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Large amplitudes and attenuating vibration periods result in fatigue, instability, and poor structural performance. In light of past
approaches in this field, this paper intends to discuss some innovative approaches in vibration control of intelligent structures,
particularly in the case of structures with embedded piezoelectric materials. Control strategies are presented, such as the linear
quadratic control theory, as well as more advanced theories, such as robust control theory. The paper presents sufficiently a
recognizable advance in knowledge of active vibration control in intelligent structures.

1. Introduction

Modeling of an ideal system consisting of a beam with
piezoelectric layers was done using one-dimensional finite
elements with two degrees of freedom per node. Cubic and
quadratic Hermit polynomials were employed for the repre-
sentation of nodal rotations and vertical displacements. Sys-
tem differential equations are derived from Euler Bernoulli
theory [1, 2].

Setting up the problem in a two-port diagram (input-
output) was not a trivial task.The classic control problemwas
transformed into a two-port problem. The goal of nominal
design was to keep error magnitude small, despite pertur-
bations and noise in measurements. Moreover, controller
size had to be contained so as to lower energy consumption
and maintain piezoelectric materials within operating limits
(±500V). By transforming transfer functions to state space
equations and by using input and output equations, state
space matrices have been derived; these matrices are used for
finding the optimal controller according to the LQR and𝐻

∞

control criterion.
Selection of the weights involved in the controller we

studied was done through optimization, while wind loading
and noise in measurements were appropriately modelled
for this particular problem. The obtained results were very

satisfactory; beam vibration is reduced even for realistic wind
measurements. Beam response results, with as well as without
control, were compared for all presented control strategies.

In this paper, we address the problem of vibrations
of intelligent structures. Stimuli may come from external
perturbations of the system, disturbances, or excitation that
may cause structural vibrations, such as wind loading or
earthquakes. An intelligent structure is expected to be able to
sense the vibration and counteract it in a controlled fashion,
so that vibration of the system can be reduced and contained.
To that end, a number of intelligent materials may be used
as actuators and sensors. Piezoelectric materials, memory
materials, and electrostrictive andmagnetostrictivematerials
are such materials. In this work, we focus on the use of
piezoelectric materials, given that they exhibit good sensing
and actuation properties.

2. Research on Intelligent Structures

The following paragraphs give a deep insight into the research
work done on the intelligent structures so far. Culshaw
discussed the concept of smart structure, its benefits, and
applications [3]. Rao and Sunar explained the use of piezo
materials as sensors and actuators in sensing vibrations in
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Figure 1: Smart beam.

their survey paper [4]. Hubbard and Baily have studied the
application of piezoelectric materials as sensor/actuator for
flexible structures [5]. Hanagud developed a Finite Element
Model (FEM) for a beamwithmany distributed piezoceramic
sensors/actuators [6].

Hwang and Park presented a new finite element (FE)
modeling technique for flexible beams [7]. Continuous time
and discrete time algorithms were proposed to control a
thin piezoelectric structure by Bona et al. [8]. Schiehlen and
Schonerstedt reported the optimal control designs for the first
few vibration modes of a cantilever beam using piezoelectric
sensors/actuators [9]. Choi have shown a design of position
tracking sliding mode control for a smart structure [10].
Distributed controllers for flexible structures can be seen in
Pourki [11].

A FEMapproachwas used byBenjeddou tomodel a sand-
wich beam with shear and extension piezoelectric elements
[12]. The finite element model employed the displacement
field of Zhang and Sun [13]. It was shown that the finite
element results agree quite well with the analytical results.
Raja et al. extended the finite element model of Benjeddou’s
research team to include a vibration control scheme [14].

3. Mathematical Modeling

A cantilever slender beam with rectangular cross-sections is
considered. Four pairs of piezoelectric patches are embedded
symmetrically at the top and the bottom surfaces of the beam,
as shown in Figure 1.

The beam is from graphite-epoxy T300–976 and the
piezoelectric patches are PZT G1195N. The top patches act
like sensors and the bottom like actuators. The resulting
composite beam is modelled by means of the classical
laminated technical theory of bending. Let us assume that the
mechanical properties of both the piezoelectric material and
the host beam are independent in time. The thermal effects
are considered to be negligible as well [15].

The beam has length 𝐿, width 𝑊, and thickness ℎ. The
sensors and the actuators have width 𝑏S and 𝑏A and thickness
ℎS and ℎA, respectively. The electromechanical parameters of
the beam of interest are given in Table 1.

Table 1: Parameters of the composite beam.

