
Research Article
On Solutions of Variational Inequality Problems via
Iterative Methods

Mohammed Ali Alghamdi,1 Naseer Shahzad,1 and Habtu Zegeye2

1 Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
2Department of Mathematics, University of Botswana, Private Bag 00704, Gaborone, Botswana

Correspondence should be addressed to Naseer Shahzad; nshahzad@kau.edu.sa

Received 12 May 2014; Revised 24 June 2014; Accepted 30 June 2014; Published 4 August 2014

Academic Editor: Adrian Petrusel

Copyright © 2014 Mohammed Ali Alghamdi et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

We investigate an algorithm for a common point of fixed points of a finite family of Lipschitz pseudocontractive mappings and
solutions of a finite family of 𝛾-inverse strongly accretive mappings. Our theorems improve and unify most of the results that have
been proved in this direction for this important class of nonlinear mappings.

1. Introduction

Let𝐶 be a subset of a real Hilbert space𝐻. Let𝐴 : 𝐶 → 𝐻 be
a nonlinear mapping. The variational inequality problem for
𝐴 and 𝐶 is to

find 𝑥
∗

∈ 𝐶 such that ⟨𝐴𝑥
∗

, V − 𝑥
∗

⟩ ≥ 0, ∀V ∈ 𝐶. (1)

The set of solutions of variational inequality problem is
denoted by VI(𝐶, 𝐴); that is,

VI (𝐶, 𝐴) = {𝑥
∗

∈ 𝐶 : ⟨𝐴𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ 𝐶} . (2)

It is well known that variational inequality theory has
emerged as an important tool in studying a wide class
of numerous problems in variational inequalities, minimax
problems, optimization, physics, and the Nash equilibrium
problems in noncooperative games. Several numerical meth-
ods have been developed for solving variational inequalities
and related optimization problems; see, for instance, [1–5]
and the references therein.

A mapping 𝐴 : 𝐶 ⊆ 𝐻 → 𝐻 is said to be 𝛾-inverse
strongly accretive (or 𝛾-inverse strongly monotone) if there
exists a positive real number 𝛾 such that

⟨𝑥 − 𝑦, 𝐴𝑥 − 𝐴𝑦⟩ ≥ 𝛾
󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩
2

, ∀𝑥, 𝑦 ∈ 𝐶. (3)

If 𝐴 is 𝛾-inverse strongly accretive, then inequality (3)
implies that 𝐴 is Lipschitzian with constant 𝐿 := 1/𝛾; that

is, ‖𝐴𝑥−𝐴𝑦‖ ≤ (1/𝛾)‖𝑥−𝑦‖, for all 𝑥, 𝑦 ∈ 𝐶. If in (3) we have
that 𝛾 = 0, then 𝐴 is called accretive (or monotone).

Let𝐶 be a closed and convex subset of a real Hilbert space
𝐻. A mapping 𝑇 : 𝐶 → 𝐻 is called a contraction mapping if
there exists 𝐿 ∈ [0, 1) such that ‖𝑇𝑥 − 𝑇𝑦‖ ≤ 𝐿‖𝑥 − 𝑦‖ for all
𝑥, 𝑦 ∈ 𝐶. If 𝐿 = 1, then 𝑇 is called nonexpansive. A mapping
𝑇 : 𝐶 → 𝐸 is called 𝜆-strictly pseudocontractive of Browder-
Petryshyn type [6] if and only if there exists 𝜆 ∈ (0, 1) such
that

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2

+ 𝜆
󵄩󵄩󵄩󵄩(𝐼 − 𝑇) 𝑥 − (𝐼 − 𝑇) 𝑦

󵄩󵄩󵄩󵄩
2

∀𝑥, 𝑦 ∈ 𝐶.

(4)

𝑇 is called pseudocontractive if

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩(𝐼 − 𝑇) 𝑥 − (𝐼 − 𝑇) 𝑦

󵄩󵄩󵄩󵄩
2

,

∀𝑥, 𝑦 ∈ 𝐶.

(5)

We note that inequalities (4) and (5) can be equivalently
written as

⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2

− 𝑘
󵄩󵄩󵄩󵄩(𝑥 − 𝑇𝑥) − (𝑦 − 𝑇𝑦)

󵄩󵄩󵄩󵄩
2

∀𝑥, 𝑦 ∈ 𝐶,

(6)
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for some 𝑘 > 0 and

⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2

∀𝑥, 𝑦 ∈ 𝐶, (7)

respectively. We remark that 𝑇 is pseudocontractive if and
only if 𝐴 := (𝐼 − 𝑇) is accretive. A point 𝑥 ∈ 𝐶 is a fixed
point of 𝑇 if 𝑇𝑥 = 𝑥 and we denote by 𝐹(𝑇) the set of fixed
points of 𝑇; that is, 𝐹(𝑇) = {𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥}.

We observe that in a real Hilbert space 𝐻 a class of
pseudocontractive mappings includes the class of 𝜆-strictly
pseudocontractive mappings and hence the classes of nonex-
pansive and contraction mappings.

Closely related to the variational inequality problems is
the problem of finding fixed points of nonexpansive map-
pings, 𝜆-strict pseudocontraction mappings or pseudocon-
tractive mappings which is the current interest in functional
analysis. Several researchers considered a unified approach
that approximates a commonpoint of fixed point of nonlinear
problems and solutions of variational inequality problems
and solutions of variational inequality problems; see, for
example, [7–18] and the references therein.

In [19], Takahashi and Toyoda studied the problem of
finding a common point of fixed points of a nonexpansive
mapping and solutions of a variational inequality problem (1)
by considering the following iterative algorithm:

𝑥
0
∈ 𝐶,

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
𝐴𝑥
𝑛
) , 𝑛 = 0, 1, . . . ,

(8)

where {𝛼
𝑛
} is a sequence in (0, 1), {𝜆

𝑛
} is a positive sequence,

𝑇 : 𝐶 → 𝐶 is a nonexpansivemapping, and𝐴 : 𝐶 → 𝐻 is an
𝛾-inverse strongly accretive mapping. They showed that the
sequence {𝑥

𝑛
} generated by (8) converges weakly to some 𝑧 ∈

VI(𝐶, 𝐴) ∩ 𝐹(𝑆) provided that the control sequences satisfy
some restrictions.

Iiduka and Takahashi [20] reconsidered the common
element problem via the following iterative algorithm:

𝑥
1
= 𝑥 ∈ 𝐶,

𝑥
𝑛+1

= 𝛼
𝑛
𝑥 + (1 − 𝛼

𝑛
) 𝑇𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
𝐴𝑥
𝑛
) , 𝑛 = 0, 1, . . . ,

(9)

where𝑇 : 𝐶 → 𝐶 is a nonexpansivemapping,𝐴 : 𝐶 → 𝐻 is
a 𝛾-inverse-strongly accretive mapping, {𝛼

𝑛
} is a sequence in

(0, 1), and {𝜆
𝑛
} is a sequence in (0, 2𝛼). They proved that the

sequence {𝑥
𝑛
} strongly converges to some point 𝑧 ∈ 𝐹(𝑇) ∩

VI(𝐶, 𝐴).
Recently, Zegeye and Shahzad [21] investigated the prob-

lem of finding a common point of fixed points of a Lipschitz
pseudocontractive mapping 𝑇 and solutions of a variational
inequality problem for 𝛾-inverse strongly accretive mapping
𝐴 by considering the following iterative algorithm:

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑇𝑥
𝑛
,

𝑥
𝑛+1

= 𝑃
𝐶
[(1 − 𝛼

𝑛
) (𝛿
𝑛
𝑇𝑦
𝑛
+ 𝜃
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝑃
𝐶
[𝐼 − 𝛾𝐴] 𝑥

𝑛
)] ,

(10)

where 𝑃
𝐶

is a metric projection from 𝐻 onto 𝐶 and
{𝛿
𝑛
}, {𝜃
𝑛
}, {𝛾
𝑛
}, {𝛼
𝑛
}, {𝛽
𝑛
} are in (0, 1) satisfying certain

conditions. Then, they proved that the sequence {𝑥
𝑛
} con-

verges strongly to the minimum-norm point of 𝐹(𝑇) ∩

VI(𝐶, 𝐴).
A natural question arises whether we can obtain an itera-

tive schemewhich converges strongly to a commonpoint of fixed
points of a finite family of pseudocontractive mappings and
solutions of a finite family of variational inequality problems
for 𝛾-inverse strongly accretive mappings or not.

