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By the weighted ergodic function based on the measure theory, we study pseudo asymptotic behavior of mild solution for
nonautonomous integrodifferential equations with nondense domain. The existence and uniqueness of 𝜇-pseudo antiperiodic (𝜇-
pseudo periodic, 𝜇-pseudo almost periodic, and 𝜇-pseudo automorphic) solution are investigated. Some interesting examples are
presented to illustrate the main findings.

1. Introduction

The study of pseudo asymptotic behavior of solution is one of
the most interesting and important topics in the qualitative
theory of differential equations. Much work has been done
to investigate the existence of pseudo antiperiodic, pseudo
periodic, pseudo almost periodic, and pseudo almost auto-
morphic solution for differential equations [1–5]. Recently,
Blot et al. [6, 7] used the results of the measure theory to
establish 𝜇-ergodic and introduce the new concepts of 𝜇-
pseudo almost periodic and 𝜇-pseudo almost automorphic
function, which are more general than pseudo almost peri-
odic and pseudo almost automorphic function, respectively.
They developed some results like completeness and composi-
tion theorems to investigate differential equations in Banach
space.

Integrodifferential equations play a crucial role in quali-
tative theory of differential equations due to their application
to physics, engineering, biology, and other subjects.This type
of equations has received much attention in recent years and
the general asymptotic behavior of solution is at present an
active source of research.

In this paper, we study pseudo asymptotic behavior of
solution to the following nonautonomous integrodifferential
equations with nondense domain:

𝑢
󸀠

(𝑡) = 𝐴 (𝑡) 𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡) , (𝐾𝑢) (𝑡)) , 𝑡 ∈ R,

(𝐾𝑢) (𝑡) = ∫

𝑡

−∞

𝑘 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

(1)

where the linear operators 𝐴(𝑡) : 𝐷(𝐴(𝑡)) ⊂ 𝑋 → 𝑋 have a
domain𝐷(𝐴(𝑡)) not necessarily dense in Banach space𝑋 and
satisfy “Acquistapace-Terreni” conditions and 𝑓, 𝑔, and 𝑘 are
continuous functions.

Some recent contributions on almost periodic, almost
automorphic, pseudo almost periodic, and pseudo almost
automorphic solution to integrodifferential equations of the
form (1) in the case 𝐴(𝑡) = 𝐴 are constant [4, 8–13].
However, for the nonautonomous case, that is, (1), the study
of pseudo asymptotic behavior of solution is rare [14]. In
this paper, we will make use of the so-called “Acquistapace-
Terreni” conditions associated with exponential dichotomy,
fixed point theorem to derive some sufficient conditions to
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the existence and uniqueness of 𝜇-pseudo antiperiodic (𝜇-
pseudo periodic, 𝜇-pseudo almost periodic, and 𝜇-pseudo
almost automorphic) mild solution to (1).

The paper is organized as follows. In Section 2, we
recall some fundamental results about the notion of P-class
of functions including composition theorem. Section 3 is
devoted to pseudo asymptotic behavior of mild solution to
nonautonomous integrodifferential equations with nondense
domain. In Section 4, we provide some examples to illustrate
our main results.

2. Preliminaries and Basic Results

Let (𝑋, ‖ ⋅ ‖) and (𝑌, ‖ ⋅ ‖) be two Banach spaces and N, Z,
R, and C stand for the set of natural numbers, integers, real
numbers, and complex numbers, respectively. For 𝐴 being a
linear operator on 𝑋, 𝐷(𝐴), 𝜌(𝐴), 𝑅(𝜆, 𝐴), and 𝜎(𝐴) stand
for the domain, the resolvent set, the resolvent, and spectrum
of 𝐴. In order to facilitate the discussion below, we further
introduce the following notations:

(i) 𝐵𝐶(R, 𝑋) (resp., 𝐵𝐶(R × 𝑌,𝑋)): the Banach space of
bounded continuous functions from R to 𝑋 (resp.,
from R × 𝑌 to𝑋) with the supremum norm;

(ii) 𝐶(R, 𝑋) (resp. 𝐶(R × 𝑌,𝑋)): the set of continuous
functions from R to𝑋 (resp., from R × 𝑌 to𝑋);

(iii) 𝐿(𝑋, 𝑌): the Banach space of bounded linear opera-
tors from𝑋 to𝑌 endowedwith the operator topology;
in particular, we write 𝐿(𝑋) when𝑋 = 𝑌;

(iv) 𝐿𝑝(R, 𝑋): the space of all classes of equivalence (with
respect to the equality almost everywhere on R) of
measurable functions 𝑓 : R → 𝑋 such that ‖𝑓‖ ∈

𝐿
𝑝
(R,R).

2.1. Evolution Family and Exponential Dichotomy

Definition 1. A family of bounded linear operators (𝑈(𝑡, 𝑠))
𝑡≥𝑠

on a Banach space 𝑋 is called a strong continuous evolution
family if

(i) 𝑈(𝑡, 𝑟)𝑈(𝑟, 𝑠) = 𝑈(𝑡, 𝑠) and𝑈(𝑠, 𝑠) = 𝐼 for all 𝑡 ≥ 𝑟 ≥ 𝑠

and 𝑡, 𝑟, 𝑠 ∈ R;

(ii) the map (𝑡, 𝑠) → 𝑈(𝑡, 𝑠)𝑥 is continuous for all 𝑥 ∈

𝑋, 𝑡 ≥ 𝑠 and 𝑡, 𝑠 ∈ R.

Definition 2. An evolution family (𝑈(𝑡, 𝑠))
𝑡≥𝑠

on a Banach
space 𝑋 is called hyperbolic (or has an exponential dichot-
omy) if there exist projections 𝑃(𝑡), 𝑡 ∈ R, uniformly
bounded and strongly continuous in 𝑡 and constants 𝑐 > 0,
𝛿 > 0 such that

(i) 𝑈(𝑡, 𝑠)𝑃(𝑠) = 𝑃(𝑡)𝑈(𝑡, 𝑠) for 𝑡 ≥ 𝑠 and 𝑡, 𝑠 ∈ R,

(ii) the restriction𝑈
𝑄
(𝑡, 𝑠) : 𝑄(𝑠)𝑋 → 𝑄(𝑡)𝑋 of𝑈(𝑡, 𝑠) is

invertible for 𝑡 ≥ 𝑠 (and set 𝑈
𝑄
(𝑠, 𝑡) := 𝑈(𝑡, 𝑠)

−1),

(iii)

‖𝑈 (𝑡, 𝑠) 𝑃 (𝑠)‖ ≤ 𝑀𝑒
−𝛿(𝑡−𝑠)

,

󵄩󵄩󵄩󵄩𝑈𝑄 (𝑠, 𝑡) 𝑄 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝑀𝑒

−𝛿(𝑡−𝑠)
,

(2)

for 𝑡 ≥ 𝑠 and 𝑡, 𝑠 ∈ R. Here and next we set 𝑄 := 𝐼 − 𝑃.