Parameters Values
Beam length, 𝐿 0.3m
Beam width,𝑊 0.04m
Beam thickness, ℎ 0.0096m
Beam density, 𝜌 1600 kg/m3

Young’s modulus of the beam, 𝐸 1.5 × 10
11 N/m2

Piezoelectric constant, 𝑑
31

254 × 10
−12m/V

Electric constant, 𝜉
33

11.5 × 10
−3 Vm/N

Young’s modulus of the piezoelectric element 1.5 × 10
11 N/m2

Width of the piezoelectric element 𝑏S = 𝑏A = 0.04m
Thickness of the piezoelectric element ℎS = ℎA = 0.0002m

In order to derive the basic equations for piezoelectric
sensors and actuators [1], we assume that

(i) the piezoelectric sensors actuators (S/A) are bonded
perfectly on the host beam;

(ii) the piezoelectric layers are much thinner than the
host beam;

(iii) the piezoelectric material is homogeneous, trans-
versely isotropic, and linearly elastic;

(iv) the piezoelectric S/A are transversely polarized [1, 3,
16].

3.1. Finite Element Formulation. We consider a beam element
of length 𝐿

𝑒
, which has two mechanical degrees of freedom

at each node: one translational 𝜔
1
(resp. 𝜔

2
) in direction

𝑧 and one rotational 𝜓
1
(resp., 𝜓

2
). The vector of nodal

displacements and rotations 𝑞
𝑒
is defined as [17]

𝑞
𝑟

𝑒
= [𝜔
1
, 𝜓
1
, 𝜔
2
, 𝜓
2
] . (1)

The beam element transverse deflection 𝜔(𝑥, 𝑡) and the
beam element rotation 𝜓(𝑥, 𝑡) of the beam are continuous
and they are interpolated within by Hermitian linear shape
functions𝐻𝜔

𝑖
and𝐻

𝜓

𝑖
as follows [18, 19]:

𝜔 (𝑥, 𝑡) =

4

∑

𝑖=1

𝐻
𝜔

𝑖
(𝑥) 𝑞
𝑖
(𝑡) ,

𝜓 (𝑥, 𝑡) =

4

∑

𝑖=1

𝐻
𝜓

𝑖
(𝑥) 𝑞
𝑖
(𝑡) .

(2)

This classical finite element procedure leads to the
approximate discretized variational problem. For a finite
element, the discrete differential equations are obtained by
substituting the discretized expressions into the first variation
of the kinetic energy and strain energy [18, 20] to evaluate the
kinetic and strain energies. Integrating over spatial domains
and using the Hamiltons principle [20], the equation of
motion for a beam element is expressed in terms of nodal
variable 𝑞 as follows:

𝑀 ̈𝑞 (𝑡) + 𝐷 ̇𝑞 (𝑡) + 𝐾𝑞 (𝑡) = 𝑓
𝑚
(𝑡) + 𝑓

𝑒
(𝑡) , (3)

where 𝑀 is the generalized mass matrix, 𝐷 the viscous
damping matrix, 𝐾 the generalized stiffness matrix, 𝑓

𝑚
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the external loading vector, and 𝑓
𝑒
the generalized control

force vector, produced by electromechanical coupling effects.
The independent variable 𝑞(𝑡) is composed of transversal
deflections 𝜔

1
and rotations 𝜓

1
; that is, [16, 18]

𝑞 (𝑡) =

[
[
[
[
[
[

[

𝜔
1

𝜓
1

...
𝜔
𝑛

𝜓
𝑛

]
]
]
]
]
]

]

, (4)

where 𝑛 is the number of nodes used in analysis. Vectors
𝜔 and 𝑓

𝑚
are positive upwards. To transform to state-space

control representation, let (in the usual manner)

𝑥̇ (𝑡) = [
𝑞 (𝑡)

̇𝑞 (𝑡)
] . (5)

Furthermore, to express 𝑓
𝑒
(𝑡) as 𝐵𝑢(𝑡), we write it as

𝑓
∗

𝑒
𝑢, where 𝑓∗

𝑒
the piezoelectric force is for a unit applied on

the corresponding actuator and 𝑢 represents the voltages on
the actuators. Furthermore, 𝑑(𝑡) = 𝑓

𝑚
(𝑡) is the disturbance

vector [16, 18].
Then,

𝑥̇ (𝑡) = [
𝑂
2𝑛×2𝑛

𝐼
2𝑛×2𝑛

−𝑀
−1

𝐾 −𝑀
−1

𝐷
]𝑥 (𝑡)

+ [
𝑂
2𝑛×2𝑛

𝑀
−1

𝑓
∗

𝑒

] 𝑢 (𝑡) + [
𝑂
2𝑛×2𝑛

𝑀
−1 ]

= 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝐺𝑑 (𝑡)

= 𝐴𝑥 (𝑡) + [𝐵 𝐺] [
𝑢 (𝑡)

𝑑 (𝑡)
]

= 𝐴𝑥 (𝑡) + 𝐵𝑢̃ (𝑡) .