It is our purpose in this paper to introduce an algorithm
and prove that the algorithm converges strongly to a common
point of fixed points of a finite family of Lipschitz pseudo-
contractive mappings and solutions of a finite family of vari-
ational inequality problems for 𝛾-inverse strongly accretive
mappings. The results obtained in this paper improve and
extend the results of Takahashi and Toyoda [19], Iiduka and
Takahashi [20], and Zegeye and Shahzad [21],Theorem 3.2 of
Yao et al. [22], and some other results in this direction.

2. Preliminaries

In what follows we will make use of the following lemmas.

Lemma 1. Letting 𝐻 be a real Hilbert space, the following
identity holds:

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩
2

≤ ‖𝑥‖
2

+ 2 ⟨𝑦, 𝑥 + 𝑦⟩ , ∀𝑥, 𝑦 ∈ 𝐻. (11)

Lemma 2 (see [23]). Let 𝐶 be a nonempty closed and convex
subset of a real Hilbert space𝐻. Let 𝐴 : 𝐶 → 𝐸 be a 𝛾-inverse
strongly accretive mapping. Then, for 0 < 𝜇 < 2𝛾, the mapping
𝐴
𝜇
𝑥 := (𝑥 − 𝜇𝐴𝑥) is nonexpansive.

Lemma 3 (see [24]). Let 𝐶 be a nonempty, closed, and convex
subset of a smooth Banach space 𝐸. Let 𝑄

𝐶
be a sunny

nonexpansive retraction from 𝐸 onto 𝐶 and let 𝐴 be an
accretive operator of 𝐶 into 𝐸. Then for all 𝜆 > 0,

𝑉𝐼 (𝐶, 𝐴) = 𝐹 (𝑄
𝐶
(𝐼 − 𝜆𝐴)) . (12)

Lemma 4 (see [25]). Let 𝐶 be a nonempty, closed, and convex
subset of a real Hilbert space𝐻. Let 𝑇

𝑖
: 𝐶 → 𝐸, 𝑖 = 1, . . . , 𝑁,

be nonexpansive mappings such that ∩𝑁
𝑖=1

𝐹(𝑇
𝑖
) ̸= 0. Let 𝑇 :=

𝜃
1
𝑇
1
+ 𝜃
2
𝑇
2
+ ⋅ ⋅ ⋅ + 𝜃

𝑁
𝑇
𝑁
with 𝜃

1
+ 𝜃
2
+ ⋅ ⋅ ⋅ + 𝜃

𝑁
= 1. Then 𝑇

is nonexpansive and 𝐹(𝑇) = ∩
𝑁

𝑖=1
𝐹(𝑇
𝑖
).

Lemma 5 (see [26]). Let 𝐶 be a convex subset of a real Hilbert
space𝐻. Let 𝑥 ∈ 𝐻. Then 𝑥

0
= 𝑃
𝐶
𝑥 if and only if

⟨𝑧 − 𝑥
0
, 𝑥 − 𝑥

0
⟩ ≤ 0, ∀𝑧 ∈ 𝐶. (13)

Lemma 6 (see [27]). Let 𝐶 be a closed convex subset of a real
Hilbert space 𝐻 and 𝐴 : 𝐶 → 𝐶 be a continuous pseudo-
contractive mapping. Then, for 0 < 𝜇 < 2𝛾, the mapping
𝐴
𝜇
𝑥 := (𝑥 − 𝜇𝐴𝑥) is nonexpansive

(i) 𝐹(𝑇) is a closed convex subset of 𝐶;
(ii) (𝐼−𝑇) is demiclosed at zero; that is, if {𝑥

𝑛
} is a sequence

in𝐶 such that 𝑥
𝑛
⇀ 𝑥 and𝑇𝑥

𝑛
−𝑥
𝑛
→ 0, as 𝑛 → ∞,

then 𝑥 = 𝑇(𝑥).
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Lemma 7 (see [28]). Let𝐻 be a real Hilbert space.Then for all
𝑥
𝑖
∈ 𝐻 and 𝛼

𝑖
∈ [0, 1] for 𝑖 = 1, 2, 3 such that 𝛼

1
+ 𝛼
2
+ 𝛼
3
= 1

the following equality holds:

󵄩󵄩󵄩󵄩𝛼1𝑥1 + 𝛼
2
𝑥
2
+ 𝛼
3
𝑥
3

󵄩󵄩󵄩󵄩
2

=

3

∑

𝑖=1

𝛼
𝑖

󵄩󵄩󵄩󵄩𝑥𝑖
󵄩󵄩󵄩󵄩
2

− ∑

1≤𝑖,𝑗≤3

𝛼
𝑖
𝛼
𝑗

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
− 𝑥
𝑗

󵄩󵄩󵄩󵄩󵄩

2

.

(14)

Lemma 8 (see [29]). Let {𝑎
𝑛
} be sequences of real numbers

such that there exists a subsequence {𝑛
𝑖
} of {𝑛} such that 𝑎

𝑛𝑖
<

𝑎
𝑛𝑖+1

for all 𝑖 ∈ N. Then there exists an increasing sequence
{𝑚
𝑘
} ⊂ N such that𝑚

𝑘
→ ∞ and the following properties are

satisfied by all (sufficiently large) numbers 𝑘 ∈ N:

𝑎
𝑚𝑘

≤ 𝑎
𝑚𝑘+1

, 𝑎
𝑘
≤ 𝑎
𝑚𝑘+1

. (15)

In fact, 𝑚
𝑘
is the largest number 𝑛 in the set {1, 2, . . . , 𝑘}

such that the condition 𝑎
𝑛
≤ 𝑎
𝑛+1

holds.

Lemma9 (see [30]). Let {𝑎
𝑛
} be a sequence of nonnegative real

numbers satisfying the following relation:

𝑎
𝑛+1

≤ (1 − 𝛼
𝑛
) 𝑎
𝑛
+ 𝛼
𝑛
𝛿
𝑛
, 𝑛 ≥ 𝑛

0
, (16)

where {𝛼
𝑛
} ⊂ (0, 1) and {𝛿

𝑛
} ⊂ R satisfying the following condi-

tions: lim
𝑛→∞

𝛼
𝑛
= 0,∑

∞

𝑛=1
𝛼
𝑛
= ∞ and lim sup

𝑛→∞
𝛿
𝑛
≤ 0.

Then, lim
𝑛→∞

𝑎
𝑛
= 0.

3. Main Result

For the rest of this paper, let {𝑎
𝑛
}, {𝑏
𝑛
}, {𝑐
𝑛
}, ⊂ (𝑐, 1) ⊂ (0, 1),

for some 𝑐 ∈ (0, 1), and {𝛼
𝑛
} ⊂ (0, 𝑏) ⊂ (0, 1), for some 𝑏 ∈

(0, 1), satisfy (i) 𝑎
𝑛
+ 𝑏
𝑛
+ 𝑐
𝑛
= 1; (ii) lim

𝑛→∞
𝛼
𝑛
= 0; and (iii)

∑𝛼
𝑛
= ∞.