Remark 3. Exponential dichotomy is a classical concept in the
study of long-time behaviour of evolution equations. If𝑃(𝑡) =
𝐼 for 𝑡 ∈ R, then (𝑈(𝑡, 𝑠))

𝑡≥𝑠
is exponentially stable. One can

see [15–17] for more details.
If (𝑈(𝑡, 𝑠))

𝑡≥𝑠
is hyperbolic, then

Γ (𝑡, 𝑠) := {
𝑈 (𝑡, 𝑠) 𝑃 (𝑠) , 𝑡 ≥ 𝑠, 𝑡, 𝑠 ∈ R,

−𝑈
𝑄
(𝑡, 𝑠) 𝑄 (𝑠) , 𝑡 < 𝑠, 𝑡, 𝑠 ∈ R,

(3)

is called Green’s function corresponding to (𝑈(𝑡, 𝑠))
𝑡≥𝑠
, 𝑃(⋅)

and

‖Γ (𝑡, 𝑠)‖ ≤ {
𝑀𝑒
−𝛿(𝑡−𝑠)

, 𝑡 ≥ 𝑠, 𝑡, 𝑠 ∈ R,

𝑀𝑒
−𝛿(𝑠−𝑡)

, 𝑡 < 𝑠, 𝑡, 𝑠 ∈ R.
(4)

2.2. 𝜇-Ergodic and Functions by Measure Theory. B denotes
the Lebesgue 𝜎-field ofR andM stands for the set of all posi-
tive measures 𝜇 on B satisfying 𝜇(R) = ∞ and 𝜇([𝑎, 𝑏]) <
∞ for all 𝑎, 𝑏 ∈ R (𝑎 ≤ 𝑏). We formulate the follow-
ing hypothesis.
(𝐻
0
) For all 𝜏 ∈ R, there exist𝛽 > 0 and a bounded interval
𝐼 such that

𝜇 ({𝑎 + 𝜏, 𝑎 ∈ 𝐴}) ≤ 𝛽𝜇 (𝐴) if 𝐴 ∈ B satisfies 𝐴 ∩ 𝐼 = 0.

(5)

Definition 4 (see [6]). Let 𝜇 ∈ M. A function 𝑓 ∈ 𝐵𝐶(R, 𝑋)

is said to be 𝜇-ergodic if

lim
𝑇→+∞

1

𝜇 ([−𝑇, 𝑇])
∫
[−𝑇,𝑇]

󵄩󵄩󵄩󵄩𝑓 (𝑡)
󵄩󵄩󵄩󵄩 𝑑𝜇 (𝑡) = 0. (6)

Denote by E(R, 𝑋, 𝜇) the set of such functions.

Lemma 5 (see [6]). Let 𝜇 ∈ M and satisfy (𝐻
0
); then E(R,

𝑋, 𝜇) is a translation invariant.

Definition 6. A function 𝑓 ∈ 𝐶(R, 𝑋) is said to be antiperi-
odic if there exists a 𝜔 ∈ R \ {0} with the property that
𝑓(𝑡 + 𝜔) = −𝑓(𝑡) for all 𝑡 ∈ R. If there exists a less positive
𝜔 with this property, it is called the antiperiodic of 𝑓. The
collection of those functions is denoted by 𝑃

𝜔𝑎𝑝
(R, 𝑋).

Definition 7. A function 𝑓 ∈ 𝐶(R, 𝑋) is said to be periodic if
there exists a 𝜔 ∈ R \ {0} with the property that 𝑓(𝑡 + 𝜔) =

𝑓(𝑡) for all 𝑡 ∈ R. If there exists a less positive 𝜔 with this
property, it is called the periodic of 𝑓. The collection of those
𝜔-periodic functions is denoted by 𝑃

𝜔
(R, 𝑋).

Definition 8 (see [18]). A function 𝑓 ∈ 𝐶(R, 𝑋) is said to be
almost periodic if for each 𝜀 > 0, there exists an 𝑙(𝜀) > 0, such
that every interval 𝐼 of length 𝑙(𝜀) contains a number 𝜏 with
the property that ‖𝑓(𝑡 + 𝜏) − 𝑓(𝑡)‖ < 𝜀 for all 𝑡 ∈ R. Denote
by 𝐴𝑃(R, 𝑋) the set of such functions.
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Definition 9 (see [19]). A function 𝑓 ∈ 𝐶(R, 𝑋) is said to
be almost automorphic if for every sequence of real numbers
(𝑠
󸀠

𝑛
)
𝑛∈N, there exists a subsequence (𝑠𝑛)𝑛∈N such that

𝑔 (𝑡) := lim
𝑛→∞

𝑓 (𝑡 + 𝑠
𝑛
) (7)

is well defined for each 𝑡 ∈ R, and

lim
𝑛→∞

𝑔 (𝑡 − 𝑠
𝑛
) = 𝑓 (𝑡) (8)

for each 𝑡 ∈ R. Denote by𝐴𝐴(R, 𝑋) the set of such functions.

Next, we recall the 𝜇-class of functions by the measure
theory.

Definition 10. Let 𝜇 ∈ M. A function 𝑓 ∈ 𝐶(R, 𝑋) is said
to be 𝜇-pseudo antiperiodic if it can be decomposed as 𝑓 =

𝑔 + 𝜑, where 𝑔 ∈ 𝑃
𝜔𝑎𝑝

(R, 𝑋) and 𝜑 ∈ E(R, 𝑋, 𝜇). Denote by
𝑃𝑃
𝜔𝑎𝑝

(R, 𝑋, 𝜇) the collection of such functions.

Definition 11. Let 𝜇 ∈ M. A function 𝑓 ∈ 𝐶(R, 𝑋) is said
to be a 𝜇-pseudo periodic if it can be decomposed as 𝑓 =

𝑔 + 𝜑, where 𝑔 ∈ 𝑃
𝜔
(R, 𝑋) and 𝜑 ∈ E(R, 𝑋, 𝜇). Denote by

𝑃𝑃
𝜔
(R, 𝑋, 𝜇) the collection of such functions.

Definition 12 (see [6]). Let 𝜇 ∈ M. A function 𝑓 ∈ 𝐶(R, 𝑋) is
said to be 𝜇-pseudo almost periodic if it can be decomposed
as 𝑓 = 𝑔 + 𝜑, where 𝑔 ∈ 𝐴𝑃(R, 𝑋) and 𝜑 ∈ E(R, 𝑋, 𝜇).
Denote by 𝑃𝐴𝑃(R, 𝑋, 𝜇) the collection of such functions.

Definition 13 (see [7]). Let 𝜇 ∈ M. A function 𝑓 ∈ 𝐶(R, 𝑋) is
said to be 𝜇-pseudo almost automorphic if it can be decom-
posed as 𝑓 = 𝑔+𝜑, where 𝑔 ∈ 𝐴𝐴(R, 𝑋) and 𝜑 ∈ E(R, 𝑋, 𝜇).
Denote by 𝑃𝐴𝐴(R, 𝑋, 𝜇) the collection of such functions.

Remark 14. (i) If the measure 𝜇 is the Lebesgue mea-
sure, then 𝑃𝑃

𝜔𝑎𝑝
(R, 𝑋, 𝜇), 𝑃𝑃

𝜔
(R, 𝑋, 𝜇), 𝑃𝐴𝑃(R, 𝑋, 𝜇), and

𝑃𝐴𝐴(R, 𝑋, 𝜇) are the following functions: pseudo antiperi-
odic (𝑃𝑃

𝜔𝑎𝑝
(R, 𝑋) [5]), pseudo periodic (𝑃𝑃

𝜔
(R, 𝑋) [4]),

pseudo almost periodic (𝑃𝐴𝑃(R, 𝑋) [20]), and pseudo almost
automorphic (𝑃𝐴𝐴(R, 𝑋) [21]), respectively. One can see
[6, 7, 22] for more details.

(ii) Let 𝜌(𝑡) > 0 a.e. on R for the Lebesgue measure. 𝜇
denotes the positive measure defined by

𝜇 (𝐴) = ∫
𝐴

𝜌 (𝑡) 𝑑𝑡 for 𝐴 ∈ B, (9)

where 𝑑𝑡 denotes the Lebesgue measure onR; then 𝑃𝑃
𝜔𝑎𝑝

(R,

𝑋, 𝜇), 𝑃𝑃
𝜔
(R, 𝑋, 𝜇), 𝑃𝐴𝑃(R, 𝑋, 𝜇), and 𝑃𝐴𝐴(R, 𝑋, 𝜇) are the

weighted class of functions: weighted pseudo antiperiodic
(𝑊𝑃𝑃

𝜔𝑎𝑝
(R, 𝑋) [1]), weighted pseudo periodic (𝑊𝑃𝑃

𝜔
(R, 𝑋)

[1]), weighted pseudo almost periodic (𝑊𝑃𝐴𝑃(R, 𝑋) [3]), and
weighted pseudo almost automorphic (𝑊𝑃𝐴𝐴(R, 𝑋) [2]),
respectively.