(6)

The previous description of the dynamical system will
be augmented with the output equation (displacements only
measured) [17] as follows:

𝑦 (𝑡) = [𝑥
1
(𝑡) 𝑥
3
(𝑡) ⋅ ⋅ ⋅ 𝑥

𝑛−1
(𝑡)]
𝑇

= 𝐶𝑥 (𝑡) . (7)

In this formulation, 𝑢 is 𝑛 × 1 (at most, but can be smaller),
while d is 2𝑛 × 1. The units used are compatible for instance
m, rad, sec, and N [21, 22].

4. Linear Quadratic Regulator: LQR Control

It is well known [23, 24] that constant input disturbances can
be eliminated only if the controller has a zero at infinity (i.e., it
integrates). Another useful interpretation is that an integrator
is a disturbance estimator. Hence we do not expect a zero
steady-state error using an LQR controller.

The structure of LQR control with reduced order observer
is shown in Figure 2.

Here, 𝑑 are the disturbances, 𝑛 is the noise, and the
controller𝐾 defines,

𝐾 = lim
𝑡→∞

𝐾 (𝑡) , (8)
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Figure 2: LQR controller with state estimator.

where

𝑢 (𝑡) = −𝐾 (𝑡) 𝑥 (𝑡) (9)

minimizes the weighted performance index as follows:

𝐽 = ∫

∞

0

(𝑥
𝑇

(𝑡) 𝑄𝑥 (𝑡) + 𝑢
𝑇

(𝑡) 𝑅𝑢 (𝑡)) d𝑡, (10)

and 𝑄, and 𝑅 are design weight matrices.
The controller𝐾 is given by relation

𝐾𝐴 − 𝐾𝐵𝑅
−1

𝐵
𝑇

𝐾 + 𝑄 + 𝐴
𝑇

𝐾 = 0, (11)

which is the solution of the Riccati equation.
The weight matrices 𝑄 and 𝑅 are used in order to:

(i) normalize the state and control vector;
(ii) assess the relative influence of deflection from equi-

librium position and magnitude of control on the
determination of a global criterion. Matrices 𝑄 and
𝑅 are diagonal with positive diagonal inputs, so that

√𝑄
𝑖
=

1

max (𝑥
𝑖
)

, 𝑖 = 1, 2, . . . , 𝑚,

√𝑅
𝑖
=

1

max (𝑢
𝑖
)

, 𝑖 = 1, 2, . . . , 𝑘.

(12)

The value max(𝑥
𝑖
) sets the maximum desirable output

value 𝑦. The value max(𝑢
𝑖
) has similar significance for input

𝑢.
Matrix 𝑄 sets the weight for each state, while matrix 𝑅

holds theweight for each actuator’s voltage.TheLQRproblem
requires that the state be known [23].

5. Inputs

A typical wind load (Figure 3) Acting on the side of the
structure. The wind load is a real-life wind speed measure-
ment in relevance with time that took place in Estavromenos
of Heraklion, Crete. We transform the wind speed in wind
pressure.
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Figure 3: Wind load.

Loading corresponds to the wind excitation.The function
𝑓
𝑚
(𝑡) has been obtained from the wind velocity record,

through the relation

𝑓
𝑚
(𝑡) =

1

2

𝜌𝐶
𝑢
𝑉
2

(𝑡) , (13)

where 𝑉 = velocity, 𝜌 = density, and 𝐶
𝑢
= 1.5.

Moreover, in all simulations, random noise has been
introduced to measurements at system output locations
within a probability interval of ±1%. Due to small displace-
ments of system nodal points, noise amplitude is taken to be
small, of the order of 5×10−5. On the other hand, the signal is
introduced at each node of the beamby a different percentage,
that percentage being lower at the first node due to the fact
that the beam end point is clamped.

6. Results of Application of LQR Control

The 𝑄 and 𝑅 that were used are

𝑅 = 0, 0001 × 𝐼
4×4

, (14)

𝑄 = 100000 ×

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 0 0 0 0

...

0 0 0 0 0 0 0

...

0 0 1 0 0 0 0

...

0 0 0 0 0 0 0

... 0
7×9

0 0 0 0 1 0 0

...

0 0 0 0 0 0 0

...

0 0 0 0 0 0 1

...