Theorem 10. Let 𝐶 be a nonempty, closed, and convex subset
of a real Hilbert space𝐻. Let 𝑇

𝑗
: 𝐶 → 𝐶, 𝑗 = 1, 2, . . . ,𝑀, be

Lipschitz pseudocontractive mappings with Lipschitz constants
𝐿
𝑖
, respectively. Let 𝐴

𝑗
: 𝐶 → 𝐻, for 𝑗 = 1, 2, . . . , 𝑁,

be 𝛾
𝑗
-inverse strongly accretive mappings. Let 𝑓 : 𝐶 →

𝐶 be a contraction with constant 𝛼. Assume that F =

[∩
𝑀

𝑗=1
𝐹(𝑇
𝑗
)]⋂[∩

𝑁

𝑗=1
VI(𝐶, 𝐴

𝑗
)] is nonempty. Let a sequence

{𝑥
𝑛
} be generated from an arbitrary 𝑥

0
∈ 𝐶 by

𝑦
𝑛
= (1 − 𝜆

𝑛
) 𝑥
𝑛
+ 𝜆
𝑛
𝑇
𝑛
𝑥
𝑛
;

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) (𝑎
𝑛
𝑥
𝑛
+ 𝑏
𝑛
𝑇
𝑛
𝑦
𝑛
+ 𝑐
𝑛
𝐺𝑥
𝑛
) ,

(17)

where 𝑇
𝑛

= 𝑇
𝑛(𝑚𝑜𝑑𝑀)

and 𝐺 := 𝑒
0
𝐼 + 𝑒
1
𝑃
𝐶
[𝐼 − 𝛾𝐴

1
] +

𝑒
2
𝑃
𝐶
[𝐼 − 𝛾𝐴

2
] + ⋅ ⋅ ⋅ + 𝑒

𝑁
𝑃
𝐶
[𝐼 − 𝛾𝐴

𝑟
], for 𝛾 ∈ (0, 2𝛾

0
), for 𝛾

0
:=

min
1≤𝑗≤𝑁

{𝛾
𝑗
} with 𝑒

0
+𝑒
1
+ ⋅ ⋅ ⋅ + 𝑒

𝑟
= 1 and 𝑏

𝑛
+ 𝑐
𝑛
≤ 𝜆
𝑛
≤ 𝜆 <

1/(√1 + 𝐿2 + 1), ∀𝑛 ≥ 0, for 𝐿 = max{𝐿
𝑗
: 1 ≤ 𝑗 ≤ 𝑀}. Then,

{𝑥
𝑛
} converges strongly to a point 𝑥∗ ∈ F which is the unique

solution of the variational inequality ⟨(𝐼 − 𝑓)(𝑥
∗

), 𝑥 − 𝑥
∗

⟩ ≥ 0

for all 𝑥 ∈ F.

Proof. FromLemmas 2, 4, and 3we get that𝐺 is nonexpansive
mapping with 𝐹(𝐺) = ∩

𝑁

𝑗=1
VI(𝐶, 𝐴

𝑗
). Let 𝑝 ∈ F. Then from

(17), (5), and Lemma 7 we have that
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩(1 − 𝜆

𝑛
) (𝑥
𝑛
− 𝑝) + 𝜆

𝑛
(𝑇
𝑛
𝑥
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩
2

= (1 − 𝜆
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

+ 𝜆
𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2

− 𝜆
𝑛
(1 − 𝜆

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

≤ (1 − 𝜆
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

+ 𝜆
𝑛
[
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

]

− 𝜆
𝑛
(1 − 𝜆

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

+ 𝜆
2

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

,

(18)

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝛼𝑛𝑓 (𝑥

𝑛
) + (1 − 𝛼

𝑛
) (𝑎
𝑛
𝑥
𝑛
+ 𝑏
𝑛
𝑇
𝑛
𝑦
𝑛
+ 𝑐
𝑛
𝐺𝑥
𝑛
) − 𝑝

󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑝) + (1 − 𝛼

𝑛
)

× (𝑎
𝑛
(𝑥
𝑛
− 𝑝) + 𝑏

𝑛
(𝑇
𝑛
𝑦
𝑛
− 𝑝) + 𝑐

𝑛
(𝐺𝑥
𝑛
− 𝑝))

󵄩󵄩󵄩󵄩
2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛
) − 𝑝

󵄩󵄩󵄩󵄩
2

+ (1 − 𝛼
𝑛
)

×
󵄩󵄩󵄩󵄩𝑎𝑛 (𝑥𝑛 − 𝑝) + 𝑏

𝑛
(𝑇
𝑛
𝑦
𝑛
− 𝑝) + 𝑐

𝑛
(𝐺𝑥
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩
2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛
) − 𝑝

󵄩󵄩󵄩󵄩
2

+ (1 − 𝛼
𝑛
)

× [𝑎
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2

+ 𝑏
𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2

+ 𝑐
𝑛

󵄩󵄩󵄩󵄩𝐺𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2

] − (1 − 𝛼
𝑛
) 𝑏
𝑛
𝑎
𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑦𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩
2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛
) − 𝑝

󵄩󵄩󵄩󵄩
2

+ (1 − 𝛼
𝑛
) [(𝑎
𝑛
+ 𝑐
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

+ 𝑏
𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2

]

− (1 − 𝛼
𝑛
) 𝑏
𝑛
𝑎
𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑦𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩
2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛
) − 𝑝

󵄩󵄩󵄩󵄩
2

+ (1 − 𝛼
𝑛
) [(𝑎
𝑛
+ 𝑐
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

+ 𝑏
𝑛
(
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇

𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩
2

)]

− (1 − 𝛼
𝑛
) 𝑏
𝑛
𝑎
𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑦𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩
2

.

(19)

Now, substituting (18) in (19) we get that
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩
2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛
) − 𝑝

󵄩󵄩󵄩󵄩
2

+ (1 − 𝛼
𝑛
) [(𝑎
𝑛
+ 𝑐
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

+ 𝑏
𝑛
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

+ 𝜆
2

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

)

+ 𝑏
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩
2

]

− (1 − 𝛼
𝑛
) 𝑏
𝑛
𝑎
𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑦𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩
2
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= 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛
) − 𝑝

󵄩󵄩󵄩󵄩
2

+ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

+ (1 − 𝛼
𝑛
) 𝜆
2

𝑛
𝑏
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

+ (1 − 𝛼
𝑛
) 𝑏
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩
2

− (1 − 𝛼
𝑛
) 𝑏
𝑛
𝑎
𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑦𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩
2

.

(20)

Moreover, from (17), Lemma 7, and Lipschitz property of
𝑇
𝑛
we get that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩(1 − 𝜆

𝑛
) (𝑥
𝑛
− 𝑇
𝑛
𝑦
𝑛
) + 𝜆
𝑛
(𝑇
𝑛
𝑥
𝑛
− 𝑇
𝑛
𝑦
𝑛
)
󵄩󵄩󵄩󵄩
2

= (1 − 𝜆
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩
2

+ 𝜆
𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝑇
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩
2

− 𝜆
𝑛
(1 − 𝜆

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

≤ (1 − 𝜆
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩
2

+ 𝜆
𝑛
𝐿
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩
2

− 𝜆
𝑛
(1 − 𝜆

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

= (1 − 𝜆
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩
2

+ 𝜆
3

𝑛
𝐿
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

− 𝜆
𝑛
(1 − 𝜆

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

= (1 − 𝜆
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩
2

− 𝜆
𝑛
(1 − 𝐿

2

𝜆
2

𝑛
− 𝜆
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

.