Let

A (R, 𝑋) = {𝑃
𝜔𝑎𝑝

(R, 𝑋) , 𝑃
𝜔
(R, 𝑋) , 𝐴𝑃 (R, 𝑋) , 𝐴𝐴 (R, 𝑋)}

P (R, 𝑋, 𝜇) = {𝑃𝑃
𝜔𝑎𝑝

(R, 𝑋, 𝜇) , 𝑃𝑃
𝜔
(R, 𝑋, 𝜇) ,

𝑃𝐴𝑃 (R, 𝑋, 𝜇) , 𝑃𝐴𝐴 (R, 𝑋, 𝜇) } .

(10)

It is not difficult to see that 𝑓 ∈ P(R, 𝑋, 𝜇) if and only if it
can be decomposed as 𝑓 = 𝑔 + 𝜑, where 𝑔 ∈ A(R, 𝑋) and
𝜑 ∈ E(R, 𝑋, 𝜇).

Definition 15. Let 𝜇
1
, 𝜇
2
∈ M; 𝜇

1
is said to be equivalent to

𝜇
2
(𝜇
1
∼ 𝜇
2
) if there exist constants 𝛼, 𝛽 > 0 and a bounded

interval 𝐼 (eventually 𝐼 = 0) such that

𝛼𝜇
1
(𝐴) ≤ 𝜇

2
(𝐴) ≤ 𝛽𝜇

1
(𝐴)

for 𝐴 ∈ B satisfies 𝐴 ∩ 𝐼 = 0.

(11)

Similarly as the proof of [6, 7], we have the following
results for the class of functionsP(R, 𝑋, 𝜇).

Lemma 16. Let 𝜇 ∈ M; then the following properties hold:

(i) 𝑓 ± 𝑔 ∈ P(R, 𝑋, 𝜇) if 𝑓, 𝑔 ∈ P(R, 𝑋, 𝜇);

(ii) 𝜆𝑓 ∈ P(R, 𝑋, 𝜇) if 𝜆 ∈ R, 𝑓 ∈ P(R, 𝑋, 𝜇);

(iii) P(R, 𝑋, 𝜇) is a Banach space with the supremumnorm
‖ ⋅ ‖;

(iv) 𝑃𝑃
𝜔𝑎𝑝

(R, 𝑋, 𝜇) ⊂ 𝑃𝑃
𝜔
(R, 𝑋, 𝜇) ⊂ 𝑃𝐴𝑃(R, 𝑋, 𝜇) ⊂

𝑃𝐴𝐴(R, 𝑋, 𝜇) ⊂ 𝐵𝐶(R, 𝑋).

Lemma 17. Let 𝜇
1
, 𝜇
1
∈ M. If 𝜇

1
∼ 𝜇
2
, then E(R, 𝑋, 𝜇

1
) =

E(R, 𝑋, 𝜇
2
), P(R, 𝑋, 𝜇

1
) = P(R, 𝑋, 𝜇

2
).

Theorem 18. Let 𝜇 ∈ M, 𝑓 ∈ P(R ×𝑋×𝑋,𝑋, 𝜇) and satisfy
the following:

(i) 𝑓 is uniformly continuous on each compact set𝐾
1
×𝐾
2

in𝑋×𝑋 with respect to the second and third variables
𝑢, V;

(ii) for all bounded subsets 𝐸
1
, 𝐸
2
of 𝑋, 𝑓 is bounded on

R × 𝐸
1
× 𝐸
2
.

Then 𝑓(⋅, ℎ
1
(⋅), ℎ
2
(⋅)) ∈ P(R, 𝑋, 𝜇) if ℎ

1
(⋅), ℎ
2
(⋅) ∈ P(R, 𝑋,

𝜇).

Corollary 19. Let 𝜇 ∈ M and 𝑓 ∈ P(R × 𝑋 × 𝑋,𝑋, 𝜇), and
there exists a constant 𝐿

𝑓
> 0 such that

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑢1, 𝑢2) − 𝑓 (𝑡, V1, V2)
󵄩󵄩󵄩󵄩 ≤ 𝐿
𝑓
(
󵄩󵄩󵄩󵄩𝑢1 − V

1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢2 − V

2

󵄩󵄩󵄩󵄩) ,

𝑡 ∈ R, 𝑢
1
, 𝑢
2
, V
1
, V
2
∈ 𝑋;

(12)

then𝑓(⋅, ℎ
1
(⋅), ℎ
2
(⋅)) ∈ P(R, 𝑋, 𝜇) if ℎ

1
(⋅), ℎ
2
(⋅) ∈ P(R, 𝑋, 𝜇).
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3. Nonautonomous Integrodifferential
Equations

This section is devoted to pseudo asymptotic behavior ofmild
solution to (1). In this section, wemake the following assump-
tions.

(𝐻
1
) There exist constants 𝜆

0
≥ 0, 𝜃 ∈ (𝜋/2, 𝜋), 𝐿, 𝑀̃ ≥ 0,

and 𝛽, 𝛾 ∈ (0, 1) with 𝛽 + 𝛾 > 1 such that

Σ
𝜃
∪ {0} ⊂ 𝜌 (𝐴 (𝑡) − 𝜆

0
) ,

󵄩󵄩󵄩󵄩𝑅 (𝜆, 𝐴 (𝑡) − 𝜆
0
)
󵄩󵄩󵄩󵄩 ≤

𝑀̃

1 + |𝜆|
,

󵄩󵄩󵄩󵄩(𝐴 (𝑡) − 𝜆
0
) 𝑅 (𝜆, 𝐴 (𝑡) − 𝜆

0
)

× [𝑅 (𝜆
0
, 𝐴 (𝑡)) − 𝑅 (𝜆

0
, 𝐴 (𝑠))]

󵄩󵄩󵄩󵄩

≤ 𝐿|𝑡 − 𝑠|
𝛽

|𝜆|
−𝛾

(13)

for 𝑡, 𝑠 ∈ R, Σ
𝜃
= {𝜆 ∈ C \ {0} : | arg 𝜆| ≤ 𝜃}.

(𝐻
2
) The evolution family (𝑈(𝑡, 𝑠))

𝑡≥𝑠
generated by𝐴(𝑡) has

an exponential dichotomy with constants𝑀 > 0 and
𝛿 > 0; dichotomy projections 𝑃(𝑡), 𝑡 ∈ R; and Green’s
function Γ(𝑡, 𝑠).

(𝐻
3
) Consider 𝑘 ∈ 𝐶(R+,R) and |𝑘(𝑡)| ≤ 𝐶

𝑘
𝑒
−𝑏𝑡 for some

positive constants 𝐶
𝑘
, 𝑏.

(𝐻
4
) There exists a constant 𝐿

𝑔
> 0 such that

󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝑢) − 𝑔 (𝑡, V)
󵄩󵄩󵄩󵄩 ≤ 𝐿
𝑔
‖𝑢 − V‖ , 𝑡 ∈ R, 𝑢, V ∈ 𝑋. (14)

(𝐻
5
) There exists a constant 𝐿

𝑓
> 0 such that

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑢1, 𝑢2) − 𝑓 (𝑡, V1, V2)
󵄩󵄩󵄩󵄩 ≤ 𝐿
𝑓
(
󵄩󵄩󵄩󵄩𝑢1 − V

1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢2 − V

2

󵄩󵄩󵄩󵄩) ,

𝑡 ∈ R, 𝑢
1
, 𝑢
2
, V
1
, V
2
∈ 𝑋.

(15)

(𝐻
6
) 𝜇 ∈ M and satisfies (𝐻

0
).

Remark 20. (𝐻
1
) is usually called “Acquistapace-Terreni”

conditions, which was first introduced in [23] and widely
used to studynonautonomous differential equations in [16, 17,
23–25]. If (𝐻

1
) holds, there exists a unique evolution family

(𝑈(𝑡, 𝑠))
𝑡≥𝑠

on𝑋, which governs the homogeneous version of
(1) [24].