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

... ⋅ ⋅ ⋅

0
9×7

... 0
9×9

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(15)

Since max(𝑥
𝑖
) = 0.00316228 and max(𝑢

𝑖
) = 100 (11), matrix

𝐿 is the design matrix. Its eigenvalues are chosen in such

a way that the observer subsystem can be about two times
faster than the observed system. The selected values for our
simulation are

𝜆
𝐿
= 10
7

×

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

2.7423556

−0.430498

−0.031873

−0.000051 + 0.0001993𝑖

−0.000051 − 0.000199𝑖

−0.00045 + 0.000053𝑖

−0.00045 − 0.000053𝑖

−0.00039 + 0.00001𝑖

−0.00039 − 0.00001𝑖

−0.0004

−0.0004

−0.0004

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (16)

These values have been obtained by trial and error, given
the poor numerical properties of the system. To find these
values, we have used a robust pole computation algorithm
included in MATLAB [25, 26].

The controller [Klqr] is given by relation (11) which is the
solution of the Riccati equation, where𝐴 and 𝐵 are respective
state and control matrices of the system and 𝑅 and 𝑄 are
weight matrices of the performance criterion (regulator) (14)
and (15), respectively.

For the simulation, beam nodal displacements and rota-
tions with and without control are displayed in Figures 4 and
5, while Figure 6 presents actuator voltage values for control
of all beam nodes.

6.1. Discussion of the Results of the Linear Quadratic Regulator
(LQR). Using the linear quadratic controller criterion LQR,
beam vibration reduction is observed at all nodal points, for
both constant and sinusoidal mechanical input, as well as
for realistic wind loading. LQR control achieves reduction of
vibration but at the same time requires the entire system state
time history as well as an extensive sensor distribution.

We encounter the following difficulties:

(i) system disturbances are unknown and unpredictable;

(ii) the state vector is notmeasurable in its entirety, which
in turn necessitates the use of an observer. This setup
is problematic, as the observer has no information
on the disturbance, which results in erroneous esti-
mates. A way to circumvent this problem is the use
of an unknown input observer. Unfortunately, this
approach is not feasible, as one of the prerequisite
conditions is not met. This situation complicates the
problem, making the application of classic controllers
such as LQR difficult, since its performance is directly
related to the availability of the state vector, or at best
of a reliable estimator of the state vector.

For the reasons mentioned above, we will continue with
a discussion of more advanced control techniques for this
particular problem, such as the𝐻

∞
control.
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Figure 4: Displacement at all beam nodal points, with and without LQR control.

7. 𝐻Infinity Control

To relate the structures used in classical and 𝐻
∞

control, let
us look at Figure 7, in the frequency domain [16, 23, 24].

In this diagram, all inputs and outputs of interest are
included, along with their respective weighs 𝑊, where 𝑊

𝑑
,

𝑊
𝑢
,𝑊
𝑛
, and𝑊

𝑦
are the weighs for the disturbances, control,

noise, and outputs, respectively.The exogenous inputs are the
noise 𝑛 and the disturbances 𝑑.𝐾(𝑠) is the controller, 𝐵, 𝐺, 𝑥,
𝑦, 𝐶 define at the relation (6, 7, 8), and 𝐹(𝑠) is the transfer
function of our system.

To find the necessary transfer functions consider the
following:

𝑦
𝐹𝑤

= 𝑊
𝑦
𝐽𝑥 = 𝑊

𝑦
𝐽𝐹V

= 𝑊
𝑦
𝐽𝐹 (𝐺𝑊

𝑑
𝑑 + 𝐵𝑢

𝐾
)

= 𝑊
𝑦
𝐽𝐹𝐺𝑊

𝑑
𝑑 +𝑊

𝑦
𝐽𝐹𝐵𝑢
𝐾
,

𝑢
𝑤
= 𝑊
𝑢
𝑢
𝐾
,

𝑦
𝑛
= 𝐶𝑥 +𝑊

𝑛
𝑛

= 𝐶𝐹V +𝑊
𝑛
𝑛

= 𝐶𝐹 (𝐺𝑊
𝑑
𝑑 + 𝐵𝑢

𝐾
) + 𝑊

𝑛
𝑛

= 𝐶𝐹𝐺𝑊
𝑑
𝑑 + 𝐶𝐹𝐵𝑢

𝐾
+𝑊
𝑛
𝑛.

(17)

Combining all these gives

[

[

𝑢
𝑤

𝑦
𝐹𝑤

𝑦
𝑛

]

]

= [

[

0 0 𝑊
𝑢

𝑊
𝑦
𝐽𝐹𝐺𝑊

𝑑
0 𝑊

𝑦
𝐽𝐹𝐵

𝐶𝐹𝐺𝑊
𝑑

𝑊
𝑛

𝐶𝐹𝐵

]

]

[

[

𝑑

𝑛

𝑢
𝐾

]

]

. (18)

Note that the plant transfer function matrix, 𝐹(𝑠), is
deduced from the suitably reformulated plant equations as
follows:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐼V (𝑡) ,

𝑦 (𝑡) = 𝐼𝑥 (𝑡) ,

(19)

where V(𝑡) = 𝐺𝑑 + 𝐵𝑢
𝑘
.
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Figure 5: Angle of rotation at all beam nodal points, with and without LQR control.
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Hence,

𝐹 (𝑠) = (𝑠𝐼 − 𝐴)
−1

. (20)

n

d

xv

G
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F(s)K(s)
uK

dw
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yFw
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Figure 7:𝐻Infinity control bloc diagram in the frequency domain.

