𝑙
, 𝑥
2𝑙+1
) + 𝑑 (𝑥

2𝑙+1
, 𝑥
2𝑙+2
)

+ 𝑑 (𝑥
2𝑙+2
, 𝑥
2𝑙+3
) + ⋅ ⋅ ⋅ + 𝑑 (𝑥

2𝑝−1
, 𝑥
2𝑝
)

≤ (

𝑟

𝜂

)

𝑙

𝜗 + (

𝑟

𝜂

)

𝑙

𝜗 + (

𝑟

𝜂

)

𝑙+1

𝜗 + ⋅ ⋅ ⋅ + (

𝑟

𝜂

)

𝑝−1

𝜗

= 2(

𝑟

𝜂

)

𝑙

𝜗 + 2(

𝑟

𝜂

)

𝑙+1

𝜗 + ⋅ ⋅ ⋅ + 2(

𝑟

𝜂

)

𝑝−1

𝜗 ≤

2(𝑟/𝜂)
𝑙

1 − (𝑟/𝜂)

𝜗.

(33)

Similarly, for 𝑚 = 2𝑙 and 𝑛 = 2𝑝 + 1 with 𝑝 ≥ 1, 𝑙 ≥ 1, and
𝑚 < 𝑛 we get

𝑑 (𝑥
𝑚
, 𝑥
𝑛
) ≤

2(𝑟/𝜂)
𝑙

1 − (𝑟/𝜂)

𝜗. (34)

Now, assume that 𝑚 = 2𝑙 + 1. Then for 𝑛 = 2𝑝 with 𝑝 ≥ 2,
𝑙 ≥ 1, and𝑚 < 𝑛 we have
𝑑 (𝑥
𝑚
, 𝑥
𝑛
)

≤ 𝑑 (𝑥
𝑚
, 𝑥
𝑚+1

) + 𝑑 (𝑥
𝑚+1

, 𝑥
𝑚+2

)

+ 𝑑 (𝑥
𝑚+2

, 𝑥
𝑚+3

) + ⋅ ⋅ ⋅ + 𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
)

= 𝑑 (𝑥
2
𝑙, 𝑥
2𝑙+1
) + 𝑑 (𝑥

2𝑙+1
, 𝑥
2𝑙+2
)

+ 𝑑 (𝑥
2𝑙+2
, 𝑥
2𝑙+3
) + ⋅ ⋅ ⋅ + 𝑑 (𝑥

2𝑝−1
, 𝑥
2𝑝
)

≤ (

𝑟

𝜂

)

𝑙

𝜗 + (

𝑟

𝜂

)

𝑙+𝑙

𝜗 + (

𝑟

𝜂

)

𝑙+1

𝜗 + ⋅ ⋅ ⋅ + (

𝑟

𝜂

)

𝑝

𝜗

≤ 2(

𝑟

𝜂

)

𝑙

𝜗 + 2(

𝑟

𝜂

)

𝑙+1

𝜗 + ⋅ ⋅ ⋅ + 2(

𝑟

𝜂

)

𝑝

𝜗 ≤

2(𝑟/𝜂)
𝑙

1 − (𝑟/𝜂)

𝜗.

(35)

Similarly, for𝑚 = 2𝑙 + 1 and 𝑛 = 2𝑝 + 1 with 𝑝 ≥ 1, 𝑙 ≥ 1,
and𝑚 < 𝑛 we deduce

𝑑 (𝑥
𝑚
, 𝑥
𝑛
) ≤

2(𝑟/𝜂)
𝑙

1 − (𝑟/𝜂)

𝜗. (36)

Hence, for all𝑚, 𝑛 ∈ N with𝑚 < 𝑛 we have

𝑑 (𝑥
𝑚
, 𝑥
𝑛
) ≤

2(𝑟/𝜂)
𝑙

1 − (𝑟/𝜂)

𝜗. (37)

Taking limit as 𝑙 → ∞ in the above inequality we get
𝑑(𝑥
𝑚
, 𝑥
𝑛
) → 0. That is, {𝑥

𝑛
} is a Cauchy sequence. Since

(𝑋, 𝑑) is a complete metric space, there exists 𝑧 ∈ 𝑋 such that
𝑥
𝑛
→ 𝑧 as 𝑛 → ∞. Now since 𝑇 is a continuous mapping

then 𝑇 has a fixed point 𝑧. If 𝑋 has the𝐻⋆-property, then by
using a similar method to that in the proof ofTheorem 16, we
can prove uniqueness of the fixed point of 𝑇.

4. 𝛼-𝜂-Weakly Zamfirescu Mappings

In this section we introduce the notion of 𝛼-𝜂-weakly Zam-
firescu mapping and establish fixed point results.

Definition 19. Let (𝑋, 𝑑) be a metric space and let 𝑇 be a self-
mapping on𝑋. Assume there exists 𝛾 : 𝑋 × 𝑋 → [0, 1] with
𝜃(𝑎, 𝑏) := sup{𝛾(𝑥, 𝑦) : 𝑎 ≤ 𝑑(𝑥, 𝑦) ≤ 𝑏} < 1 for all 0 < 𝑎 ≤ 𝑏,
such that
𝑥, 𝑦 ∈ 𝑋, 𝜂 (𝑥, 𝑇𝑥)

≤ 𝛼 (𝑥, 𝑦) 󳨐⇒ 𝑑 (𝑇𝑥, 𝑇𝑦)

≤ 𝛾 (𝑥, 𝑦)max{𝑑 (𝑥, 𝑦) ,
𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦)

2

,

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

2

} ,

(38)

and then 𝑇 is a modified 𝛼-weakly Zamfirescu mapping.
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Theorem 20. Let (𝑋, 𝑑) be a metric space and let 𝑇 be an
𝛼-𝜂-weakly Zamfirescu mapping on 𝑋. If 𝑇 is an 𝛼-admissible
mapping with respect to 𝜂 and 𝛼(𝑥, 𝑇𝑥) ≥ 𝜂(𝑥, 𝑇𝑥) for all
𝑥 ∈ 𝑋, then 𝑇 has an approximate fixed point.

Proof. For a given 𝑤 ∈ 𝑋, we define the sequence {𝑥
𝑛
} by

𝑥
𝑛
= 𝑇
𝑛
𝑤. As in proof of Theorem 15 we can conclude that

𝛼(𝑇
𝑛
𝑤, 𝑇
𝑛+1
𝑤) ≥ 𝜂(𝑇

𝑛
𝑤, 𝑇
𝑛+1
𝑤) for all 𝑛 ∈ N and all 𝑤 ∈ 𝑋.