Before starting our main results, we recall the definition
of the mild solution to (1).

Definition 21 (see [26]). Amild solution of (1) is a continuous
function 𝑢 : R → 𝑋 satisfying

𝑢 (𝑡) = 𝑈 (𝑡, 𝑠) 𝑢 (𝑠) + ∫

𝑡

𝑠

𝑈 (𝑡, 𝜎) 𝑓 (𝜎, 𝑢 (𝜎) , (𝐾𝑢) (𝜎)) 𝑑𝜎

(16)

for all 𝑡 ≥ 𝑠, 𝑡, 𝑠 ∈ R.

Lemma 22. Assume that ℎ ∈ E(R, 𝑋, 𝜇) and (𝐻
1
), (𝐻
2
), and

(𝐻
6
) hold; then

(Πℎ) (𝑡) := ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) ℎ (𝜎) 𝑑𝜎

− ∫

∞

𝑡

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) ℎ (𝜎) 𝑑𝜎 ∈ E (R, 𝑋, 𝜇) .

(17)

Proof. First, we show that Πℎ is well defined. In fact, if ℎ ∈

E(R, 𝑋, 𝜇), so ‖ℎ‖ < ∞. By (2),

‖𝑈 (𝑡, 𝜎) 𝑃 (𝜎) ℎ (𝜎)‖ ≤ 𝑀𝑒
−𝛿(𝑡−𝜎)

‖ℎ (𝜎)‖ ≤ 𝑀𝑒
−𝛿(𝑡−𝜎)

‖ℎ‖ ,

󵄩󵄩󵄩󵄩𝑈𝑄 (𝑡, 𝜎) 𝑄 (𝜎) ℎ (𝜎)
󵄩󵄩󵄩󵄩 ≤ 𝑀𝑒

−𝛿(𝜎−𝑡)

‖ℎ (𝜎)‖ ≤ 𝑀𝑒
−𝛿(𝜎−𝑡)

‖ℎ‖ ;

(18)

it follows that 𝑈(𝑡, 𝜎)𝑃(𝜎)ℎ(𝜎) is integrable over (−∞, 𝑡) and
𝑈
𝑄
(𝑡, 𝜎)𝑄(𝜎)ℎ(𝜎) is integrable over (𝑡,∞) for 𝑡 ∈ R.
Note that Πℎ ∈ 𝐵𝐶(R, 𝑋). Next, we show that

lim
𝑇→+∞

1

𝜇 ([−𝑇, 𝑇])
∫
[−𝑇,𝑇]

‖(Πℎ) (𝑡)‖ 𝑑𝜇 (𝑡) = 0. (19)

In fact, for 𝑇 > 0, by using Fubini’s theorem, one has

1

𝜇 ([−𝑇, 𝑇])
∫
[−𝑇,𝑇]

‖(Πℎ) (𝑡)‖ 𝑑𝜇 (𝑡)

≤
1

𝜇 ([−𝑇, 𝑇])
∫
[−𝑇,𝑇]

∫

𝑡

−∞

‖𝑈 (𝑡, 𝜎) 𝑃 (𝜎) ℎ (𝜎)‖ 𝑑𝜎 𝑑𝜇 (𝑡)

+
1

𝜇 ([−𝑇, 𝑇])

× ∫
[−𝑇,𝑇]

∫

∞

𝑡

󵄩󵄩󵄩󵄩𝑈𝑄 (𝑡, 𝜎) 𝑄 (𝜎) ℎ (𝜎)
󵄩󵄩󵄩󵄩 𝑑𝜎 𝑑𝜇 (𝑡)

≤
1

𝜇 ([−𝑇, 𝑇])
∫
[−𝑇,𝑇]

∫

𝑡

−∞

𝑀𝑒
−𝛿(𝑡−𝜎)

‖ℎ (𝜎)‖ 𝑑𝜎 𝑑𝜇 (𝑡)

+
1

𝜇 ([−𝑇, 𝑇])
∫
[−𝑇,𝑇]

∫

∞

𝑡

𝑀𝑒
−𝛿(𝜎−𝑡)

‖ℎ (𝜎)‖ 𝑑𝜎 𝑑𝜇 (𝑡)

=
1

𝜇 ([−𝑇, 𝑇])
∫
[−𝑇,𝑇]

∫

∞

0

𝑀𝑒
−𝛿𝜎

‖ℎ (𝑡 − 𝜎)‖ 𝑑𝜎 𝑑𝜇 (𝑡)

+
1

𝜇 ([−𝑇, 𝑇])
∫
[−𝑇,𝑇]

∫

∞

0

𝑀𝑒
−𝛿𝜎

‖ℎ (𝑡 + 𝜎)‖ 𝑑𝜎 𝑑𝜇 (𝑡)

= ∫

∞

0

𝑀𝑒
−𝛿𝜎

Φ
𝑇
(𝜎) 𝑑𝜎 + ∫

∞

0

𝑀𝑒
−𝛿𝜎

Ψ
𝑇
(𝜎) 𝑑𝜎,

(20)

where

Φ
𝑇
(𝜎) :=

1

𝜇 ([−𝑇, 𝑇])
∫
[−𝑇,𝑇]

‖ℎ (𝑡 − 𝜎)‖ 𝑑𝜇 (𝑡) ,

Ψ
𝑇
(𝜎) :=

1

𝜇 ([−𝑇, 𝑇])
∫
[−𝑇,𝑇]

‖ℎ (𝑡 + 𝜎)‖ 𝑑𝜇 (𝑡) .

(21)
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Since 𝜇 ∈ M and satisfies (𝐻
0
), by Lemma 5, it follows that

ℎ(⋅ − 𝜎), ℎ(⋅ + 𝜎) ∈ E(R, 𝑋, 𝜇) for each 𝜎 ∈ R; hence,
lim
𝑇→∞

Φ
𝑇
(𝜎) = 0 and lim

𝑇→∞
Ψ
𝑇
(𝜎) = 0 for all 𝜎 ∈ R.

Since ‖Φ
𝑇
‖ < ∞ and ‖Ψ

𝑇
‖ < ∞, then Πℎ ∈ E(R, 𝑋, 𝜇) by

using the Lebesgue dominated convergence theorem.

Lemma 23. Assume that ℎ ∈ P(R, 𝑋, 𝜇) and (𝐻
3
) and (𝐻

6
)

hold; then

(Λℎ) (𝑡) = ∫

𝑡

−∞

𝑘 (𝑡 − 𝑠) ℎ (𝑠) 𝑑𝑠 ∈ P (R, 𝑋, 𝜇) . (22)

Proof. Similarly as the proof of Lemma 22, it is not difficult to
see that Λℎ is well defined and Λℎ ∈ 𝐵𝐶(R, 𝑋).

(i) Note that ℎ ∈ 𝑃𝑃
𝜔𝑎𝑝

(R, 𝑋, 𝜇), 𝜇 ∈ M.
Let ℎ = ℎ

1
+ ℎ
2
, where ℎ

1
∈ 𝑃
𝜔𝑎𝑝

(R, 𝑋) and ℎ
2
∈ E(R,

𝑋, 𝜇); then

(Λℎ) (𝑡) = ∫

𝑡

−∞

𝑘 (𝑡 − 𝑠) ℎ (𝑠) 𝑑𝑠 := (Λ
1
ℎ) (𝑡) + (Λ

2
ℎ) (𝑡) ,

(23)

where

(Λ
1
ℎ) (𝑡) = ∫

𝑡

−∞

𝑘 (𝑡 − 𝑠) ℎ
1
(𝑠) 𝑑𝑠,

(Λ
2
ℎ) (𝑡) = ∫

𝑡

−∞

𝑘 (𝑡 − 𝑠) ℎ
2
(𝑠) 𝑑𝑠.