The equivalent two-port diagram in the state space form
is shown in Figure 8 for the close loop, and with more details
in Figure 9, with

𝑧 = [
𝑢
𝑤

𝑦
𝐹𝑤

] , 𝑤 = [
𝑑

𝑛
] , 𝑦 = 𝑦

𝑛
, 𝑢 = 𝑢

𝐾
,

(21)

where 𝑧 are the output variables to be controlled and 𝑤 the
exogenous inputs.
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Given that𝑃has two inputs and two outputs, it is, as usual,
naturally partitioned as

[
𝑧 (𝑠)

𝑦 (𝑠)
] = [

𝑃
𝑧𝑤

(𝑠) 𝑃
𝑧𝑢
(𝑠)

𝑃
𝑦𝑤

(𝑠) 𝑃
𝑦𝑢

(𝑠)
] [

𝑤 (𝑠)

𝑢 (𝑠)
]

o𝜌
= 𝑃 (𝑠) [

𝑤 (𝑠)

𝑢 (𝑠)
] .

(22)

Also,

𝑢 (𝑠) = 𝐾 (𝑠) 𝑦 (𝑠) . (23)

Using (18) the transfer function for 𝑃 which is

𝑃 (𝑠) = [

[

0 0 𝑊
𝑢

𝑊
𝑦
𝐽𝐹𝐺𝑊

𝑑
0 𝑊

𝑦
𝐽𝐹𝐵

𝐶𝐹𝐺𝑊
𝑑

𝑊
𝑛

𝐶𝐹𝐵

]

]

, (24)

while the closed loop transfer function for𝑀
𝑧𝑤
(𝑠) is

𝑀
𝑧𝑤

(𝑠) = 𝑃
𝑧𝑤

(𝑠) + 𝑃
𝑧𝑢
(𝑠) 𝐾 (𝑠) (𝐼 − 𝑃

𝑦𝑢
(𝑠) 𝐾 (𝑠))

−1

𝑃
𝑦𝑤

(𝑠) ,

(25)
or

𝑧 = 𝑀
𝑧𝑤
𝑤 = 𝐹

𝑙
(𝑃, 𝐾)𝑤. (26)

Equation (25) is the well known lower LFT for𝑀
𝑧𝑤
.

To express 𝑃 in state space form, the natural partitioning

𝑃 (𝑠) = [

[

𝐴 𝐵
1

𝐵
2

𝐶
1

𝐷
11

𝐷
12

𝐶
2

𝐷
21

𝐷
22

]

]

= [
𝑃
𝑧𝑤

(𝑠) 𝑃
𝑧𝑢
(𝑠)

𝑃
𝑦𝑤

(𝑠) 𝑃
𝑦𝑢

(𝑠)
] (27)

is used (where the packed form has been used), while the
corresponding form for the controller𝐾 is [27–29]

𝐾 (𝑠) = [
𝐴
𝐾

𝐵
𝐾

𝐶
𝐾

𝐷
𝐾

] . (28)

Equation (27) defines the following equations:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + [𝐵
1
𝐵
2
] [

𝑤 (𝑡)

𝑢 (𝑡)
] ,

[
𝑧 (𝑡)

𝑦 (𝑡)
] = [

𝐶
1

𝐶
2

] 𝑥 (𝑡) + [
𝐷
11

𝐷
12

𝐷
21

𝐷
22

] [
𝑤 (𝑡)

𝑢 (𝑡)
] ,

𝑥̇
𝐾
(𝑡) = 𝐴

𝐾
𝑥
𝐾
(𝑡) + 𝐵

𝐾
𝑦 (𝑡) ,

𝑢 (𝑡) = 𝐶
𝐾
𝑥
𝐾
(𝑡) + 𝐷

𝐾
𝑦 (𝑡) .

(29)

To find the matrices involved, we break the feedback loop
and use the relevant equations.