Now since 𝑇 is an 𝛼-𝜂-weakly Zamfirescu mapping, then

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
)

= 𝑑 (𝑇𝑇
𝑛−1

𝑤, 𝑇𝑇
𝑛

𝑤)

≤ 𝛾 (𝑇
𝑛−1

𝑤, 𝑇
𝑛

𝑤)

×max{𝑑 (𝑇𝑛−1𝑤, 𝑇𝑛𝑤) ,

𝑑 (𝑇
𝑛−1
𝑤, 𝑇𝑇

𝑛−1
𝑤) + 𝑑 (𝑇

𝑛
𝑤, 𝑇𝑇

𝑛
𝑤)

2

,

𝑑 (𝑇
𝑛−1
𝑤, 𝑇𝑇

𝑛
𝑤) + 𝑑 (𝑇

𝑛
𝑤, 𝑇𝑇

𝑛−1
𝑤)

2

}

≤ 𝛾 (𝑥
𝑛−1
, 𝑥
𝑛
)max{𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
) ,

𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
)

2

,

𝑑 (𝑥
𝑛+1
, 𝑥
𝑛−1
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛
)

2

}

≤ 𝛾 (𝑥
𝑛−1
, 𝑥
𝑛
)max{𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
) ,

𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
)

2

,

𝑑 (𝑥
𝑛+1
, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛−1
)

2

}

= 𝛾 (𝑥
𝑛−1
, 𝑥
𝑛
)max{𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
) ,

𝑑 (𝑥
𝑛+1
, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛−1
)

2

} .

(39)

Now if max{𝑑(𝑥
𝑛
, 𝑥
𝑛−1
), (𝑑(𝑥

𝑛
, 𝑥
𝑛+1
) + 𝑑(𝑥

𝑛−1
, 𝑥
𝑛
))/2} =

(𝑑(𝑥
𝑛
, 𝑥
𝑛+1
) + 𝑑(𝑥

𝑛−1
, 𝑥
𝑛
))/2, then

𝑑 (𝑥
𝑛+1
, 𝑥
𝑛
) ≤ 𝛾 (𝑥

𝑛
, 𝑥
𝑛−1
) [

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) + 𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
)

2

]

(40)

which implies

𝑑 (𝑥
𝑛+1
, 𝑥
𝑛
) ≤

𝛾 (𝑥
𝑛
, 𝑥
𝑛−1
)

2 − 𝛾 (𝑥
𝑛
, 𝑥
𝑛−1
)

𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
)

≤ 𝛾 (𝑥
𝑛
, 𝑥
𝑛−1
) 𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
)

(41)

and so {𝑥
𝑛
} is a nonincreasing sequence and converges to a

real number 𝑠 = inf
𝑛≥1
𝑑(𝑥
𝑛−1
, 𝑥
𝑛
). Assume that 𝑠 > 0. Now

since 0 < 𝑠 ≤ 𝑑(𝑥
𝑛+1
, 𝑥
𝑛
) ≤ 𝑑(𝑥

1
, 𝑥
0
) for all 𝑛 ∈ N ∪ {0} and

𝛾(𝑥
𝑛
, 𝑥
𝑛−1
) ≤ 𝜃 for all 𝑛 ∈ N ∪ {0}, where 𝜃 = 𝜃(𝑑, 𝑑(𝑥

1
, 𝑥
0
)),

thus

𝑠 ≤ 𝑑 (𝑥
𝑛+1
, 𝑥
𝑛
) ≤ 𝜃
𝑛

𝑑 (𝑥
1
, 𝑥
0
) (42)

for all 𝑛 ∈ N∪{0}.This implies 𝑠 = 0, which is a contradiction.
Therefore,

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) = lim
𝑛→∞

𝑑 (𝑇
𝑛

𝑤, 𝑇
𝑛+1

𝑤) = 0 (43)

for a given 𝑤 ∈ 𝑋. By Lemma 14 𝑇 has an approximate fixed
point.

Theorem21. Let (𝑋, 𝑑) be a completemetric space and let𝑇 be
an 𝛼-𝜂-weakly Zamfirescu mapping on𝑋. Also suppose that 𝑇
is an 𝛼-admissible mapping with respect to 𝜂 and continuous
mapping. If there exists an 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥

𝜂(𝑥
0
, 𝑇𝑥
0
), then 𝑇 has a fixed point.

Proof. Let 𝑥
0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 𝜂(𝑥

0
, 𝑇𝑥
0
). Define

a sequence {𝑥
𝑛
} as in Theorem 15. By the similar proof as in

proof of Theorem 20 we deduce

𝑑 (𝑥
𝑛+1
, 𝑥
𝑛
) ≤ 𝛾 (𝑥

𝑛
, 𝑥
𝑛−1
) 𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) (44)

for all 𝑛 ∈ N∪ {0}. As in proof ofTheorem 28 [20], we deduce
that {𝑥

𝑛
} is a Cauchy sequence. Since 𝑋 is a complete metric

space, there exists 𝑧 ∈ 𝑋 such that 𝑥
𝑛
→ 𝑧 as 𝑛 → ∞. Now

since 𝑇 is an continuous mapping, so 𝑇𝑧 = 𝑧.

Example 22. Let 𝑋 = [0,∞) be endowed with usual metric.
Define 𝑇 : 𝑋 → 𝑋 and 𝛼, 𝜂 : 𝑋 × 𝑋 → [0,∞) by

𝑇𝑥 =

{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{

{

1

5

𝑥, if 𝑥 ∈ [0, 1]

(3𝑥
2
+ 𝑥
𝑥+1
) (4 − 𝑥)

60

+

𝑥 − 1

𝑥
2
+ 1

if 𝑥 ∈ (1, 4]

3 (20 − 𝑥)

16 (𝑥
2
+ 1)

+

100

16

(𝑥 − 4) if 𝑥 ∈ (4, 20)

5𝑥, if𝑥 ∈ [20,∞) ,

𝛼 (𝑥, 𝑦) =

{

{

{

15, if 𝑥, 𝑦 ∈ [0, 1]
1

2

, otherwise,
𝜂 (𝑥, 𝑦) = 1.

(45)
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Let 𝑥 = 0 and 𝑦 = 1 and let 𝛾 : 𝑋 × 𝑋 → [0, 1] be a given
function. Then,

𝛼 (0, 1) 𝑑 (𝑇0, 𝑇1)

= 15 ×

1

5

= 3 > 𝛾 (0, 1)

×max{𝑑 (0, 1) , 𝑑 (0, 𝑇0) + 𝑑 (1, 𝑇1)
2

,

𝑑 (0, 𝑇1) + 𝑑 (1, 𝑇0)

2

} .

(46)

That is, 𝑇 is not an 𝛼-weakly Zamfirescu mapping.Therefore,
Theorem 3.3 of [13] can not be applied for this example.