(24)

Note that ℎ
1
∈ 𝑃
𝜔𝑎𝑝

(R, 𝑋); then

(Λ
1
ℎ) (𝑡 + 𝜔) = ∫

𝑡+𝜔

−∞

𝑘 (𝑡 + 𝜔 − 𝑠) ℎ
1
(𝑠) 𝑑𝑠

= ∫

𝑡

−∞

𝑘 (𝑡 − 𝑠) ℎ
1
(𝑠 + 𝜔) 𝑑𝑠 = − (Λ

1
ℎ) (𝑡) ;

(25)

hence, Λ
1
ℎ ∈ 𝑃
𝜔𝑝
(R, 𝑋).

By using Fubini’s theorem, one has

1

𝜇 ([−𝑇, 𝑇])
∫
[−𝑇,𝑇]

∫

𝑡

−∞

󵄩󵄩󵄩󵄩𝑘 (𝑡 − 𝑠) ℎ2 (𝑠)
󵄩󵄩󵄩󵄩 𝑑𝑠 𝑑𝜇 (𝑡)

≤
1

𝜇 ([−𝑇, 𝑇])
∫
[−𝑇,𝑇]

∫

𝑡

−∞

𝐶
𝑘
𝑒
−𝑏(𝑡−𝑠) 󵄩󵄩󵄩󵄩ℎ2 (𝑠)

󵄩󵄩󵄩󵄩 𝑑𝑠 𝑑𝜇 (𝑡)

≤ ∫

∞

0

𝐶
𝑘

𝜇 ([−𝑇, 𝑇])
∫
[−𝑇,𝑇]

󵄩󵄩󵄩󵄩ℎ2 (𝑡 − 𝑠)
󵄩󵄩󵄩󵄩 𝑑𝜇 (𝑡) 𝑑𝑠.

(26)

Since ℎ
2
∈ E(R, 𝑋, 𝜇), it follows that ℎ

2
(⋅ − 𝑠) ∈ E(R, 𝑋, 𝜇)

for each 𝑠 ∈ R by Lemma 5; hence, Λ
2
ℎ ∈ E(R, 𝑋, 𝜇) by

using the Lebesgue dominated convergence theorem. Hence,
Λℎ ∈ 𝑃𝑃

𝜔𝑎𝑝
(R, 𝑋, 𝜇).

(ii) Note that ℎ ∈ 𝑃𝑃
𝜔
(R, 𝑋, 𝜇), 𝜇 ∈ M.

Let ℎ = ℎ
1
+ℎ
2
, where ℎ

1
∈ 𝑃
𝜔
(R, 𝑋) and ℎ

2
∈ E(R, 𝑋, 𝜇);

then

(Λ
1
ℎ) (𝑡 + 𝜔) = ∫

𝑡+𝜔

−∞

𝑘 (𝑡 + 𝜔 − 𝑠) ℎ
1
(𝑠) 𝑑𝑠

= ∫

𝑡

−∞

𝑘 (𝑡 − 𝑠) ℎ
1
(𝑠 + 𝜔) 𝑑𝑠 = (Λ

1
ℎ) (𝑡) ;

(27)

hence,Λ
1
ℎ ∈ 𝑃
𝜔
(R, 𝑋). SinceΛ

2
ℎ ∈ E(R, 𝑋, 𝜇) by (i), hence,

Λℎ ∈ 𝑃𝑃
𝜔
(R, 𝑋, 𝜇).

(iii) Note that ℎ ∈ 𝑃𝐴𝑃(R, 𝑋, 𝜇), 𝜇 ∈ M.
By [27], Λ

1
ℎ ∈ 𝐴𝑃(R, 𝑋). Since Λ

2
ℎ ∈ E(R, 𝑋, 𝜇) by (i),

hence, Λℎ ∈ 𝑃𝐴𝑃(R, 𝑋, 𝜇).
(iv) Note that ℎ ∈ 𝑃𝐴𝐴(R, 𝑋, 𝜇), 𝜇 ∈ M.
Similarly as the proof of [28], Λ

1
ℎ ∈ 𝐴𝐴(R, 𝑋). Since

Λ
2
ℎ ∈ E(R, 𝑋, 𝜇) by (i); hence, Λℎ ∈ 𝑃𝐴𝐴(R, 𝑋, 𝜇).

3.1. Pseudo Almost Automorphic Perturbation. In this subsec-
tion, we investigated the existence and uniqueness of pseudo
almost automorphic mild solution of (1).

First, we introduce the concept of bi-almost automorphic
function.

Definition 24 (see [29]). A function𝑓 ∈ 𝐶(R×R, 𝑋) is called
bi-almost automorphic if for every sequence of real numbers
(𝑠
󸀠

𝑛
)
𝑛∈N, there exists a subsequence (𝑠𝑛)𝑛∈N such that

𝑔 (𝑡, 𝑠) := lim
𝑛→∞

𝑓 (𝑡 + 𝑠
𝑛
, 𝑠 + 𝑠
𝑛
) (28)

is well defined for each 𝑡, 𝑠 ∈ R, and

lim
𝑛→∞

𝑔 (𝑡 − 𝑠
𝑛
, 𝑠 − 𝑠
𝑛
) = 𝑓 (𝑡, 𝑠) (29)

for each 𝑡, 𝑠 ∈ R. The collection of all such functions will be
denoted by 𝑏𝐴𝐴(R ×R, 𝑋).

Now, we make the following assumptions:

(𝐻
7
1

) Γ(𝑡, 𝑠)𝑥 ∈ 𝑏𝐴𝐴(R ×R, 𝑋) for each 𝑥 ∈ 𝑋;
(𝐻
8
1

) 𝑔 ∈ 𝑃𝐴𝐴(R×𝑋,𝑋, 𝜇) and 𝑓 ∈ 𝑃𝐴𝐴(R×𝑋×𝑋,𝑋, 𝜇).

Lemma25 (see [25]). Assume that ℎ ∈ 𝐴𝐴(R, 𝑋), (𝐻
1
), (𝐻
2
),

and (𝐻
7
1

) hold; then

(Πℎ) (𝑡) = ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) ℎ (𝜎) 𝑑𝜎

− ∫

∞

𝑡

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) ℎ (𝜎) 𝑑𝜎 ∈ 𝐴𝐴 (R, 𝑋) .

(30)

Theorem 26. Suppose (𝐻
1
)–(𝐻
6
), (𝐻
7
1

), and (𝐻
8
1

) hold; if
2𝑀𝐿
𝑓
(𝑏 + 𝐿

𝑔
𝐶
𝑘
) < 𝑏𝛿, then (1) has a unique mild solution

𝑢 ∈ 𝑃𝐴𝐴(R, 𝑋, 𝜇) such that

𝑢 (𝑡) = ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) 𝑓 (𝜎, 𝑢 (𝜎) , (𝐾𝑢) (𝜎)) 𝑑𝜎

− ∫

∞

𝑡

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) 𝑓 (𝜎, 𝑢 (𝜎) , (𝐾𝑢) (𝜎)) 𝑑𝜎.