Therefore the equations relating the inputs, outputs,
states, and input/output to the controller are

𝑥̇
𝐹
= 𝐴𝑥
𝐹
+ (𝐺𝑑

𝑤
+ 𝐵𝑢) , 𝑦

𝐹
= 𝑥
𝐹
,

𝑥̇
𝑢
= 𝐴
𝑢
𝑥
𝑢
+ 𝐵
𝑢
𝑢, 𝑢

𝑤
= 𝐶
𝑢
𝑥
𝑢
+ 𝐷
𝑢
𝑢,

𝑥̇
𝑦𝐹

= 𝐴
𝑦𝐹
𝑥
𝑦𝐹

+ 𝐵
𝑦𝐹
𝐽𝑦
𝐹
, 𝑦

𝐹𝑤
= 𝐶
𝑦𝐹
𝑥
𝑦𝐹

+ 𝐷
𝑦𝐹
𝑦
𝐹
,

𝑥̇
𝑛
= 𝐴
𝑛
𝑥
𝑛
+ 𝐵
𝑛
𝑛, 𝑛

𝑤
= 𝐶
𝑛
𝑥
𝑛
+ 𝐷
𝑛
𝑛,

𝑥̇
𝑑
= 𝐴
𝑑
𝑥
𝑑
+ 𝐺𝑑, 𝑑

𝑤
= 𝐶
𝑑
𝑥
𝑑
+ 𝐷
𝑑
𝑑,

𝑦
𝑛
= 𝐶𝑦
𝐹
+ 𝑛
𝑤
,

𝑥 =

[
[
[
[
[

[

𝑥
𝐹

𝑥
𝑢

𝑦
𝐹𝑤

𝑥
𝑛

𝑥
𝑑

]
]
]
]
]

]

, 𝑦 = 𝑦
𝑛
,

𝑤 = [
𝑑

𝑛
] , 𝑧 = [

𝑢
𝑤

𝑦
𝐹𝑤

] , 𝑢 = 𝑢
𝐾
.

(30)

From (30), we use 𝑑
𝑤
, 𝑛
𝑤
𝜅𝛼𝜄 𝑦
𝐹𝑤

and take our initial state
space equation in the form of (6, 7, 8), as follows:

𝑥̇ =

[
[
[
[
[

[

𝐴
𝐺

0 0 0 𝐺𝐶
𝑑

0 𝐴
𝑢

0 0 0

𝐵𝐶
𝐹

0 𝐴
𝑦𝐹

0 0

0 0 0 𝐴
𝑛

0

0 0 0 0 𝐴
𝑑

]
]
]
]
]

]

𝑥

+

[
[
[
[
[

[

𝐺𝐷
𝑑

0

0 0

0 0

0 𝐵
𝑛

𝐵
𝑑

0

]
]
]
]
]

]

𝑤 +

[
[
[
[
[

[

𝐵

𝐵
𝑢

0

0

0

]
]
]
]
]

]

𝑢,

𝑧 = [
0 𝐶

𝑢
0 0 0

𝐷
𝑦𝐹
𝐶
𝐹

0 𝐶
𝑦𝐹

0 0
] 𝑥 + 0𝑤 + [

𝐷
𝑢

0
] 𝑢,

𝑦 = [𝐶
𝐹

0 0 𝐶
𝑛

0] 𝑥 + [0 𝐷
𝑛
] 𝑤 + 0𝑢.

(31)
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Figure 10: Bode diagrams of diagonal elements of weight matrices.

Therefore the matrices are

𝐴
1
=

[
[
[
[
[

[

𝐴
𝐹

0 0 0 𝐺𝐶
𝑑

0 𝐴
𝑢

0 0 0

𝐵𝐶
𝐹

0 𝐴
𝑦𝐹

0 0

0 0 0 𝐴
𝑛

0

0 0 0 0 𝐴
𝑑

]
]
]
]
]

]

,

𝐵
1
=

[
[
[
[
[

[

𝐺𝐷
𝑑

0

0 0

0 0

0 𝐵
𝑛

𝐵
𝑑

0

]
]
]
]
]

]

, 𝐵
2
=

[
[
[
[
[

[

𝐵

𝐵
𝑢

0

0

0

]
]
]
]
]

]

,

𝐶
1
= [

0 𝐶
𝑢

0 0 0

𝐷
𝑦𝐹
𝐶
𝐹

0 𝐶
𝑦𝐹

0 0
] ,

𝐷
11

= 0, 𝐷
12

= [
𝐷
𝑢

0
] ,

𝐶
2
= [𝐶
𝐹

0 0 𝐶
𝑛

0] , 𝐷
21

= [0 𝐷
𝑛
] , 𝐷

22
= 0.

(32)

7.1. Results with 𝐻
∞
. Figure 10 presents the Bode diagrams

of diagonal elements of the above weight matrices. These

matrices have been obtained through a number of tests, to
ensure the feasibility of finding a controller𝐻

∞
.

The controller obtained by applying 𝐻
∞

control is 36
order. For this controller, 𝛾 = 0.074. A plot of the maximum
singular value of the weighted closed loop system (beam plus
𝐻
∞
controller) is given in Figure 11, where we can clearly note

that the value remains below 𝛾 at all frequencies.
Figures 12, 13, and 14 further show themaximum singular

values of transfer functions of the unweighted closed loop
system (i.e., the initial one) that are of interest.