Further, if 𝑥 = 0 and 𝑦 = 20, then
𝑑 (𝑇0, 𝑇20)

= 100 > 60 ≥ 60𝛾 (0, 20)

= 𝛾 (0, 20)max{𝑑 (0, 20) , 𝑑 (0, 𝑇0) + 𝑑 (20, 𝑇20)
2

,

𝑑 (0, 𝑇20) + 𝑑 (20, 𝑇0)

2

} .

(47)

That is, 𝑇 is not a weakly Zamfirescu mapping.
But if 𝛼(𝑥, 𝑦) ≥ 1, then 𝑥, 𝑦 ∈ [0, 1]. Therefore,
𝑑 (𝑇𝑥, 𝑇𝑦)

=

1

5

𝑑 (𝑥, 𝑦) ≤

1

4

max{𝑑 (𝑥, 𝑦) ,
𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦)

2

,

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

2

} .

(48)
Put 𝛾(𝑥, 𝑦) = 1/4 and so

𝑑 (𝑇𝑥, 𝑇𝑦)

=

1

5

𝑑 (𝑥, 𝑦) ≤ 𝛾 (𝑥, 𝑦)

×max{𝑑 (𝑥, 𝑦) ,
𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦)

2

,

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

2

} .

(49)

That is, there exists 𝛾 : 𝑋 × 𝑋 → [0, 1] with 𝜃(𝑎, 𝑏) :=
sup{𝛾(𝑥, 𝑦) : 𝑎 ≤ 𝑑(𝑥, 𝑦) ≤ 𝑏} < 1 for all 0 < 𝑎 ≤ 𝑏, such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝛾 (𝑥, 𝑦)max{𝑑 (𝑥, 𝑦) ,
𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦)

2

,

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

2

}

(50)
holds for all 𝑥, 𝑦 ∈ 𝑋 with 𝛼(𝑥, 𝑦) ≥ 1. Then 𝑇 is an 𝛼-𝜂-
weakly Zamfirescu mapping. Clearly 𝑇 has a fixed point by
our result.

5. From 𝛼-SiriT Strong Almost Contraction to
Suzuki Type Contraction

Definition 23 (see [21]). Let (𝑋, 𝑑) be a metric space and let 𝑇
be a self-mapping on𝑋.Then𝑇 is called a Ćirić strong almost
contraction, if there exists a constant 𝑟 ∈ [0, 1) such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑟𝑀(𝑥, 𝑦) + 𝐿𝑑 (𝑦, 𝑇𝑥) (51)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝐿 ≥ 0 and

𝑀(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦) ,

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

2

} .

(52)

Now we generalize the notion of Ćirić strong almost con-
traction mapping as follows.

Definition 24. Let (𝑋, 𝑑) be a metric space and let 𝛼, 𝜂 : 𝑋 ×
𝑋 → [0,∞) be two functions. A mapping 𝑇 : 𝑋 → 𝑋 is
called an 𝛼-𝜂-Ćirić strong almost contraction, if there exists
a constant 𝑟 ∈ [0, 1) such that

𝜂 (𝑥, 𝑇𝑥) ≤ 𝛼 (𝑥, 𝑦) 󳨐⇒ 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑟𝑀(𝑥, 𝑦) + 𝐿𝑑 (𝑦, 𝑇𝑥)

(53)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝐿 ≥ 0 and

𝑀(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦) ,

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

2

} .

(54)

Moreover, if we take 𝜂(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ 𝑋, then we say
𝑇 is a modified 𝛼-Ćirić strong almost contraction mapping.

Theorem 25. Let (𝑋, 𝑑) be a complete metric space and 𝑇 be
a continuous 𝛼-𝜂-Ćirić strong almost contraction on 𝑋. Also
suppose that 𝑇 is an 𝛼-admissible mapping with respect to 𝜂. If
there exists a 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 𝜂(𝑥

0
, 𝑇𝑥
0
), then

𝑇 has a fixed point.

Proof. Let 𝑥
0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 𝜂(𝑥

0
, 𝑇𝑥
0
). For a

given 𝑥
0
∈ 𝑋, we define the sequence {𝑥

𝑛
} by 𝑥

𝑛
= 𝑇
𝑛
𝑥
0
=

𝑇𝑥
𝑛
. Now since 𝑇 is an 𝛼-admissible mapping with respect to

𝜂, then 𝛼(𝑥
0
, 𝑥
1
) = 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 𝜂(𝑥

0
, 𝑇𝑥
0
) = 𝜂(𝑥

0
, 𝑥
1
). By

continuing this process we have

𝜂 (𝑥
𝑛−1
, 𝑇𝑥
𝑛−1
) = 𝜂 (𝑥

𝑛−1
, 𝑥
𝑛
) ≤ 𝛼 (𝑥

𝑛−1
, 𝑥
𝑛
) (55)

for all 𝑛 ∈ N. Since 𝑇 is an 𝛼-𝜂-Ćirić strong almost contrac-
tion mapping, so we obtain

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) = 𝑑 (𝑇𝑥

𝑛−1
, 𝑇𝑥
𝑛
) ≤ 𝑟𝑀 (𝑥

𝑛−1
, 𝑥
𝑛
)

+ 𝐿𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛−1
) = 𝑟𝑀 (𝑥

𝑛−1
, 𝑥
𝑛
) ,

(56)
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where

𝑀(𝑥
𝑛−1
, 𝑥
𝑛
)

= max{𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛−1
, 𝑇𝑥
𝑛−1
) , 𝑑 (𝑥

𝑛
, 𝑇𝑥
𝑛
) ,

𝑑 (𝑥
𝑛−1
, 𝑇𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑇𝑥
𝑛−1
)

2

}

= max{𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
) ,

𝑑 (𝑥
𝑛−1
, 𝑥
𝑛+1
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛
)

2

}

≤ max{𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
) ,

𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
)

2

}

≤ max {𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
)}

(57)

which implies

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) ≤ 𝑟max {𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
)} . (58)

Now if max{𝑑(𝑥
𝑛−1
, 𝑥
𝑛
), 𝑑(𝑥
𝑛
, 𝑥
𝑛+1
)} = 𝑑(𝑥

𝑛
, 𝑥
𝑛+1
), then

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) ≤ 𝑟𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
) < 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
) (59)

which is a contradiction. Hence, 𝑑(𝑥
𝑛
, 𝑥
𝑛+1
) ≤ 𝑟𝑑(𝑥

𝑛−1
, 𝑥
𝑛
)

for all 𝑛 ∈ N. Now it is easy to show that {𝑥
𝑛
} is a Cauchy

sequence. Since 𝑋 is a complete metric space, so there exists
𝑧 ∈ 𝑋 such that 𝑥

𝑛
→ 𝑧 as 𝑛 → ∞. Continuity of 𝑇 implies

that 𝑧 = 𝑇𝑧.