(31)
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Proof. First, we show that (1) admits a unique bounded solu-
tion given by (31), which is similar to the proof of [26,
Theorem 3.3]. For 𝑢 ∈ 𝑃𝐴𝐴(R, 𝑋, 𝜇), it is clear that
ℎ(⋅) := 𝑓(⋅, 𝑢(⋅), (𝐾𝑢)(⋅)) ∈ 𝑃𝐴𝐴(R, 𝑋, 𝜇) by Lemma 23 and
Corollary 19; then ‖ℎ‖ < ∞. By the definition of exponential
dichotomy of (𝑈(𝑡, 𝑠))

𝑡≥𝑠
, it is not difficult to see that (31) is

well defined for each 𝑡 ∈ R.
For all 𝑡 ≥ 𝑠, 𝑡, 𝑠 ∈ R,

𝑢 (𝑠) = ∫

𝑠

−∞

𝑈 (𝑠, 𝜎) 𝑃 (𝜎) ℎ (𝜎) 𝑑𝜎

− ∫

∞

𝑠

𝑈
𝑄
(𝑠, 𝜎) 𝑄 (𝜎) ℎ (𝜎) 𝑑𝜎, 𝑠 ∈ R;

(32)

then

𝑈 (𝑡, 𝑠) 𝑢 (𝑠)

= ∫

𝑠

−∞

𝑈 (𝑡, 𝑠) 𝑈 (𝑠, 𝜎) 𝑃 (𝜎) ℎ (𝜎) 𝑑𝜎

− ∫

∞

𝑠

𝑈 (𝑡, 𝑠) 𝑈
𝑄
(𝑠, 𝜎) 𝑄 (𝜎) ℎ (𝜎) 𝑑𝜎

= ∫

𝑠

−∞

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) ℎ (𝜎) 𝑑𝜎

− ∫

∞

𝑠

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) ℎ (𝜎) 𝑑𝜎

= ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) ℎ (𝜎) 𝑑𝜎 − ∫

𝑡

𝑠

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) ℎ (𝜎) 𝑑𝜎

− ∫

∞

𝑡

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) ℎ (𝜎) 𝑑𝜎

− ∫

𝑡

𝑠

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) ℎ (𝜎) 𝑑𝜎

= 𝑢 (𝑡) − ∫

𝑡

𝑠

𝑈 (𝑡, 𝜎) ℎ (𝜎) 𝑑𝜎;

(33)

that is, 𝑢 is a mild solution of (1). To prove the uniqueness, let
V be another mild solution of (1); then

V (𝑡) = 𝑈 (𝑡, 𝑠) 𝑢 (𝑠) + ∫

𝑡

𝑠

𝑈 (𝑡, 𝜎) ℎ (𝜎) 𝑑𝜎, (34)

by the exponential dichotomy of (𝑈(𝑡, 𝑠))
𝑡≥𝑠
,

𝑃 (𝑡) V (𝑡) = ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) ℎ (𝜎) 𝑑𝜎, 𝑡 ∈ R. (35)

Similarly,

𝑄 (𝑡) V (𝑡) = ∫

𝑡

∞

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) ℎ (𝜎) 𝑑𝜎, 𝑡 ∈ R. (36)

So,

V (𝑡) = 𝑃 (𝑡) V (𝑡) + 𝑄 (𝑡) V (𝑡)

= ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) ℎ (𝜎) 𝑑𝜎

− ∫

∞

𝑡

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) ℎ (𝜎) 𝑑𝜎 = 𝑢 (𝑡) .

(37)

Next, define the operatorF : 𝑃𝐴𝐴(R, 𝑋, 𝜇) → 𝑃𝐴𝐴(R,

𝑋, 𝜇) by

(F𝑢) (𝑡) = ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) 𝑓 (𝜎, 𝑢 (𝜎) , (𝐾𝑢) (𝜎)) 𝑑𝜎

− ∫

∞

𝑡

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) 𝑓 (𝜎, 𝑢 (𝜎) , (𝐾𝑢) (𝜎)) 𝑑𝜎.

(38)

By Lemma 22, Lemma 23, Lemma 25, and Corollary 19, F
maps 𝑃𝐴𝐴(R, 𝑋, 𝜇) into itself.

For any 𝑢, V ∈ 𝑃𝐴𝐴(R, 𝑋, 𝜇),

‖(F𝑢) (𝑡) − (FV) (𝑡)‖

≤ ∫

𝑡

−∞

‖𝑈 (𝑡, 𝜎) 𝑃 (𝜎) [𝑓 (𝜎, 𝑢 (𝜎) , (𝐾𝑢) (𝜎))

−𝑓 (𝜎, V (𝜎) , (𝐾V) (𝜎))]󵄩󵄩󵄩󵄩 𝑑𝜎

+ ∫

∞

𝑡

󵄩󵄩󵄩󵄩𝑈𝑄 (𝑡, 𝜎) 𝑄 (𝜎) [𝑓 (𝜎, 𝑢 (𝜎) , (𝐾𝑢) (𝜎))

−𝑓 (𝜎, V (𝜎) , (𝐾V) (𝜎))]󵄩󵄩󵄩󵄩 𝑑𝜎

≤ 𝐿
𝑓
∫

𝑡

−∞

𝑀𝑒
−𝛿(𝑡−𝜎)

× (‖𝑢 (𝜎) − V (𝜎)‖ + ‖(𝐾𝑢) (𝜎) − (𝐾V) (𝜎)‖) 𝑑𝜎

+ 𝐿
𝑓
∫

∞

𝑡

𝑀𝑒
−𝛿(𝜎−𝑡)

× (‖𝑢 (𝜎) − V (𝜎)‖ + ‖(𝐾𝑢) (𝜎) − (𝐾V) (𝜎)‖) 𝑑𝜎

≤ 𝐿
𝑓
(1 +

𝐿
𝑔
𝐶
𝑘

𝑏
)∫

𝑡

−∞

𝑀𝑒
−𝛿(𝑡−𝜎)

‖𝑢 (𝜎) − V (𝜎)‖ 𝑑𝜎

+ 𝐿
𝑓
(1 +

𝐿
𝑔
𝐶
𝑘

𝑏
)∫

∞

𝑡

𝑀𝑒
−𝛿(𝜎−𝑡)

‖𝑢 (𝜎) − V (𝜎)‖ 𝑑𝜎

≤
2𝑀𝐿
𝑓
(𝑏 + 𝐿

𝑔
𝐶
𝑘
)

𝑏𝛿
‖𝑢 − V‖ .

(39)

By theBanach contractionmapping principle,Fhas a unique
fixed point in 𝑃𝐴𝐴(R, 𝑋, 𝜇), which is the unique 𝑃𝐴𝐴 mild
solution to (1).
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Next, consider the following nonautonomous Volterra
integrodifferential equations:

𝑢
󸀠

(𝑡) = 𝐴 (𝑡) 𝑢 (𝑡) + ∫

𝑡

−∞

𝑘 (𝑡 − 𝑠) 𝑢 (𝑠) 𝑑𝑠 + 𝑓 (𝑡, 𝑢 (𝑡)) ,

𝑡 ∈ R,

(40)

where the linear operators 𝐴(𝑡) : 𝐷(𝐴(𝑡)) ⊂ 𝑋 → 𝑋

have a domain𝐷(𝐴(𝑡)) not necessarily dense in𝑋 and satisfy
“Acquistapace-Terreni” conditions and 𝑓 is a continuous
function.

For the pseudo almost automorphy of (40), one has the
following.

Theorem 27. Suppose (𝐻
1
), (𝐻
2
), (𝐻
3
), (𝐻
6
), and (𝐻

7
1

) hold,
and 𝑓 ∈ 𝑃𝐴𝐴(R × 𝑋,𝑋, 𝜇) satisfies

(𝐻
9
) ‖𝑓(𝑡, 𝑢) − 𝑓(𝑡, V)‖ ≤ 𝐿

𝑓
‖𝑢 − V‖, 𝑡 ∈ R and 𝑢, V ∈ 𝑋,

where 𝐿
𝑓
> 0 is a constant.

Then (40) has a unique mild solution 𝑢 ∈ 𝑃𝐴𝐴(R, 𝑋, 𝜇) if
2𝑀(𝑏𝐿

𝑓
+ 𝐶
𝑘
) < 𝑏𝛿.

Proof. Let

(𝐾𝑢) (𝑡) = ∫

𝑡

−∞

𝑘 (𝑡 − 𝑠) 𝑢 (𝑠) 𝑑𝑠, (41)

and define

Γ𝑢 = ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) ((𝐾𝑢) (𝜎) + 𝑓 (𝜎, 𝑢 (𝜎))) 𝑑𝜎

− ∫

∞

𝑡

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) ((𝐾𝑢) (𝜎) + 𝑓 (𝜎, 𝑢 (𝜎))) 𝑑𝜎.