These figures show that the performance of the computed
controller is satisfactory [30] since:

(i) as shown in Figure 12, there is a significant improve-
ment in the effect of disturbance on error up to the
frequency of 1000Hz;

(ii) as shown in Figure 13, there seems to be little effect of
noise on error for frequencies beyond 1000Hz;

(iii) Figure 14 shows a satisfactory effect of the disturbance
on the size of the control scheme (the design could be
improved, if it were possible to reduce noise effect for
frequencies of 1000Hz).
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To validate the above findings, system response time
histories for the three input cases mentioned in this section
are presented below.

Using the mechanical input, we get the following result.
Figure 15 shows the displacement time history at all nodal

points of the beam, with and without control, while Figure 16
displays the angle of rotation time history at all beam nodal
points, with and without control. By employing the 𝐻

∞

control, vibration reduction is achieved; we observe vibration
reduction of 90%. Figure 17 presents the time evolution of the
produced actuator voltage, which turns out to be lower than
the piezoelectric voltage limit value of 500V.

7.2. Order Reduction of Controller 𝐻
∞
. The 𝐻

∞
controller

found is of order 36. The fact that controller order, which is
equal to the order of the system, is relatively higher than the
order of classical controllers such as PI and LQR has led a
number of researchers to develop order reduction algorithms.
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The most widely used such algorithm, known as HIFOO, has
been implemented in a Matlab environment, and is the one
used in the following procedure [31].

The general problem is to compute a controller of reduced
rank/order 𝑛 < 36while retaining the performance of the𝐻

∞

criterion as well as the behaviour of a full order controller for
the given system [32, 33] as follows:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵
1
𝑤 (𝑡) + 𝐵

2
𝑢 (𝑡) ,

𝑧 (𝑡) = 𝐶
1
𝑥 (𝑡) + 𝐷

11
𝑤 (𝑡) + 𝐷

12
𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶
2
𝑥 (𝑡) + 𝐷

21
𝑤 (𝑡) + 𝐷

22
𝑢 (𝑡) .

(33)

The state space equations for the controller𝐾 are

𝑥̇
𝐾
(𝑡) = 𝐴

𝐾
(𝑡) + 𝐵

𝐾
𝑦 (𝑡) ,

𝑢 (𝑡) = 𝐶
𝐾
(𝑡) + 𝐷

𝐾
𝑦 (𝑡) .

(34)
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Figure 15: Displacement at all beam nodal points, with and without𝐻
∞
control.

Let 𝛼(𝑋) be the spectral abscissa of amatrix𝑋, that is, the
maximum real part of its eigenvalues. Then, we require not
only that 𝛼(𝐴CL) < 0, where 𝐴CL is the closed loop system
matrix, but that 𝛼(𝐴

𝑘
) < 0 as well. The feasible set of 𝐴

𝑘
,

that is the set of stable matrices, is not a convex set and has a
boundary that is not smooth [34, 35].

The HIFOO procedure has two phases: stability and
performance optimization [31, 36]. In the stability phase,
HIFOO attempts to minimize

max (𝛼 (𝐴CL, ∈ 𝛼 (𝐴CL))) , (35)

where 𝜀 is a positive parameter that will be described shortly,
until a controller is found for which this quantity is negative;
that is, the controller is stable and makes the closed loop
system stable. In case it is unable to find such a controller,
HIFOO terminates unsuccessfully.

In the performance optimization phase, HIFOO searches
for a local minimizer of

𝑓 (𝐾)

={
∞, if max (𝛼 (𝐴CL, 𝛼 (𝐴𝐾)))≥ 0,

max (󵄩󵄩󵄩󵄩𝑇𝑧𝑤
󵄩󵄩󵄩󵄩∞

, ∈ ‖𝐾‖
∞
) , if else,

(36)

where

‖Κ‖
∞

= sup
𝑅𝑠=0

󵄩󵄩󵄩󵄩󵄩
𝐶
𝑘
(𝑠𝐼 − 𝐴

𝑘
)
−1

𝐵
𝐾
+ 𝐷
𝐾

󵄩󵄩󵄩󵄩󵄩2
. (37)

The introduction of 𝜀 is motivated by the fact that the
main design objective is to attain closed loop system stability
and to minimize ‖𝑇

𝑧𝑤
‖
∞
, by demonstrating that 𝜀 should

be relatively small; the term 𝜀‖𝐾‖
∞
, however, prevents the

controller 𝐻
∞

norm from becoming too large, in which
case the stability constraint by itself would not exist. Given



Journal of Applied Mathematics 11

0

10.80.60.40.20

×10
−4

−10

−5

Ro
ta

tio
n 

(r
ad

)