(21)

Substituting (21) into (20) we obtain that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩
2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛
) − 𝑝

󵄩󵄩󵄩󵄩
2

+ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

+ (1 − 𝛼
𝑛
) 𝑏
𝑛
𝜆
2

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

+ (1 − 𝛼
𝑛
) 𝑏
𝑛
[(1 − 𝜆

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩
2

−𝜆
𝑛
(1 − 𝐿

2

𝜆
2

𝑛
− 𝜆
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

]

− (1 − 𝛼
𝑛
) 𝑏
𝑛
𝑎
𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑦𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩
2

,

= 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛
) − 𝑝

󵄩󵄩󵄩󵄩
2

+ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

− (1 − 𝛼
𝑛
) 𝜆
𝑛
𝑏
𝑛
[1 − 𝐿

2

𝜆
2

𝑛
− 2𝜆
𝑛
]
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

+ (1 − 𝛼
𝑛
) 𝑏
𝑛
[(1 − 𝑎

𝑛
) − 𝜆
𝑛
]
󵄩󵄩󵄩󵄩𝑇𝑛𝑦𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩
2

= 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛
) − 𝑝

󵄩󵄩󵄩󵄩
2

+ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

− (1 − 𝛼
𝑛
) 𝜆
𝑛
𝑏
𝑛
[1 − 𝐿

2

𝜆
2

𝑛
− 2𝜆
𝑛
]
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

+ (1 − 𝛼
𝑛
) 𝑏
𝑛
[𝑏
𝑛
+ 𝑐
𝑛
− 𝜆
𝑛
]
󵄩󵄩󵄩󵄩𝑇𝑛𝑦𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩
2

.

(22)

But, from the hypothesis we have that

1 − 2𝜆
𝑛
− 𝐿
2

𝜆
2

𝑛
≥ 1 − 2𝜆 − 𝐿

2

𝜆
2

> 0,

𝑏
𝑛
+ 𝑐
𝑛
≤ 𝜆
𝑛
, ∀𝑛 ≥ 0,

(23)

and hence inequality (22) gives that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩
2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛
) − 𝑝

󵄩󵄩󵄩󵄩
2

+ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

. (24)

But we have that

󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛
) − 𝑝

󵄩󵄩󵄩󵄩
2

= [
󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛
) − 𝑓 (𝑝)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝

󵄩󵄩󵄩󵄩]
2

≤ [𝛼
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝

󵄩󵄩󵄩󵄩]
2

≤ 𝛼
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝

󵄩󵄩󵄩󵄩
2

+ 2𝛼
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝

󵄩󵄩󵄩󵄩

≤ 𝛼 (1 + 𝛼)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

+ (1 + 𝛼)
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝

󵄩󵄩󵄩󵄩
2

.

(25)

Substituting (25) into (24) we get that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩
2

≤ (1 − 𝛼
𝑛
(1 − 𝛼 (1 + 𝛼)))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2

+ 𝛼
𝑛
(1 + 𝛼)

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩
2

.

(26)

Therefore, by induction we get that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩
2

≤ max{󵄩󵄩󵄩󵄩𝑥0 − 𝑝
󵄩󵄩󵄩󵄩
2

,
1 + 𝛼

1 − 𝛼 (1 + 𝛼)

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩
2

} ,

∀𝑛 ≥ 0,

(27)

which implies that {𝑥
𝑛
} and hence {𝑦

𝑛
} are bounded.
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Let 𝑥∗ = 𝑃F𝑓(𝑥
∗

). Then, from (17), Lemmas 1 and 7, and
the methods used to get (22) we obtain that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑥
∗

)

+ (1 − 𝛼
𝑛
) [𝑎
𝑛
𝑥
𝑛
+ 𝑏
𝑛
𝑇
𝑛
𝑦
𝑛
+ 𝑐
𝑛
𝐺𝑥
𝑛
− 𝑥
∗

]
󵄩󵄩󵄩󵄩
2

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑎𝑛 (𝑥𝑛 − 𝑥

∗

) + 𝑏
𝑛
(𝑇
𝑛
𝑦
𝑛
− 𝑥
∗

)

+𝑐
𝑛
(𝐺𝑥
𝑛
− 𝑥
∗

)
󵄩󵄩󵄩󵄩
2

+ 2𝛼
𝑛
⟨𝑓 (𝑥
𝑛
) − 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

≤ (1 − 𝛼
𝑛
) 𝑏
𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩
2

+ (1 − 𝛼
𝑛
) 𝑎
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩
2

× (1 − 𝛼
𝑛
) 𝑐
𝑛

󵄩󵄩󵄩󵄩𝐺𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2

− (1 − 𝛼
𝑛
) 𝑎
𝑛
𝑏
𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑦𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩
2

− (1 − 𝛼
𝑛
) 𝑎
𝑛
𝑐
𝑛

󵄩󵄩󵄩󵄩𝐺𝑥𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩
2

+ 2𝛼
𝑛
⟨𝑓 (𝑥
𝑛
) − 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩ ,

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩
2

≤ (1 − 𝛼
𝑛
) 𝑏
𝑛
[
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇

𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩
2

]

+ (1 − 𝛼
𝑛
) (𝑎
𝑛
+ 𝑐
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

− (1 − 𝛼
𝑛
) 𝑎
𝑛
𝑏
𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑦𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩
2

− (1 − 𝛼
𝑛
) 𝑎
𝑛
𝑐
𝑛

󵄩󵄩󵄩󵄩𝐺𝑥𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩
2

+ 2𝛼
𝑛
⟨𝑓 (𝑥
𝑛
) − 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩ ,

≤ (1 − 𝛼
𝑛
) 𝑏
𝑛
[
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ 𝜆
2

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

]

+ (1 − 𝛼
𝑛
) 𝑏
𝑛
[(1 − 𝜆

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩
2

− 𝜆
𝑛
(1 − 𝐿

2

𝜆
2

𝑛
− 𝜆
𝑛
)

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

]

+ (1 − 𝛼
𝑛
) (𝑎
𝑛
+ 𝑐
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

− (1 − 𝛼
𝑛
) 𝑎
𝑛
𝑏
𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑦𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩
2

− (1 − 𝛼
𝑛
) 𝑎
𝑛
𝑐
𝑛

󵄩󵄩󵄩󵄩𝐺𝑥𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩
2

+ 2𝛼
𝑛
⟨𝑓 (𝑥
𝑛
) − 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

(28)

which implies that
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩
2

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

− (1 − 𝛼
𝑛
) 𝑏
𝑛
𝜆
𝑛
[1 − 𝐿

2

𝜆
2

𝑛
− 2𝜆
𝑛
]

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

+(1−𝛼
𝑛
) 𝑏
𝑛
(𝑏
𝑛
+ 𝑐
𝑛
− 𝜆
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩
2

− (1 − 𝛼
𝑛
) 𝑎
𝑛
𝑑
𝑛

󵄩󵄩󵄩󵄩𝐺𝑥𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩
2

+ 2𝛼
𝑛
⟨𝑓 (𝑥
𝑛
) − 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

(29)

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ 2𝛼
𝑛
⟨𝑓 (𝑥
𝑛
) − 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩ .

(30)

But

⟨𝑓 (𝑥
𝑛
) − 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

= ⟨𝑓 (𝑥
𝑛
) − 𝑥
∗

, 𝑥
𝑛
− 𝑥
∗

⟩ + ⟨𝑓 (𝑥
𝑛
) − 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
𝑛
⟩

≤ ⟨𝑓 (𝑥
𝑛
) − 𝑓 (𝑥

∗

) , 𝑥
𝑛
− 𝑥
∗

⟩ + ⟨𝑓 (𝑥
∗

) − 𝑥
∗

, 𝑥
𝑛
− 𝑥
∗

⟩

+
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛
) − 𝑥
∗󵄩󵄩󵄩󵄩

≤ 𝛼
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ ⟨𝑓 (𝑥
∗

) − 𝑥
∗

, 𝑥
𝑛
− 𝑥
∗

⟩

+
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛
) − 𝑥
∗󵄩󵄩󵄩󵄩 .