Theorem 26. Let (𝑋, 𝑑) be a metric space and let 𝑇 be a self-
mapping on 𝑋. Also, suppose that 𝛼, 𝜂 : 𝑋 × 𝑋 → [0,∞) be
two functions. Assume that the following assertions holds true:

(i) 𝑇 is an 𝛼-admissible mapping with respect to 𝜂;
(ii) 𝑇 is an 𝛼-𝜂-Ćirić strong almost contraction on𝑋;
(iii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 𝜂(𝑥

0
, 𝑇𝑥
0
);

(iv) if {𝑥
𝑛
} is a sequence in 𝑋 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥

𝜂(𝑥
𝑛
, 𝑥
𝑛+1
) with 𝑥

𝑛
→ 𝑥 as 𝑛 → ∞, then either

𝜂 (𝑇𝑥
𝑛
, 𝑇
2

𝑥
𝑛
) ≤ 𝛼 (𝑇𝑥

𝑛
, 𝑥)

𝑜𝑟 𝜂 (𝑇
2

𝑥
𝑛
, 𝑇
3

𝑥
𝑛
) ≤ 𝛼 (𝑇

2

𝑥
𝑛
, 𝑥)

(60)

holds for all 𝑛 ∈ N.

Then 𝑇 has a fixed point.

Proof. Let 𝑥
0
∈ 𝑋 be such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 𝜂(𝑥

0
, 𝑇𝑥
0
).

Define a sequence {𝑥
𝑛
} in 𝑋 by 𝑥

𝑛
= 𝑇
𝑛
𝑥
0
= 𝑇𝑥

𝑛−1
for

all 𝑛 ∈ N. Now as in the proof of Theorem 25 we have
𝛼(𝑥
𝑛+1
, 𝑥
𝑛
) ≥ 𝜂(𝑥

𝑛+1
, 𝑥
𝑛
) for all 𝑛 ∈ N and there exists 𝑧 ∈ 𝑋

such that 𝑥
𝑛
→ 𝑧 as 𝑛 → ∞. Let 𝑑(𝑧, 𝑇𝑧) ̸= 0. From (iv)

either

𝜂 (𝑇𝑥
𝑛−1
, 𝑇
2

𝑥
𝑛−1
) ≤ 𝛼 (𝑇𝑥

𝑛−1
, 𝑧)

or 𝜂 (𝑇
2

𝑥
𝑛−1
, 𝑇
3

𝑥
𝑛−1
) ≤ 𝛼 (𝑇

2

𝑥
𝑛−1
, 𝑧)

(61)

holds for all 𝑛 ∈ N. Then,

𝜂 (𝑥
𝑛
, 𝑇𝑥
𝑛
) ≤ 𝛼 (𝑥

𝑛
, 𝑧) or 𝜂 (𝑥

𝑛+1
, 𝑇𝑥
𝑛+1
) ≤ 𝛼 (𝑥

𝑛+1
, 𝑧)

(62)

holds for all 𝑛 ∈ N. Let 𝜂(𝑥
𝑛
, 𝑇𝑥
𝑛
) ≤ 𝛼(𝑥

𝑛
, 𝑧) hold for all

𝑛 ∈ N. Since 𝑇 is an 𝛼-𝜂-Ćirić strong almost contraction, so
we get

𝑑 (𝑥
𝑛+1
, 𝑇𝑧) = 𝑑 (𝑇𝑥

𝑛
, 𝑇𝑧) ≤ 𝑟𝑀 (𝑥

𝑛
, 𝑧)

+ 𝐿𝑑 (𝑧, 𝑇𝑥
𝑛
) = 𝑟𝑀 (𝑥

𝑛
, 𝑧) + 𝐿𝑑 (𝑧, 𝑥

𝑛+1
) ,

(63)

where

𝑀(𝑥
𝑛
, 𝑧) = max{𝑑 (𝑥

𝑛
, 𝑧) , 𝑑 (𝑥

𝑛
, 𝑇𝑥
𝑛
) , 𝑑 (𝑧, 𝑇𝑧) ,

𝑑 (𝑥
𝑛
, 𝑇𝑧) + 𝑑 (𝑧, 𝑇𝑥

𝑛
)

2

}

= max{𝑑 (𝑥
𝑛
, 𝑧) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
) , 𝑑 (𝑧, 𝑇𝑧) ,

𝑑 (𝑥
𝑛
, 𝑇𝑧) + 𝑑 (𝑧, 𝑥

𝑛+1
)

2

} .

(64)

Taking limit as 𝑛 → ∞ in the above inequality we get

𝑑 (𝑧, 𝑇𝑧) ≤ 𝑟𝑑 (𝑧, 𝑇𝑧) < 𝑑 (𝑧, 𝑇𝑧) (65)

which is a contradiction. Hence, 𝑑(𝑧, 𝑇𝑧) = 0. That is, 𝑧 =
𝑇𝑧. By the similar method we can show that 𝑧 = 𝑇𝑧 if
𝜂(𝑥
𝑛+1
, 𝑇𝑥
𝑛+1
) ≤ 𝛼(𝑥

𝑛+1
, 𝑧) holds for all 𝑛 ∈ N.

If inTheorem 26 we take 𝜂(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ 𝑋, then
we obtain following corollary.

Corollary 27. Let (𝑋, 𝑑) be a metric space and let 𝑇 be a self-
mapping on 𝑋. Also, suppose that 𝛼 : 𝑋 × 𝑋 → [0,∞) is a
function. Assume that the following assertions holds true:

(i) 𝑇 is an 𝛼-admissible mapping;
(ii) 𝑇 is modified 𝛼-Ćirić strong almost contraction on𝑋;
(iii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1;

(iv) if {𝑥
𝑛
} is a sequence in𝑋 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1with

𝑥
𝑛
→ 𝑥 as 𝑛 → ∞, then either

𝛼 (𝑇𝑥
𝑛
, 𝑥) ≥ 1 𝑜𝑟 𝛼 (𝑇

2

𝑥
𝑛
, 𝑥) ≥ 1 (66)

holds for all 𝑛 ∈ N.

Then 𝑇 has a fixed point.
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If in Theorem 26 we take 𝛼(𝑥, 𝑦) = 𝜂(𝑥, 𝑦) = 1 for all
𝑥, 𝑦 ∈ 𝑋, we obtain following result.

Corollary 28 (Theorem 2.2 of [21]). Let (𝑋, 𝑑) be complete
metric space and let 𝑇 be a Ćirić strong almost contraction on
𝑋. Then 𝑇 has a fixed point.