(42)

Similarly as the proof of Theorem 26, Γ is well defined and
(42) is a mild solution of (40).

For any 𝑢, V ∈ 𝑃𝐴𝐴(R, 𝑋, 𝜇),

‖(Γ𝑢) (𝑡) − (ΓV) (𝑡)‖

≤ ∫

𝑡

−∞

𝑀𝑒
−𝛿(𝑡−𝜎)

(‖(𝐾𝑢) (𝜎) − (𝐾V) (𝜎)‖

+
󵄩󵄩󵄩󵄩𝑓 (𝜎, 𝑢 (𝜎)) − 𝑓 (𝜎, V (𝜎))

󵄩󵄩󵄩󵄩) 𝑑𝜎

+ ∫

∞

𝑡

𝑀𝑒
−𝛿(𝜎−𝑡)

(‖(𝐾𝑢) (𝜎) − (𝐾V) (𝜎)‖

+
󵄩󵄩󵄩󵄩𝑓 (𝜎, 𝑢 (𝜎)) − 𝑓 (𝜎, V (𝜎))

󵄩󵄩󵄩󵄩) 𝑑𝜎

≤ (
𝐶
𝑘

𝑏
+ 𝐿
𝑓
)∫

𝑡

−∞

𝑀𝑒
−𝛿(𝑡−𝜎)

‖𝑢 (𝜎) − V (𝜎)‖ 𝑑𝜎

+ (
𝐶
𝑘

𝑏
+ 𝐿
𝑓
)∫

∞

𝑡

𝑀𝑒
−𝛿(𝜎−𝑡)

‖𝑢 (𝜎) − V (𝜎)‖ 𝑑𝜎

≤
2𝑀(𝑏𝐿

𝑓
+ 𝐶
𝑘
)

𝑏𝛿
‖𝑢 − V‖ .

(43)

By the Banach contraction mapping principle, Γ has a unique
fixed point in 𝑃𝐴𝐴(R, 𝑋, 𝜇), which is the unique 𝑃𝐴𝐴 mild
solution to (40).

3.2. Pseudo Almost Periodic Perturbation. In this subsection,
we investigated the existence and uniqueness of pseudo
almost periodic mild solution of (1) and (40). We make the
following assumptions:

(𝐻
7
2

) 𝑅(𝜆
0
, 𝐴(⋅)) ∈ 𝐴𝑃(R, 𝐿(𝑋)) for 𝜆

0
in (𝐻
1
);

(𝐻
8
2

) 𝑔 ∈ 𝑃𝐴𝑃(R×𝑋,𝑋, 𝜇) and 𝑓 ∈ 𝑃𝐴𝑃(R×𝑋×𝑋,𝑋, 𝜇).

Similarly as the proof of [16], we have the following
results.

Lemma 28. Assume that ℎ ∈ 𝐴𝑃(R, 𝑋), (𝐻
1
), (𝐻
2
), and

(𝐻
7
2

) hold; then

(Πℎ) (𝑡) = ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) ℎ (𝜎) 𝑑𝜎

− ∫

∞

𝑡

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) ℎ (𝜎) 𝑑𝜎 ∈ 𝐴𝑃 (R, 𝑋) .

(44)

By Lemma 22, Lemma 23, and Lemma 28, similarly as the
proof ofTheorem 26,Theorem 27, the following results hold.

Theorem 29. Suppose (𝐻
1
)–(𝐻
6
), (𝐻
7
2

), and (𝐻
8
2

) hold; then
(1) has a unique mild solution 𝑢 ∈ 𝑃𝐴𝑃(R, 𝑋, 𝜇) if 2𝑀𝐿

𝑓
(𝑏 +

𝐿
𝑔
𝐶
𝑘
) < 𝑏𝛿.

Theorem 30. Suppose (𝐻
1
), (𝐻
2
), (𝐻
3
), (𝐻
6
), and (𝐻

7
2

) hold,
and 𝑓 ∈ 𝑃𝐴𝑃(R × 𝑋,𝑋, 𝜇) satisfies (𝐻

9
), then (40) has a

unique mild solution 𝑢 ∈ 𝑃𝐴𝑃(R, 𝑋, 𝜇) if 2𝑀(𝑏𝐿
𝑓
+𝐶
𝑘
) < 𝑏𝛿.

3.3. Pseudo Periodic (Antiperiodic) Perturbation. In this sub-
section, we investigated the existence and uniqueness of
pseudo periodic (antiperiodic) mild solution of (1), (40). We
make the following assumptions:

(𝐻
7
3

) there exists𝜔 ∈ R\{0} such that Γ(𝑡+𝜔, 𝑠+𝜔) = Γ(𝑡, 𝑠);

(𝐻
8
3

) 𝑔 ∈ 𝑃𝑃
𝜔
(R × 𝑋,𝑋, 𝜇), 𝑓 ∈ 𝑃𝑃

𝜔
(R × 𝑋 × 𝑋,𝑋, 𝜇).

Lemma 31. Assume that ℎ ∈ 𝑃
𝜔
(R, 𝑋), (𝐻

1
), (𝐻
2
), and (𝐻

7
3

)

hold; then

(Πℎ) (𝑡) = ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) 𝑃 (𝜎) ℎ (𝜎) 𝑑𝜎

− ∫

∞

𝑡

𝑈
𝑄
(𝑡, 𝜎) 𝑄 (𝜎) ℎ (𝜎) 𝑑𝜎 ∈ 𝑃

𝜔
(R, 𝑋) .

(45)
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Proof. Since ℎ ∈ 𝑃
𝜔
(R, 𝑋), then ℎ(𝑡 + 𝜔) = ℎ(𝑡) for 𝑡 ∈ R. By

(𝐻
7
3

), one has

(Πℎ) (𝑡 + 𝜔)

= ∫

𝑡+𝜔

−∞

𝑈 (𝑡 + 𝜔, 𝜎) 𝑃 (𝜎) ℎ (𝜎) 𝑑𝜎

− ∫

∞

𝑡+𝜔

𝑈
𝑄
(𝑡 + 𝜔, 𝜎)𝑄 (𝜎) ℎ (𝜎) 𝑑𝜎

= ∫

𝑡

−∞

𝑈 (𝑡 + 𝜔, 𝜎 + 𝜔) 𝑃 (𝜎 + 𝜔) ℎ (𝜎 + 𝜔) 𝑑𝜎

− ∫

∞

𝑡

𝑈
𝑄
(𝑡 + 𝜔, 𝜎 + 𝜔)𝑄 (𝜎 + 𝜔) ℎ (𝜎 + 𝜔) 𝑑𝜎

= (Πℎ) (𝑡) ;

(46)

hence, Πℎ ∈ 𝑃
𝜔
(R, 𝑋).

By Lemma 22, Lemma 23, and Lemma 28, similarly as the
proof of Theorem 26 and Theorem 27, the following results
hold.

Theorem 32. Suppose (𝐻
1
)–(𝐻
6
), (𝐻
7
3

), and (𝐻
8
3

) hold; if
2𝑀𝐿
𝑓
(𝑏 + 𝐿

𝑔
𝐶
𝑘
) < 𝑏𝛿, then (1) has a unique mild solution

𝑢 ∈ 𝑃𝑃
𝜔
(R, 𝑋, 𝜇).

Theorem 33. Suppose (𝐻
1
), (𝐻
2
), (𝐻
3
), (𝐻
6
), and (𝐻

7
3

) hold,
and 𝑓 ∈ 𝑃

𝜔
(R×𝑋,𝑋, 𝜇) satisfies (𝐻

9
); then (40) has a unique

mild solution 𝑢 ∈ 𝑃𝑃
𝜔
(R, 𝑋, 𝜇) if 2𝑀(𝑏𝐿

𝑓
+ 𝐶
𝑘
) < 𝑏𝛿.