(31)

Thus, substituting (31) in (30) we obtain that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩
2

≤ (1 − 𝛼
𝑛
(1 − 2𝛼))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩
2

+ 2𝛼
𝑛
⟨𝑓 (𝑥
∗

) − 𝑥
∗

, 𝑥
𝑛
− 𝑥
∗

⟩

+ 2𝛼
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 ⋅
󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛
) − 𝑥
∗󵄩󵄩󵄩󵄩 .

(32)

Next, we consider two cases.

Case 1. Suppose that there exists 𝑛
0
∈ N such that {‖𝑥

𝑛
− 𝑥
∗

‖}

is decreasing for all 𝑛 ≥ 𝑛
0
. Then, we get that {‖𝑥

𝑛
− 𝑥
∗

‖} is
convergent. Thus, from (29) and (23) we have that

𝑥
𝑛
− 𝑇
𝑛
𝑥
𝑛
󳨀→ 0, 𝐺𝑥

𝑛
− 𝑥
𝑛
󳨀→ 0 as 𝑛 󳨀→ ∞. (33)

Furthermore, from (17) and (33) we obtain that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 𝜆
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0 as 𝑛 󳨀→ ∞, (34)

and hence Lipschitz continuity of 𝑇
𝑛
, (34), and (33) implies

that
󵄩󵄩󵄩󵄩𝑇𝑛𝑦𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑇𝑛𝑦𝑛 − 𝑇

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

≤ 𝐿
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0

as 𝑛 󳨀→ ∞.

(35)

Thus, from (33) and (35) we have that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑥
𝑛
) + (1 − 𝛼

𝑛
)

× (𝑎
𝑛
𝑥
𝑛
+ 𝑏
𝑛
𝑇
𝑛
𝑦
𝑛
+ 𝑐
𝑛
𝐺𝑥
𝑛
) − 𝑥
𝑛

󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑛
) − 𝑥
𝑛

󵄩󵄩󵄩󵄩 + (1 − 𝛼
𝑛
) 𝑏
𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑦𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛
) 𝑐
𝑛

󵄩󵄩󵄩󵄩𝐺𝑥𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0 as 𝑛 󳨀→ ∞.

(36)
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Therefore, ‖𝑥
𝑛+𝑗

− 𝑥
𝑛
‖ → 0, as 𝑛 → ∞, for all 𝑗 =

1, 2, . . . ,𝑀, and hence
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑇
𝑛+𝑗

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑥
𝑛+𝑗

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛+𝑗

− 𝑇
𝑛+𝑗

𝑥
𝑛+𝑗

󵄩󵄩󵄩󵄩󵄩

+ 𝐿
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛+𝑗

− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
󳨀→ 0,

(37)

as 𝑛 → ∞, for all 𝑗 ∈ {1, 2, . . . ,𝑀}.
Now, since {𝑥

𝑛
} is bounded subset of 𝐻, we can choose

a subsequence {𝑥
𝑛𝑚
} of {𝑥

𝑛
} such that 𝑥

𝑛𝑚
⇀ 𝑥 and

lim sup
𝑛→∞

⟨𝑓(𝑥
∗

) − 𝑥
∗

, 𝑥
𝑛
− 𝑥
∗

⟩ = lim
𝑚→∞

⟨𝑓(𝑥
∗

) −

𝑥
∗

, 𝑥
𝑛𝑚

− 𝑥
∗

⟩. Then, from (37) and Lemma 6 we have that
𝑥 ∈ 𝐹(𝑇

𝑗
), for each 𝑗 = 1, 2, . . . ,𝑀. Hence, 𝑥 ∈ ∩

𝑀

𝑗=1
𝐹(𝑇
𝑗
).

In addition, since 𝐺 is nonexpansive, from Lemma 6 we
get that 𝑥 ∈ 𝐹(𝐺) and hence by Lemmas 4 and 3 we obtain
that 𝑥 ∈ VI(𝐶, 𝐴

𝑗
), for each 𝑗 ∈ {1, 2, . . . , 𝑁}.

Therefore, by Lemma 5, we immediately obtain that

lim sup
𝑛→∞

⟨𝑓 (𝑥
∗

) − 𝑥
∗

, 𝑥
𝑛
− 𝑥
∗

⟩

= lim
𝑚→∞

⟨𝑓 (𝑥
∗

) − 𝑥
∗

, 𝑥
𝑛𝑚

− 𝑥
∗

⟩

= ⟨𝑓 (𝑥
∗

) − 𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≤ 0.

(38)

Then, it follows from (32), (38), and Lemma 9 that ‖𝑥
𝑛
−

𝑥
∗

‖ → 0 as 𝑛 → ∞. Consequently, 𝑥
𝑛
→ 𝑥
∗

= 𝑃F(𝑓(𝑥
∗

)).

Case 2. Suppose that there exists a subsequence {𝑛
𝑖
} of {𝑛}

such that
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑖
− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩
<
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑖+1

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩
, (39)

for all 𝑖 ∈ N. Then, by Lemma 8, there exists a nondecreasing
sequence {𝑚

𝑘
} ⊂ N such that𝑚

𝑘
→ ∞, and

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚𝑘

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚𝑘+1

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩
,

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚𝑘+1

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩
,

(40)

for all 𝑘 ∈ N. Now, from (29) and (23) we get that 𝑥
𝑚𝑘

−

𝑇
𝑚𝑘
𝑥
𝑚𝑘

→ 0 and 𝐺𝑥
𝑛𝑘

− 𝑥
𝑛𝑘

→ 0 as 𝑘 → ∞. Thus,
following themethod in Case 1, we obtain that 𝑥

𝑚𝑘+1
−𝑥
𝑚𝑘

→

0, 𝑥
𝑚𝑘

− 𝑇
𝑗
𝑥
𝑚𝑘

→ 0, and

lim sup
𝑘→∞

⟨𝑓 (𝑥
∗

) − 𝑥
∗

, 𝑥
𝑚𝑘

− 𝑥
∗

⟩ ≤ 0. (41)

Furthermore, from (32) and (40) we obtain that

𝛼
𝑚𝑘
(1 − 2𝛼)

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚𝑘

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚𝑘

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚𝑘+1

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑚𝑘

⟨𝑓 (𝑥
∗

) − 𝑥
∗

, 𝑥
𝑚𝑘

− 𝑥
∗

⟩

+ 2𝛼
𝑚𝑘

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚𝑘+1

− 𝑥
𝑚𝑘

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥
𝑚𝑘
) − 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

≤ 2𝛼
𝑚𝑘

⟨𝑓 (𝑥
∗

) − 𝑥
∗

, 𝑥
𝑚𝑘

− 𝑥
∗

⟩

+ 2𝛼
𝑚𝑘

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚𝑘+1

− 𝑥
𝑚𝑘

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥
𝑚𝑘
) − 𝑥
∗
󵄩󵄩󵄩󵄩󵄩
.

(42)

Now, using the fact that 𝛼
𝑚𝑘

> 0 and (41) we get that

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚𝑘

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

2

󳨀→ 0 as 𝑘 󳨀→ ∞, (43)

and this together with (32) implies that ‖𝑥
𝑚𝑘+1

− 𝑥
∗

‖ →

0 as 𝑘 → ∞. Since ‖𝑥
𝑘
− 𝑥
∗

‖ ≤ ‖𝑥
𝑚𝑘+1

− 𝑥
∗

‖ for all
𝑘 ∈ N, we obtain that 𝑥

𝑘
→ 𝑥

∗. Hence, from the above
two cases, we can conclude that {𝑥

𝑛
} converges strongly to a

point𝑥∗ = 𝑃F𝑓(𝑥
∗

), which satisfies the variational inequality
⟨(𝐼 − 𝑓)(𝑥

∗

), 𝑥 − 𝑥
∗

⟩ ≥ 0, for all 𝑥 ∈ F. The proof is
complete.