Example 29. Let 𝑋 = [0, +∞). We endow 𝑋 with usual
metric. Define 𝑇 : 𝑋 → 𝑋, 𝛼, 𝜂 : 𝑋 × 𝑋 → [0,∞) by

𝑇𝑥 =

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

1

4

𝑥
2
, if 𝑥 ∈ [0, 1]

𝑥
3
+ 2𝑥 + 1

√𝑥
2
+ 1

, if 𝑥 ∈ (1, 2]

3𝑥 if 𝑥 ∈ (2,∞)

𝛼 (𝑥, 𝑦) =

{
{
{

{
{
{

{

1

2

, if 𝑥, 𝑦 ∈ [0, 1]

1

8

, otherwise,

𝜂 (𝑥, 𝑦) =

1

4

.

(67)

Let 𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑦), and then 𝑥, 𝑦 ∈ [0, 1]. On the other
hand, 𝑇𝑤 ∈ [0, 1] for all 𝑤 ∈ [0, 1]. Then, 𝛼(𝑇𝑥, 𝑇𝑦) ≥
𝜂(𝑇𝑥, 𝑇𝑦). That is, 𝑇 is an 𝛼-admissible mapping with respect
to 𝜂. If {𝑥

𝑛
} is a sequence in 𝑋 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥

𝜂(𝑥
𝑛
, 𝑥
𝑛+1
) with 𝑥

𝑛
→ 𝑥 as 𝑛 → ∞, then 𝑇𝑥

𝑛
, 𝑇
2
𝑥
𝑛
, 𝑇
3
𝑥
𝑛
∈

[0, 1] for all 𝑛 ∈ N. That is,

𝜂 (𝑇𝑥
𝑛
, 𝑇
2

𝑥
𝑛
) ≤ 𝛼 (𝑇𝑥

𝑛
, 𝑥) ,

𝜂 (𝑇
2

𝑥
𝑛
, 𝑇
3

𝑥
𝑛
) ≤ 𝛼 (𝑇

2

𝑥
𝑛
, 𝑥)

(68)

hold for all 𝑛 ∈ N. Clearly, 𝛼(0, 𝑇0) ≥ 𝜂(0, 𝑇0). Let 𝛼(𝑥, 𝑦) ≥
𝜂(𝑥, 𝑇𝑥). Now, if 𝑥 ∉ [0, 1] or 𝑦 ∉ [0, 1], then 1/8 ≥ 1/4,
which is a contradiction. So, 𝑥, 𝑦 ∈ [0, 1]. Therefore,

𝑑 (𝑇𝑥, 𝑇𝑦) =

1

4

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
2

− 𝑦
2󵄨󵄨
󵄨
󵄨
󵄨

=

1

4

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑥 + 𝑦

󵄨
󵄨
󵄨
󵄨
≤

1

2

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

≤

1

2

𝑀 (𝑥, 𝑦) + 𝐿𝑑 (𝑦, 𝑇𝑥) .

(69)

Therefore 𝑇 is an 𝛼-𝜂-Ćirić strong almost contraction.
Hence, all conditions of Theorem 26 hold and 𝑇 has a fixed
point. Let 𝑥 = 3 and 𝑦 = 9; then

𝑑 (𝑇3, 𝑇9) = 18 > 18𝑟 + 𝐿.0

= 𝑟 max{𝑑 (3, 9) , 𝑑 (3, 𝑇3) , 𝑑 (9, 𝑇9) ,

𝑑 (3, 𝑇9) + 𝑑 (9, 𝑇3)

2

} + 𝐿𝑑 (9, 𝑇3) .

(70)

That is, 𝑇 is not a Ćirić strong almost contraction. Hence,
Corollary 28 (Theorem 2.2 of [21]) cannot be applied for this
example.

As an application of the above results, we obtain the fol-
lowing Suzuki type fixed point theorem [22].

Theorem 30. Let (𝑋, 𝑑) be a complete metric space and let 𝑇
be a self-mapping on𝑋. Assume that there exists 𝑟 ∈ [0, 1) such
that

1

1 + 𝑟

𝑑 (𝑥, 𝑇𝑥) ≤ 𝑑 (𝑥, 𝑦)

𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑟𝑀(𝑥, 𝑦) + 𝐿𝑑 (𝑦, 𝑇𝑥)

(71)

for all 𝑥, 𝑦 ∈ 𝑋, where

𝑀(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦) ,

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

2

} .

(72)

Then 𝑇 has a fixed point.

Proof. Define 𝛼, 𝜂 : 𝑋 × 𝑋 → [0,∞) by

𝛼 (𝑥, 𝑦) = 𝑑 (𝑥, 𝑦) , 𝜂 (𝑥, 𝑦) = 𝜆 (𝑟) 𝑑 (𝑥, 𝑦) (73)

for all 𝑥, 𝑦 ∈ 𝑋, where 0 ≤ 𝑟 < 1 and 𝜆(𝑟) = 1/(1 + 𝑟). Now,
since 𝜆(𝑟)𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋, then 𝜂(𝑥, 𝑦) ≤
𝛼(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋. That is, conditions (i) and (iii) of
Theorem 26 hold true. Let {𝑥

𝑛
} be a sequence with 𝑥

𝑛
→ 𝑥

as 𝑛 → ∞. Assume that 𝑑(𝑇𝑥
𝑛
, 𝑇
2
𝑥
𝑛
) = 0 for some 𝑛. Then,

𝑇𝑥
𝑛
= 𝑇
2
𝑥
𝑛
. That is 𝑇𝑥

𝑛
is a fixed point of 𝑇 and we have

nothing to prove. Hence we assume 𝑇𝑥
𝑛
̸= 𝑇
2
𝑥
𝑛
for all 𝑛 ∈ N.

Since 𝜆(𝑟)𝑑(𝑇𝑥
𝑛
, 𝑇
2
𝑥
𝑛
) ≤ 𝑑(𝑇𝑥

𝑛
, 𝑇
2
𝑥
𝑛
) for all 𝑛 ∈ N, then

from (82) we get

𝑑 (𝑇
2

𝑥
𝑛
, 𝑇
3

𝑥
𝑛
) ≤ 𝑟𝑀(𝑇𝑥

𝑛
, 𝑇
2

𝑥
𝑛
) + 𝐿𝑑 (𝑇

2

𝑥
𝑛
, 𝑇
2

𝑥
𝑛
) ,

(74)

where

𝑀(𝑇𝑥
𝑛
, 𝑇
2

𝑥
𝑛
) = max{𝑑 (𝑇𝑥

𝑛
, 𝑇
2

𝑥
𝑛
) , 𝑑 (𝑇

2

𝑥
𝑛
, 𝑇
3

𝑥
𝑛
) ,

𝑑 (𝑇𝑥
𝑛
, 𝑇
3
𝑥
𝑛
)

2

}

(75)

which implies

𝑑 (𝑇
2

𝑥
𝑛
, 𝑇
3

𝑥
𝑛
) ≤ 𝑟𝑑 (𝑇𝑥

𝑛
, 𝑇
2

𝑥
𝑛
) . (76)

Assume that there exists 𝑛
0
∈ N, such that

𝜂 (𝑇𝑥
𝑛0
, 𝑇
2

𝑥
𝑛0
) > 𝛼 (𝑇𝑥

𝑛0
, 𝑥) ,

𝜂 (𝑇
2

𝑥
𝑛0
, 𝑇
3

𝑥
𝑛0
) > 𝛼 (𝑇

2

𝑥
𝑛0
, 𝑥) .