1st node

(s)

(a)

0

10.80.60.40.2

×10
−4

−10

−5

Ro
ta

tio
n 

(r
ad

)

2nd node

(s)
0

(b)

0

10.80.60.40.2

×10
−4

−10

−5

Ro
ta

tio
n 

(r
ad

)

3rd node

(s)
0

(c)

0

10.80.60.40.2

×10
−4

−10

−5

Ro
ta

tio
n 

(r
ad

)

Free end

(s)
0

(d)

Figure 16: Angle of rotation at all beam nodal points, with and without𝐻
∞
control.
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that it is preceded by the stability phase, the performance
optimization phase is initialized with a finite value of 𝑓(𝐾).
Consequently, when it reaches a value of𝐾 for which 𝑓(𝐾) =

∞, that value is rejected, since an objective reduction is
sought at each iteration [31, 36].

7.3. Results Using Controller HIFOO. As mentioned before,
the HIFOO controller is implemented in Matlab by way of
appropriate routines. It is called in the following manner:

Kfoo = hifoo (plant, 2) , (38)

where plant is the system description in the form of (33) and
𝑛 = 2 is the controller order.

The resulting controller is described in state space in
similar manner as𝐻

∞
; that is,

𝑥̇
𝐾
(𝑡) = 𝐴

𝐾
(𝑡) + 𝐵

𝐾
𝑦 (𝑡) ,

𝑢 (𝑡) = 𝐶
𝐾
(𝑡) + 𝐷

𝐾
𝑦 (𝑡) .

(39)

The controller state space equation is given by (39), where
controller matrices are equal to

𝐴
𝐾
= [

728.1 −5034

207.5 −1408
] ,

𝐵
𝐾
= [

212.8 811.6 1716 2810

−164.9 −637.2 −1348 −2207
] ,

𝐶
𝐾
=

[
[
[

[

1557

1013

517

144.3

−916.7

−592.3

−297.9

−82.59

]
]
]

]

,

𝐷
𝐾
=

[
[
[

[

36.1 136.6 287.1 468.3

23.5 87.69 186.5 303

12.12 44.12 93.39 154.3

4.204 12.53 26.92 43.51

]
]
]

]

.

(40)

For the purpose of comparison of HIFOO controller
performance to that of 𝐻

∞
, the beam free end response is

examined, for the mechanical input.
For the input in Figure 18, the beam free end response is

shown, initially with and then without the HIFOO controller,
while Figure 19 presents produced actuator voltage using the
HIFOO controller.

Using the HIFOO controller for an actual wind loading,
beam position control is effected with node displacements
of order of 10−5, with lower produced voltage. We therefore
maintain 𝐻

∞
criterion performance with a lower order

controller. The maximum produced voltage for the HIFOO
controller is 7 V; the respective value is 45V for the 𝐻

∞

controller. In other words, beam adjustment to its equilib-
rium position is achieved with a lower order controller that
requires lower voltage; see Figure 19.

8. Results

In the present work, the use of active control technology in
intelligent structures has been presented. The goal of control
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Figure 18: Beam free end displacement, with and without HIFOO
control.
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is vibration reduction, while sustaining low steady state error,
short recovery time, and small maximum uplift; at the same
time, control energy must remain within operating limits.

The beam that was used was discretized using 1-
dimensional finite elements with two degrees of freedom per
node. Piezoelectric actuators were embedded in it with the
objective of reducing vibrations under deterministic as well
as stochastic loading conditions.

Initially, we examined the linear quadratic control crite-
rion using a reduced rank observer, which makes the simula-
tionmore realistic. Tofind the observer, we employed a robust
pole location algorithm. By selecting appropriate weights,
beam vibration reduction was achieved for stochastic loading
cases. In all simulations, random noise has been introduced
in measurements, so that the system better approximate
reality, given that displacement measurement by means of
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piezoelectric sensors is not reliable. Next we applied more
advanced control techniques, such as the 𝐻

∞
criterion. The

𝐻
∞

controller found is of order 36.
In order to reduce computational requirements of the

model, controller rank was reduced by means of non-
parametric and nonconvex optimization, using the HIFOO
controller. The controller exhibited good performance even
for a significantly smaller system degree.

A natural consequence of the proposed research inno-
vations is the acknowledgement of new scientific problems
that can be used as the basis for further research beyond the
scope of this work. The advantage of active control is the
fact that it allows taking into account in the computation the
worst case result of disturbances with uncertainty and system
noise. Moreover, the active control can effectively cope with
stronger input, permitting the design for a large frequency
bandwidth. Results are noteworthy; vibration reduction is
observed even for realistic wind loading, with piezoelectric
component voltage kept within tolerance.
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