If, in Theorem 10, we assume that 𝑓(𝑥) = 𝑢 ∈ 𝐶, a
constant mapping, then we get the following corollary.

Corollary 11. Let 𝐶 be a nonempty, closed, and convex subset
of a real Hilbert space𝐻. Let 𝑇

𝑗
: 𝐶 → 𝐶, 𝑗 = 1, 2, . . . ,𝑀, be

Lipschitz pseudocontractive mappings with Lipschitz constants
𝐿
𝑗
, respectively. Let 𝐴

𝑗
: 𝐶 → 𝐻, for 𝑗 = 1, 2, . . . , 𝑁,

be 𝛾
𝑗
-inverse strongly accretive mappings. Assume that F =

[∩
𝑀

𝑗=1
𝐹(𝑇
𝑗
)]⋂[∩

𝑁

𝑗=1
VI(𝐶, 𝐴

𝑗
)] is nonempty. Let a sequence

{𝑥
𝑛
} be generated from an arbitrary 𝑥

0
, 𝑢 ∈ 𝐶 by

𝑦
𝑛
= (1 − 𝜆

𝑛
) 𝑥
𝑛
+ 𝜆
𝑛
𝑇
𝑛
𝑥
𝑛
;

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) (𝑎
𝑛
𝑥
𝑛
+ 𝑏
𝑛
𝑇
𝑛
𝑦
𝑛
+ 𝑐
𝑛
𝐺𝑥
𝑛
) ,

(44)

where𝑇
𝑛
= 𝑇
𝑛(𝑚𝑜𝑑𝑀)

,𝐺 := 𝑒
0
𝐼+𝑒
1
𝑃
𝐶
[𝐼−𝛾𝐴

1
]+𝑒
2
𝑃
𝐶
[𝐼−𝛾𝐴

2
]+

⋅ ⋅ ⋅ + 𝑒
𝑁
𝑃
𝐶
[𝐼 − 𝛾𝐴

𝑟
], for 𝛾 ∈ (0, 2𝛾

0
), for 𝛾

0
:= min

1≤𝑗≤𝑁
{𝛾
𝑗
}

with 𝑒
0
+𝑒
1
+ ⋅ ⋅ ⋅+𝑒

𝑟
= 1, and 𝑏

𝑛
+𝑐
𝑛
≤ 𝜆
𝑛
≤ 𝜆 < 1/(√1 + 𝐿2+

1), ∀𝑛 ≥ 0, for 𝐿 = max{𝐿
𝑗
: 1 ≤ 𝑗 ≤ 𝑀}. Then, {𝑥

𝑛
} converges

strongly to a unique point 𝑥∗ ∈ 𝐶 satisfying 𝑥∗ = 𝑃F(𝑢), which
is the unique solution of the variational inequality ⟨𝑥∗ − 𝑢, 𝑥 −

𝑥
∗

⟩ ≥ 0 for all 𝑥 ∈ F.

If, inTheorem 10, we assume that𝑁 = 1 and𝑀 = 1, then
we get the following corollary which is Theorem 3.1 of [21].

Corollary 12. Let 𝐶 be a nonempty, closed, and convex subset
of a real Hilbert space 𝐻. Let 𝑇 : 𝐶 → 𝐶 be Lipschitz
pseudocontractive mappings with Lipschitz constant 𝐿 and 𝐴 :

𝐶 → 𝐻 an 𝛾-inverse strongly accretive mapping. Let 𝑓 :

𝐶 → 𝐶 be a contraction with constant 𝛼. Assume that F =

𝐹(𝑇)⋂VI(𝐶, 𝐴) is nonempty. Let a sequence {𝑥
𝑛
} be generated

from an arbitrary 𝑥
0
∈ 𝐶 by

𝑦
𝑛
= (1 − 𝜆

𝑛
) 𝑥
𝑛
+ 𝜆
𝑛
𝑇𝑥
𝑛
;

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
)

+ (1 − 𝛼
𝑛
) (𝑎
𝑛
𝑥
𝑛
+ 𝑏
𝑛
𝑇𝑦
𝑛
+ 𝑐
𝑛
𝑃
𝐶
[𝐼 − 𝑟𝐴] 𝑥

𝑛
) ,

(45)

where 𝑟 ∈ (0, 2𝛾) and 𝑏
𝑛
+𝑐
𝑛
≤ 𝜆
𝑛
≤ 𝜆 < 1/(√1 + 𝐿2+1), ∀𝑛 ≥

0. Then, {𝑥
𝑛
} converges strongly to a point 𝑥∗ ∈ F, which is the

unique solution of the variational inequality ⟨(𝐼 − 𝑓)(𝑥
∗

), 𝑥 −

𝑥
∗

⟩ ≥ 0 for all 𝑥 ∈ F.

If, inTheorem 10, we assume that 𝑇󸀠
𝑖
s are strictly pseudo-

contractive mappins, then we get the following corollary.
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Corollary 13. Let 𝐶 be a nonempty, closed, and convex subset
of a realHilbert space𝐻. Let𝑇

𝑖
: 𝐶 → 𝐶, 𝑖 = 1, 2, . . .𝑀, be𝜆

𝑖
-

strictly pseudocontractive mappings and let 𝐴
𝑖
: 𝐶 → 𝐻, for

𝑖 = 1, 2, . . . , 𝑁, be an 𝛾
𝑖
-inverse strongly accretive mappings.

Let 𝑓 : 𝐶 → 𝐶 be a contraction with constant 𝛼. Assume
that F = [∩

𝑀

𝑖=1
𝐹(𝑇
𝑖
)]⋂[∩

𝑁

𝑖=1
VI(𝐶, 𝐴

𝑖
)] is nonempty. Let a

sequence {𝑥
𝑛
} be generated from an arbitrary 𝑥

0
∈ 𝐶 by

𝑦
𝑛
= (1 − 𝜆

𝑛
) 𝑥
𝑛
+ 𝜆
𝑛
𝑇
𝑛
𝑥
𝑛
;

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
)

+ (1 − 𝛼
𝑛
) (𝑎
𝑛
𝑥
𝑛
+ 𝑏
𝑛
𝑇
𝑛
𝑦
𝑛
+ 𝑐
𝑛
𝐺𝑥
𝑛
) ,

(46)

where𝑇
𝑛
= 𝑇
𝑛(𝑚𝑜𝑑𝑀)

,𝐺 := 𝑐
0
𝐼+𝑒
1
𝑃
𝐶
[𝐼−𝛾𝐴

1
]+𝑒
2
𝑃
𝐶
[𝐼−𝛾𝐴

2
]+

⋅ ⋅ ⋅ + 𝑒
𝑁
𝑃
𝐶
[𝐼 − 𝛾𝐴

𝑟
], for 𝛾 ∈ (0, 2𝛾

0
), for 𝛾

0
:= min

1≤𝑖≤𝑁
{𝛾
𝑖
}

with 𝑒
0
+ 𝑒
1
+ ⋅ ⋅ ⋅ + 𝑒

𝑟
= 1, and 𝑏

𝑛
+ 𝑐
𝑛

≤ 𝜆
𝑛

≤ 𝜆 <

1/(√1 + 𝐿2 + 1), ∀𝑛 ≥ 0, 𝐿 = max{(1 + 𝜆
𝑖
)/𝜆
𝑖
}. Then, {𝑥

𝑛
}

converges strongly to a point 𝑥∗ ∈ F, which is the unique
solution of the variational inequality ⟨(𝐼 − 𝑓)(𝑥

∗

), 𝑥 − 𝑥
∗

⟩ ≥ 0

for all 𝑥 ∈ F.