(77)
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Then,

𝜆 (𝑟) 𝑑 (𝑇𝑥
𝑛0
, 𝑇
2

𝑥
𝑛0
) > 𝑑 (𝑇𝑥

𝑛0
, 𝑥) ,

𝜆 (𝑟) 𝑑 (𝑇
2

𝑥
𝑛0
, 𝑇
3

𝑥
𝑛0
) > 𝑑 (𝑇

2

𝑥
𝑛0
, 𝑥) .

(78)

So by (76) we have

𝑑 (𝑇𝑥
𝑛0
, 𝑇
2

𝑥
𝑛0
)

≤ 𝑑 (𝑇𝑥
𝑛0
, 𝑥) + 𝑑 (𝑇

2

𝑥
𝑛0
, 𝑥)

< 𝜆 (𝑟) 𝑑 (𝑇𝑥
𝑛0
, 𝑇
2

𝑥
𝑛0
) + 𝜆 (𝑟) 𝑑 (𝑇

2

𝑥
𝑛0
, 𝑇
3

𝑥
𝑛0
)

≤ 𝜆 (𝑟) 𝑑 (𝑇𝑥
𝑛0
, 𝑇
2

𝑥
𝑛0
) + 𝑟𝜆 (𝑟) 𝑑 (𝑇𝑥

𝑛0
, 𝑇
2

𝑥
𝑛0
)

= 𝜆 (𝑟) (1 + 𝑟) 𝑑 (𝑇𝑥
𝑛0
, 𝑇
2

𝑥
𝑛0
) = 𝑑 (𝑇𝑥

𝑛0
, 𝑇
2

𝑥
𝑛0
)

(79)

which is a contradiction. Hence, either

𝜂 (𝑇𝑥
𝑛
, 𝑇
2

𝑥
𝑛
) ≤ 𝛼 (𝑇𝑥

𝑛
, 𝑥)

or 𝜂 (𝑇
2

𝑥
𝑛
, 𝑇
3

𝑥
𝑛
) ≤ 𝛼 (𝑇

2

𝑥
𝑛
, 𝑥)

(80)

holds for all 𝑛 ∈ N. That is, condition (iv) of Theorem 26
holds. Let 𝜂(𝑥, 𝑇𝑥) ≤ 𝛼(𝑥, 𝑦). So, 𝜆(𝑟)𝑑(𝑥, 𝑇𝑥) ≤ 𝑑(𝑥, 𝑦).
Then from (82) we get 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑟𝑀(𝑥, 𝑦) + 𝐿𝑑(𝑦, 𝑇𝑥).
Hence, all conditions of Theorem 26 hold and 𝑇 has a fixed
point.

Corollary 31 (see [23],Theorem 3.2). Let (𝑋, 𝑑) be a complete
metric space and let 𝑇 be a self-mapping on 𝑋. Define a
nonincreasing function 𝜌 : [0, 1) → (1/2, 1] by

𝜌 (𝑟) =

1

1 + 𝑟

. (81)

Assume that there exists 𝑟 ∈ [0, 1) such that

𝜌 (𝑟) 𝑑 (𝑥, 𝑇𝑥) ≤ 𝑑 (𝑥, 𝑦) 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑟𝑑 (𝑥, 𝑦)

(82)

for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑇 has a unique fixed point.

6. Fixed Point Results on Metric Spaces
Endowed with Graph

Consistent with [1, 24], let (𝑋, 𝑑) be a metric space, and Δ
denotes the diagonal of theCartesian product𝑋×𝑋. Consider
a directed graph 𝐺 such that the set 𝑉(𝐺) of its vertices
coincides with 𝑋, and the set 𝐸(𝐺) of its edges contains all
loops; that is, 𝐸(𝐺) ⊇ Δ. We assume 𝐺 has no parallel edges,
so we can identify 𝐺 with the pair (𝑉(𝐺), 𝐸(𝐺)). Moreover,
we may treat 𝐺 as a weighted graph (see [24]) by assigning
to each edge the distance between its vertices. If 𝑥 and 𝑦 are
vertices in a graph 𝐺, then a path in 𝐺 from 𝑥 to 𝑦 of length
𝑁 (𝑁 ∈ N) is a sequence {𝑥

𝑖
}
𝑁

𝑖=0
of 𝑁 + 1 vertices such that

𝑥
0
= 𝑥, 𝑥

𝑁
= 𝑦 and (𝑥

𝑛−1
, 𝑥
𝑛
) ∈ 𝐸(𝐺) for 𝑖 = 1, . . . ,N.

A graph 𝐺 is connected if there is a path between any two
vertices. 𝐺 is weakly connected if 𝐺 is connected (see for
details [23–25]).

Definition 32 (see [24]). A mapping 𝑇 : 𝑋 → 𝑋 is called
𝐺-continuous, if given 𝑥 ∈ 𝑋 and sequence {𝑥

𝑛
}:

𝑥
𝑛
󳨀→ 𝑥 as 𝑛 󳨀→ ∞,

(𝑥
𝑛
, 𝑥
𝑛+1
) ∈ 𝐸 (𝐺) ∀𝑛 ∈ N imply 𝑇𝑥

𝑛
󳨀→ 𝑇𝑥.

(83)

Definition 33. Let (𝑋, 𝑑) be a metric space endowed with a
graph 𝐺 and let 𝑇 : 𝑋 → 𝑋 be a self-mapping. We say 𝑇 is a
graphic convex contraction if

𝑥, 𝑦 ∈ 𝑋 with (𝑥, 𝑦) ∈ 𝐸 (𝐺) implies (𝑇𝑥, 𝑇𝑦) ∈ 𝐸 (𝐺) ,
(84)

𝑑 (𝑇
2

𝑥, 𝑇
2

𝑦) ≤ 𝑎𝑑 (𝑇𝑥, 𝑇𝑦) + 𝑏𝑑 (𝑥, 𝑦) (85)

holds for all 𝑥, 𝑦 ∈ 𝑋 with (𝑥, 𝑦) ∈ 𝐸(𝐺), where 𝑎, 𝑏 ≥ 0,
𝑎 + 𝑏 < 1.

Definition 34. Let (𝑋, 𝑑) be a metric space endowed with a
graph 𝐺 and let 𝑇 : 𝑋 → 𝑋 be a self-mapping. One says 𝑇 is
a graphic convex contraction of order 2 if

𝑥, 𝑦 ∈ 𝑋 with (𝑥, 𝑦) ∈ 𝐸 (𝐺) implies (𝑇𝑥, 𝑇𝑦) ∈ 𝐸 (𝐺) ,

𝑑 (𝑇
2

𝑥, 𝑇
2

𝑦) ≤ 𝑎
1
𝑑 (𝑥, 𝑇𝑥) + 𝑎

2
𝑑 (𝑇𝑥, 𝑇

2

𝑥)

+ 𝑏
1
𝑑 (𝑦, 𝑇𝑦) + 𝑏

2
𝑑 (𝑇𝑦, 𝑇

2

𝑦)

(86)

holds for all 𝑥, 𝑦 ∈ 𝑋with (𝑥, 𝑦) ∈ 𝐸(𝐺), where 𝑎
1
, 𝑎
2
, 𝑏
1
, 𝑏
2
≥

0, 𝑎
1
+ 𝑎
2
+ 𝑏
1
+ 𝑏
2
< 1.

Definition 35. Let (𝑋, 𝑑) be a metric space endowed with a
graph𝐺 and let𝑇 be a self-mapping on𝑋. Assume there exists
𝛾 : 𝑋×𝑋 → [0, 1]with 𝜃(𝑎, 𝑏) := sup{𝛾(𝑥, 𝑦) : 𝑎 ≤ 𝑑(𝑥, 𝑦) ≤
𝑏} < 1 for all 0 < 𝑎 ≤ 𝑏, such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝛾 (𝑥, 𝑦)max{𝑑 (𝑥, 𝑦) ,
𝑑 (𝑥,T𝑥) + 𝑑 (𝑦, 𝑇𝑦)

2

,

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

2

}

(87)

holds for all 𝑥, 𝑦 ∈ 𝑋 with (𝑥, 𝑦) ∈ 𝐸(𝐺) and

𝑥, 𝑦 ∈ 𝑋with (𝑥, 𝑦) ∈ 𝐸 (𝐺) implies (𝑇𝑥, 𝑇𝑦) ∈ 𝐸 (𝐺) ,
(88)

then 𝑇 is a graphic weakly Zamfirescu mapping.

Definition 36. Let (𝑋, 𝑑) be a metric space endowed with a
graph𝐺. Amapping𝑇 : 𝑋 → 𝑋 is called graphic Ćirić strong
almost contraction, if there exist a constant 𝑟 ∈ [0, 1) such
that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑟𝑀(𝑥, 𝑦) + 𝐿𝑑 (𝑦, 𝑇𝑥) (89)
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holds for all 𝑥, 𝑦 ∈ 𝑋 with (𝑥, 𝑦) ∈ 𝐸(𝐺), where 𝐿 ≥ 0:

𝑀(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦) ,

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

2

} ,

(90)

𝑥, 𝑦 ∈ 𝑋with (𝑥, 𝑦) ∈ 𝐸 (𝐺) implies (𝑇𝑥, 𝑇𝑦) ∈ 𝐸 (𝐺) .
(91)

Theorem 37. Let (𝑋, 𝑑) be a metric space endowed with a
graph 𝐺 and let 𝑇 be a graphic convex contraction on 𝑋. If
(𝑥, 𝑇𝑥) ∈ 𝐸(𝐺) for all 𝑥 ∈ 𝑋, then 𝑇 has an approximate fixed
point.

Proof. Define 𝛼 : 𝑋2 → [0, +∞) by

𝛼 (𝑥, 𝑦) =

{

{

{

1, if (𝑥, 𝑦) ∈ 𝐸 (𝐺)
1

2

, otherwise.
(92)

At first we prove that 𝑇 is an 𝛼-admissible mapping.
Let 𝛼(𝑥, 𝑦) ≥ 1; then (𝑥, 𝑦) ∈ 𝐸(𝐺). Now since 𝑇 is a
graphic convex contraction, we have (𝑇𝑥, 𝑇𝑦) ∈ 𝐸(𝐺). That
is, 𝛼(𝑇𝑥, 𝑇𝑦) ≥ 1. Also, clearly, 𝑇 is a modified generalized
convex contraction.

Let (𝑥, 𝑇𝑥) ∈ 𝐸(𝐺) for all 𝑥 ∈ 𝑋. Then, 𝛼(𝑥, 𝑇𝑥) ≥ 1 for
all 𝑥 ∈ 𝑋. Hence, all conditions ofTheorem 15 hold and𝑇 has
an approximate fixed point.

Similarly, we can deduce the following results.

Theorem 38. Let (𝑋, 𝑑) be a complete metric space endowed
with a graph 𝐺 and let 𝑇 be a graphic convex contraction on
𝑋. Also suppose that 𝑇 is𝐺-continuous mapping. If there exists
𝑥
0
∈ 𝑋 such that (𝑥

0
, 𝑇𝑥
0
) ∈ 𝐸(𝐺), then 𝑇 has a fixed point.

Moreover, 𝑇 has a unique fixed point if, for all 𝑥, 𝑦 ∈ Fix (𝑇)
with (𝑥, 𝑦) ∉ 𝐸(𝐺), there exists 𝑧 ∈ 𝑋 such that (𝑥, 𝑧) ∈ 𝐸(𝐺)
and (𝑦, 𝑧) ∈ 𝐸(𝐺).

Theorem 39. Let (𝑋, 𝑑) be a metric space endowed with a
graph𝐺 and let 𝑇 be a graphic convex contraction of order 2 on
𝑋. If (𝑥, 𝑇𝑥) ∈ 𝐸(𝐺) for all 𝑥 ∈ 𝑋, then 𝑇 has an approximate
fixed point.

Theorem 40. Let (𝑋, 𝑑) be a metric space endowed with a
graph𝐺 and let 𝑇 be a graphic convex contraction of order 2 on
𝑋. Also suppose that 𝑇 is𝐺-continuous mapping. If there exists
a 𝑥
0
∈ 𝑋 such that (𝑥

0
, 𝑇𝑥
0
) ∈ 𝐸(𝐺), then 𝑇 has a fixed point.