If, in Theorem 10, we assume that 𝑇󸀠
𝑖
s are nonexpansive

mapping, then we get the following corollary.

Corollary 14. Let 𝐶 be a nonempty, closed, and convex subset
of a real Hilbert space 𝐻. Let 𝑇

𝑖
: 𝐶 → 𝐶, 𝑖 = 1, 2, . . . ,𝑀,

be nonexpansive mappings and let 𝐴
𝑖
: 𝐶 → 𝐻, for 𝑖 =

1, 2, . . . , 𝑁, be an 𝛾
𝑖
-inverse strongly accretive mappings. Let

𝑓 : 𝐶 → 𝐶 be a contraction with constant 𝛼. Assume thatF =

[∩
𝑀

𝑖=1
𝐹(𝑇
𝑖
)]⋂[∩

𝑁

𝑖=1
VI(𝐶, 𝐴

𝑖
)] is nonempty. Let a sequence {𝑥

𝑛
}

be generated from an arbitrary 𝑥
0
∈ 𝐶 by

𝑦
𝑛
= (1 − 𝜆

𝑛
) 𝑥
𝑛
+ 𝜆
𝑛
𝑇
𝑛
𝑥
𝑛
;

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
)

+ (1 − 𝛼
𝑛
) (𝑎
𝑛
𝑥
𝑛
+ 𝑏
𝑛
𝑇
𝑛
𝑦
𝑛
+ 𝑐
𝑛
𝐺𝑥
𝑛
) ,

(47)

where𝑇
𝑛
= 𝑇
𝑛(𝑚𝑜𝑑𝑀)

,𝐺 = 𝑐
0
𝐼+𝑒
1
𝑃
𝐶
[𝐼−𝛾𝐴

1
]+𝑒
2
𝑃
𝐶
[𝐼−𝛾𝐴

2
]+

⋅ ⋅ ⋅ + 𝑒
𝑁
𝑃
𝐶
[𝐼 − 𝛾𝐴

𝑟
], for 𝛾 ∈ (0, 2𝛾

0
), for 𝛾

0
:= min

1≤𝑖≤𝑁
{𝛾
𝑖
}

with 𝑒
0
+ 𝑒
1
+ ⋅ ⋅ ⋅ + 𝑒

𝑟
= 1, 𝑎

𝑛
+ 𝑏
𝑛
+ 𝑐
𝑛
= 1, and 𝑏

𝑛
+ 𝑐
𝑛
≤

𝜆
𝑛
≤ 𝜆 < 1/(√2 + 1), ∀𝑛 ≥ 0. Then, {𝑥

𝑛
} converges strongly to

point 𝑥∗ ∈ F, which is the unique solution of the variational
inequality ⟨(𝐼 − 𝑓)(𝑥

∗

), 𝑥 − 𝑥
∗

⟩ ≥ 0 for all 𝑥 ∈ F.

We note that the method of proof ofTheorem 10 provides
the following theorem which is a convergence theorem
for a minimum norm point of common fixed points of a
finite family of Lipschitz pseudocontractive mappings and
common solutions of a finite family of variational inequality
problems for accretive mappings.

Theorem 15. Let 𝐶 be a nonempty, closed, and convex subset
of a real Hilbert space𝐻. Let 𝑇

𝑗
: 𝐶 → 𝐶, 𝑗 = 1, 2, . . . ,𝑀, be

Lipschitz pseudocontractive mappings with Lipschitz constants
𝐿
𝑗
, respectively. Let 𝐴

𝑗
: 𝐶 → 𝐻, for 𝑗 = 1, 2, . . . , 𝑁,

be 𝛾
𝑗
-inverse strongly accretive mappings. Assume that F =

[∩
𝑀

𝑗=1
𝐹(𝑇
𝑗
)]⋂[∩

𝑁

𝑗=1
VI(𝐶, 𝐴

𝑗
)] is nonempty. Let a sequence

{𝑥
𝑛
} be generated from an arbitrary 𝑥

0
∈ 𝐶 by

𝑦
𝑛
= (1 − 𝜆

𝑛
) 𝑥
𝑛
+ 𝜆
𝑛
𝑇
𝑛
𝑥
𝑛
;

𝑥
𝑛+1

= 𝑃
𝐶
[(1 − 𝛼

𝑛
) (𝑎
𝑛
𝑥
𝑛
+ 𝑏
𝑛
𝑇
𝑛
𝑦
𝑛
+ 𝑐
𝑛
𝐺𝑥
𝑛
)] ,

(48)

where𝑇
𝑛
= 𝑇
𝑛(𝑚𝑜𝑑𝑀)

,𝐺 := 𝑒
0
𝐼+𝑒
1
𝑃
𝐶
[𝐼−𝛾𝐴

1
]+𝑒
2
𝑃
𝐶
[𝐼−𝛾𝐴

2
]+

⋅ ⋅ ⋅ + 𝑒
𝑁
𝑃
𝐶
[𝐼 − 𝛾𝐴

𝑟
], for 𝛾 ∈ (0, 2𝛾

0
), for 𝛾

0
:= min

1≤𝑗≤𝑁
{𝛾
𝑗
}

with 𝑒
0
+ 𝑒
1
+ ⋅ ⋅ ⋅ + 𝑒

𝑟
= 1, and 𝑏

𝑛
+ 𝑐
𝑛

≤ 𝜆
𝑛

≤ 𝜆 <

1/(√1 + 𝐿2 + 1), ∀𝑛 ≥ 0, for 𝐿 = max{𝐿
𝑗
: 1 ≤ 𝑗 ≤ 𝑀}. Then,

{𝑥
𝑛
} converges strongly to a unique minimum norm point 𝑥∗

of F (i.e., 𝑥∗ = 𝑃F(0)), which is the unique solution of the
variational inequality ⟨𝑥∗, 𝑥 − 𝑥

∗

⟩ ≥ 0 for all 𝑥 ∈ F.

4. Numerical Example

Now, we give an example of two Lipschitz pseudocontractive
mappings and two 𝛾-inverse strongly accretive mappings
satisfyingTheorem 10 and some numerical experiment result
to explain the conclusion of the theorem as follows.

Example 1. Let 𝐻 = R with absolute value norm. Let 𝐶 =

[−2, 2] and let 𝑇
1
, 𝑇
2
: 𝐶 → 𝐶 be defined by

𝑇
1
𝑥 := {

𝑥 + 𝑥
2

, 𝑥 ∈ [−2, 0] ,

𝑥, 𝑥 ∈ (0, 2] ,

𝑇
2
𝑥 :=

{{

{{

{

𝑥, 𝑥 ∈ [−2,
1

2
] ,

𝑥 − (
16

9
) (𝑥 −

1

2
)

2

, 𝑥 ∈ (
1

2
, 2] .

(49)

Clearly, for 𝑥, 𝑦 ∈ 𝐶 we have that

⟨(𝐼 − 𝑇
1
) 𝑥 − (𝐼 − 𝑇

1
) 𝑦, 𝑥 − 𝑦⟩ ≥ 0,

⟨(𝐼 − 𝑇
2
) 𝑥 − (𝐼 − 𝑇

2
) 𝑦, 𝑥 − 𝑦⟩ ≥ 0

(50)

which show that bothmappings are pseudocontractive. Next,
we show that 𝑇

1
is Lipschitz with 𝐿 = 5. If 𝑥, 𝑦 ∈ [−2, 0], then

󵄨󵄨󵄨󵄨𝑇1𝑥 − 𝑇
1
𝑦
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨
𝑥 + 𝑥
2

− 𝑦 − 𝑦
2
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨(𝑥 + 𝑦) + 1

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 ≤ 3
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 .