Moreover, 𝑇 has a unique fixed point if, for all 𝑥, 𝑦 ∈ Fix(𝑇)
with (𝑥, 𝑦) ∉ 𝐸(𝐺), there exists 𝑧 ∈ 𝑋 such that (𝑥, 𝑧) ∈ 𝐸(𝐺)
and (𝑦, 𝑧) ∈ 𝐸(𝐺).

Theorem 41. Let (𝑋, 𝑑) be a metric space endowed with a
graph 𝐺 and let 𝑇 be a graphic weakly Zamfirescu mapping on
𝑋. If (𝑥, 𝑇𝑥) ∈ 𝐸(𝐺) for all 𝑥 ∈ 𝑋, then 𝑇 has an approximate
fixed point.

Theorem 42. Let (𝑋, 𝑑) be a complete metric space endowed
with a graph 𝐺 and let 𝑇 be a graphic weakly Zamfirescu

mapping on 𝑋. Also suppose that 𝑇 is 𝐺-continuous mapping.
If there exists an 𝑥

0
∈ 𝑋 such that (𝑥

0
, 𝑇𝑥
0
) ∈ 𝐸(𝐺), then 𝑇

has a fixed point.

Theorem 43. Let (𝑋, 𝑑) be a metric space endowed with a
graph 𝐺 and let 𝑇 be a self-mapping on 𝑋. Assume that the
following assertions hold true:

(i) 𝑇 is graphic Ćirić strong almost contraction on𝑋;

(ii) there exists 𝑥
0
∈ 𝑋 such that (𝑥

0
, 𝑇𝑥
0
) ∈ 𝐸(𝐺);

(iii) if {𝑥
𝑛
} is a sequence in 𝑋 such that (𝑥

𝑛
, 𝑥
𝑛+1
) ∈ 𝐸(𝐺)

with 𝑥
𝑛
→ 𝑥 as 𝑛 → ∞, then either

(𝑇𝑥
𝑛
, 𝑥) ∈ 𝐸 (𝐺) 𝑜𝑟 (𝑇

2

𝑥
𝑛
, 𝑥) ∈ 𝐸 (𝐺) (93)

holds for all 𝑛 ∈ N.

Then 𝑇 has a fixed point.

Let (𝑋, 𝑑, ⪯) be a partially ordered metric space. Define
the graph 𝐺 by

𝐸 (𝐺) := {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 : 𝑥 ⪯ 𝑦} . (94)

For this graph, the condition “∀𝑥, 𝑦 ∈ 𝑋, (𝑥, 𝑦) ∈ 𝐸(𝐺) ⇒
(𝑇(𝑥), 𝑇(𝑦)) ∈ 𝐸(𝐺)” in Definitions 32–35 translates into
“∀𝑥, 𝑦 ∈ 𝑋, 𝑥 ⪯ 𝑦 ⇒ 𝑇(𝑥) ⪯ 𝑇(𝑦)” which means 𝑇
is nondecreasing with respect to this order [6]. Fixed point
theorems for monotone operators in ordered metric spaces
are widely investigated and have found various applications
in differential and integral equations (see [2, 25–30] and
references therein). From Theorems 37–43 we derive the
following new results in partially ordered metric spaces.

Theorem 44. Let (𝑋, 𝑑, ⪯) be a partially ordered metric space
and let 𝑇 be a nondecreasing ordered convex contraction on𝑋.
If 𝑥 ⪯ 𝑇𝑥 for all 𝑥 ∈ 𝑋, then 𝑇 has an approximate fixed point.

Theorem 45. Let (𝑋, 𝑑, ⪯) be a complete partially ordered
metric space and let 𝑇 be a nondecreasing and ordered convex
contraction on 𝑋. Also suppose that 𝑇 is continuous mapping.
If there exists an 𝑥

0
∈ 𝑋 such that 𝑥

0
⪯ 𝑇𝑥

0
, then 𝑇 has

a fixed point. Moreover, 𝑇 has a unique fixed point if, for all
𝑥, 𝑦 ∈ Fix (𝑇) with 𝑥 󳠢 𝑦, there exists 𝑧 ∈ 𝑋 such that 𝑥 ⪯ 𝑧
and 𝑦 ⪯ 𝑧.

Theorem 46. Let (𝑋, 𝑑, ⪯) be a partially ordered metric space
and let 𝑇 be a nondecreasing, ordered convex contraction of
order 2 on 𝑋. If 𝑥 ⪯ 𝑇𝑥 for all 𝑥 ∈ 𝑋, then 𝑇 has an
approximate fixed point.

Theorem 47. Let (𝑋, 𝑑, ⪯) be a complete partially ordered
metric space and let 𝑇 be a nondecreasing and ordered convex
contraction of order 2 on 𝑋. Also suppose that 𝑇 is continuous
mapping. If there exists an 𝑥

0
∈ 𝑋 such that 𝑥

0
⪯ 𝑇𝑥
0
, then 𝑇

has a fixed point. Moreover, 𝑇 has a unique fixed point if, for
all 𝑥, 𝑦 ∈ Fix(𝑇)with 𝑥 󳠢 𝑦, there exists 𝑧 ∈ 𝑋 such that 𝑥 ⪯ 𝑧
and 𝑦 ⪯ 𝑧.
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Theorem 48. Let (𝑋, 𝑑, ⪯) be a partially ordered metric space
and let 𝑇 be a nondecreasing, ordered weakly Zamfirescu map-
ping on𝑋. If 𝑥 ⪯ 𝑇𝑥 for all 𝑥 ∈ 𝑋, then 𝑇 has an approximate
fixed point.

Theorem 49. Let (𝑋, 𝑑, ⪯) be a complete partially ordered
metric space and let 𝑇 be a nondecreasing and ordered weakly
Zamfirescu on 𝑋. Also suppose that 𝑇 is continuous mapping.
If there exists an 𝑥

0
∈ 𝑋 such that 𝑥

0
⪯ 𝑇𝑥
0
, then 𝑇 has a fixed

point.

Theorem 50. Let (𝑋, 𝑑, ⪯) be a complete partially ordered
metric space. Assume that the following assertions hold true:

(i) 𝑇 is nondecreasing and ordered Ćirić strong almost
contraction on 𝑋;

(ii) there exists 𝑥
0
∈ 𝑋 such that 𝑥

0
⪯ 𝑇𝑥
0
;

(iii) if {𝑥
𝑛
} is a sequence in 𝑋 such that 𝑥

𝑛
⪯ 𝑥
𝑛+1

with
𝑥
𝑛
→ 𝑥 as 𝑛 → ∞, then either

𝑇𝑥
𝑛
⪯ 𝑥 𝑜𝑟 𝑇

2

𝑥
𝑛
⪯ 𝑥 (95)

holds for all 𝑛 ∈ N.

Then 𝑇 has a fixed point.
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