(51)

If 𝑥, 𝑦 ∈ (0, 2], then
󵄨󵄨󵄨󵄨𝑇1𝑥 − 𝑇

1
𝑦
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 . (52)

If 𝑥 ∈ [−2, 0] and 𝑦 ∈ (0, 2], then
󵄨󵄨󵄨󵄨𝑇1𝑥 − 𝑇

1
𝑦
󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
𝑥 + 𝑥
2

− 𝑦
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑦 + 𝑥

2
󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑦 + 𝑥

2

− 𝑦
2

+ 𝑦
2
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑦 + 𝑥

2

− 𝑦
2
󵄨󵄨󵄨󵄨󵄨
+ 𝑦
2

≤
󵄨󵄨󵄨󵄨𝑥 + 𝑦 + 1

󵄨󵄨󵄨󵄨 ⋅
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑦 − 𝑥

󵄨󵄨󵄨󵄨
2

= (
󵄨󵄨󵄨󵄨𝑥 + 𝑦 + 1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑥 + 𝑦

󵄨󵄨󵄨󵄨) ⋅
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 ≤ 5
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 .

(53)
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Thus, we get that 𝑇
1
is Lipschitz pseudocontractive with

𝐿 = 5 and 𝐹(𝑇
1
) = [0, 2] which is not nonexpansive, since

if we take 𝑥 = −2 and 𝑦 = −1.9, we have that |𝑇
1
𝑥 − 𝑇
2
𝑦| =

0.29 > 0.1 = |𝑥−𝑦|. Similarly, we can show that𝑇
2
is Lipschitz

pseudocontractive with 𝐿 = 4 and 𝐹(𝑇
2
) = [−2, 1/2] which is

not nonexpansive.
Furthermore, for 𝐶 = [−2, 2], let 𝐴

1
, 𝐴
2
: 𝐶 → R be

defined by

𝐴
1
𝑥 :=

{{{

{{{

{

−(𝑥 −
1

2
)

2

, 𝑥 ∈ [−2,
1

2
) ,

0, 𝑥 ∈ [
1

2
, 2] ,

𝐴
2
𝑥 :=

{{{

{{{

{

0, 𝑥 ∈ [−2,
2

3
] ,

3(𝑥 −
2

3
)

2

, 𝑥 ∈ (
2

3
, 2] .

(54)

Then we first show that 𝐴
1
is 𝛾-inverse strongly accretive

mapping with 𝛾 = 1/5.
If 𝑥, 𝑦 ∈ [−2, 1/2), then

⟨𝐴
1
𝑥 − 𝐴

1
𝑦, 𝑥 − 𝑦⟩

= ⟨−(𝑥 −
1

2
)

2

+ (𝑦 −
1

2
)

2

, 𝑥 − 𝑦⟩

= [(𝑥 −
1

2
)

2

− (𝑦 −
1

2
)

2

] (𝑦 − 𝑥)

= [(𝑥 −
1

2
)

2

− (𝑦 −
1

2
)

2

] [(𝑦 −
1

2
) − (𝑥 −

1

2
)]

= [(𝑥 −
1

2
)

2

− (𝑦 −
1

2
)

2

]
[(𝑦 − 1/2)

2

− (𝑥 − 1/2)
2

]

(𝑦 − 1/2) + (𝑥 − 1/2)

= [(𝑥 −
1

2
)

2

− (𝑦 −
1

2
)

2

]
[(𝑥 − 1/2)

2

− (𝑦 − 1/2)
2

]

(1/2 − 𝑥) + (1/2 − 𝑦)

≥
1

5

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑥 −
1

2
)

2

− (𝑦 −
1

2
)

2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

=
1

5

󵄨󵄨󵄨󵄨𝐴1𝑥 − 𝐴
1
𝑦
󵄨󵄨󵄨󵄨
2

.

(55)

If 𝑥 ∈ [−2, 1/2) and 𝑦 ∈ [1/2, 2], we get that

⟨𝐴
1
𝑥 − 𝐴

1
𝑦, 𝑥 − 𝑦⟩

= ⟨−(𝑥 −
1

2
)

2

, 𝑥 − 𝑦⟩ = (𝑥 −
1

2
)

2

(𝑦 − 𝑥)

= (𝑥 −
1

2
)

2

[(𝑦 −
1

2
) − (𝑥 −

1

2
)]

≥ (𝑥 −
1

2
)

2

(
1

2
− 𝑥)

= (𝑥 −
1

2
)

2

(1/2 − 𝑥)
2

(1/2 − 𝑥)
≥
2

5

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑥 −
1

2
)

2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≥
1

5

󵄨󵄨󵄨󵄨𝐴1𝑥 − 𝐴
1
𝑦
󵄨󵄨󵄨󵄨
2

.

(56)

Table 1

𝑢 = 0.6 𝑥
0
= 1 𝑢 = 0.8 𝑥

0
= −1

𝑛 𝑥
𝑛

𝑛 𝑥
𝑛

0 1.0000 0 −1.0000
500 0.6112 5000 0.0627
10,000 0.5137 10,000 0.4282
12,000 0.5121 15,000 0.4540
14,000 0.5110 20,000 0.4686
18,000 0.5093 25,000 0.4782
20,000 0.5087 35,000 0.4905

If 𝑥, 𝑦 ∈ [1/2, 2], then we get that |𝐴
1
𝑥 − 𝐴

1
𝑦| = 0 and

hence

⟨𝐴
1
𝑥 − 𝐴

1
𝑦, 𝑥 − 𝑦⟩ ≥

1

5

󵄨󵄨󵄨󵄨𝐴1𝑥 − 𝐴
1
𝑦
󵄨󵄨󵄨󵄨
2

. (57)

Therefore, 𝐴
1
is 𝛾-inverse strongly accretive mapping

with 𝛾 = 1/5 andVI(𝐶, 𝐴
1
) = [1/2, 2]. Similarly, we can show

that 𝐴
2
is 𝛾-inverse strongly accretive mapping with 𝛾 = 1/2

and VI(𝐶, 𝐴
2
) = [−2, 2/3].

Note that we have𝐹(𝑇
1
)∩𝐹(𝑇

2
)∩VI(𝐶, 𝐴

1
)∩VI(𝐶, 𝐴

2
) =

{1/2}.
Thus, taking 𝛼

𝑛
= 1/(10𝑛 + 100), 𝜆

𝑛
= 2/(𝑛 + 100) +

0.065, 𝑏
𝑛

= 𝑐
𝑛

= 1/(𝑛 + 100) + 0.01, 𝑎
𝑛

= 1 − 2/(𝑛 +

100) − 0.02, and 𝑓(𝑥) = 𝑢 ∈ 𝐶, we observe that conditions
of Theorem 10 are satisfied and Scheme (17) provides the
following Table 1 and Figures 1(a) and 1(b) for 𝑢 = 0.6 and
𝑢 = 0.8, respectively.

We observe that the data provides strong convergence
of the sequence to the common point of fixed points of
both pseudocontractive mappings and solutions of both vari-
ational inequality problems for 𝛾-inverse strongly accretive
mappings.

Remark 2. Theorem 10 provides an iteration scheme which
converges strongly to a common point of fixed points of a
finite family of Lipschitzian pseudocontractivemappings and
solutions of a finite family of variational inequality problems
in Hilbert spaces.

Remark 3. Theorem 10 improves Theorem 3.1 of Takahashi
and Toyoda [19], Iiduka and Takahashi [20], and Zegeye and
Shahzad [21] and Theorem 3.2 of Yao et al. [22] in the sense
that our convergence is to a common point of fixed points of a
finite family of Lipschitzian pseudocontractivemappings and
solutions of a finite family of variational inequality problems.
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