Remark 34. (i) If 𝑔 ∈ 𝑃𝑃
𝜔𝑎𝑝

(R × 𝑋,𝑋, 𝜇) and 𝑓 ∈

𝑃𝑃
𝜔𝑎𝑝

(R × 𝑋 × 𝑋,𝑋, 𝜇) in (𝐻
8
3

), then Theorem 32 holds for
𝑃𝑃
𝜔𝑎𝑝

(R, 𝑋, 𝜇); that is, (1) has a unique mild solution 𝑢 ∈

𝑃𝑃
𝜔𝑎𝑝

(R, 𝑋, 𝜇).
(ii) If 𝑓 ∈ 𝑃𝑃

𝜔𝑎𝑝
(R × 𝑋,𝑋, 𝜇), thenTheorem 33 holds for

𝑃𝑃
𝜔𝑎𝑝

(R, 𝑋, 𝜇)); that is, (40) has a unique mild solution 𝑢 ∈

𝑃𝑃
𝜔𝑎𝑝

(R, 𝑋, 𝜇).

4. Example

In this section, we provide some examples to illustrate our
main results.

Example 1. Consider the heat equations with Dirichlet con-
ditions

𝜕𝑢 (𝑡, 𝑥)

𝜕𝑡
=
𝜕
2
𝑢 (𝑡, 𝑥)

𝜕𝑥2
+ (−2 + sin 1

cos 𝑡 + cos𝜋𝑡
) 𝑢 (𝑡, 𝑥)

+ 𝑓 (𝑡, 𝑢 (𝑡, 𝑥) , (𝐾𝑢) (𝑡, 𝑥)) ,

(𝐾𝑢) (𝑡, 𝑥) = ∫

𝑡

−∞

𝑘 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑢 (𝑠, 𝑥)) 𝑑𝑠,

𝑡 ∈ R, 𝑥 ∈ [0, 𝜋] ,

𝑢 (𝑡, 0) = 𝑢 (𝑡, 𝜋) = 0, 𝑡 ∈ R,

(47)

where 𝑓 ∈ 𝑃𝐴𝐴(R × 𝐿
2
[0, 𝜋] × 𝐿

2
[0, 𝜋], 𝐿

2
[0, 𝜋], 𝜇), 𝑔 ∈

𝑃𝐴𝐴(R × 𝐿
2
[0, 𝜋], 𝐿

2
[0, 𝜋], 𝜇), and 𝜇 ∈ M.

Note that𝑋 = 𝐿
2
[0, 𝜋] is equipped with its natural topol-

ogy and define

𝐷 (𝐴) = {𝑢 ∈ 𝐿
2

[0, 𝜋] : 𝑢
󸀠󸀠
∈ 𝐿
2

[0, 𝜋] , 𝑢 (0) = 𝑢 (𝜋) = 0} ,

𝐴𝑢 = 𝑢
󸀠󸀠
− 2𝑢, ∀𝑢 ∈ 𝐷 (𝐴) .

(48)

Let 𝜑
𝑛
(𝑡) = √2/𝜋 sin(𝑛𝑡) for all 𝑛 ∈ N. It is well known

that 𝐴 is the infinitesimal generator of an analytic semigroup
(𝑇(𝑡))

𝑡≥0
on 𝐿
2
[0, 𝜋] with ‖𝑇(𝑡)‖ ≤ 𝑒

−3𝑡 for 𝑡 ≥ 0 [30].
Moreover,

𝑇 (𝑡) 𝜑 =

∞

∑

𝑛=1

𝑒
−(𝑛
2
+2)𝑡

⟨𝜑, 𝜑
𝑛
⟩ 𝜑
𝑛
, (49)

for each 𝜑 ∈ 𝐿
2
[0, 𝜋].

Define a family of linear operators 𝐴(𝑡) by

𝐷 (𝐴 (𝑡)) = 𝐷 (𝐴) ,

𝐴 (𝑡) 𝜑 (𝑥) = (𝐴 + sin 1

cos 𝑡 + cos𝜋𝑡
) 𝜑 (𝑥) ,

∀𝑥 ∈ [0, 𝜋] , 𝜑 ∈ 𝐷 (𝐴) .

(50)

Then the system

𝑢
󸀠

(𝑡) = 𝐴 (𝑡) 𝑢 (𝑡) , 𝑡 ≥ 𝑠,

𝑢 (𝑠) = 𝜑 ∈ 𝐿
2

[0, 𝜋] ,

(51)

has an associated evolution family (𝑈(𝑡, 𝑠))
𝑡≥𝑠

on 𝐿
2
[0, 𝜋],

which can be explicitly expressed by

𝑈 (𝑡, 𝑠) 𝜑 = 𝑇 (𝑡 − 𝑠) 𝑒
∫
𝑡

𝑠
sin(1/(cos 𝜏+cos𝜋𝜏))𝑑𝜏

𝜑. (52)

Moreover,

‖𝑈 (𝑡, 𝑠)‖ ≤ 𝑒
−2(𝑡−𝑠) for every 𝑡 ≥ 𝑠. (53)

Note that sin(1/(cos 𝑡 + cos𝜋𝑡)) ∈ 𝐴𝐴(R,R), and it is not
difficult to verify that 𝐴(𝑡) satisfies (𝐻

1
), (𝐻
2
), (𝐻
7
1

), and
(𝐻
8
1

) with 𝑀 = 1 and 𝛿 = 2. One can see [26, 31] for more
details.

Now, the following theorem is an immediate consequence
of Theorem 26.

Theorem 35. Under the assumptions (𝐻
3
)–(𝐻
6
), (47) admits

a unique 𝑃𝐴𝐴 mild solution 𝑢(𝑡) ∈ 𝑃𝐴𝐴(R, 𝐿2[0, 𝜋], 𝜇) if
𝐿
𝑓
(𝑏 + 𝐿

𝑔
𝐶
𝑘
) < 𝑏.

Example 2. For (40), let Ω ⊂ R𝑛 be a bounded domain with
𝐶
2-boundary and𝑋 = 𝐿

2
(Ω). For 𝑡 ∈ R, define

𝐴 (𝑡) = 𝑎 (𝑡) Δ𝑢, 𝑢 ∈ 𝐷 (𝐴 (𝑡)) := 𝐻
1

0
(Ω) ∩ 𝐻

2

(Ω) , (54)

where 𝑎(⋅) ∈ 𝐴𝐴(R, 𝑋) is Hölder continuous and
inf
𝑡∈R𝑎(𝑡) ≥ 𝑎 > 0. It is not difficult to see that (𝐻

1
), (𝐻
7
1

)

hold and the evolution family 𝑈(𝑡, 𝑠) generated by 𝐴(𝑡) has
an exponential dichotomy provided that the Hölder constant
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of 𝑎(⋅) is sufficiently small; hence, (𝐻
2
) holds. One can see

[32, 33] for more details. Suppose further

𝑘 (𝑡 − 𝑠) = 𝐶
𝑘
𝑒
−𝑏(𝑡−𝑠)

, ∀𝑡 ≥ 𝑠,

𝑓 (𝑡, 𝑢 (𝑥))

= 𝛾(sin 1

2 + cos 𝑡 + cos√2𝑡
+

𝑒
−|𝑡|

(1 + |𝑡|)
2
) cos (𝑢 (𝑥)) ,

∀𝑡 ∈ R, 𝑢 ∈ 𝑋, 𝑥 ∈ Ω,

(55)

where 𝐶
𝑘
, 𝑏, and 𝛾 are positive constants; then 𝑓 ∈ 𝑃𝐴𝐴(R,

𝑋, 𝜇); 𝜇 is the Lebesgue measure, so (𝐻
3
), (𝐻
6
) hold. More-

over,

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑢) − 𝑓 (𝑡, V)
󵄩󵄩󵄩󵄩 ≤ 2𝛾 ‖𝑢 − V‖ , ∀𝑡 ∈ R, 𝑢 ∈ 𝑋, 𝑥 ∈ Ω,

(56)

which implies that (𝐻
9
) holds. Therefore, (40) has a unique

mild solution 𝑢 ∈ 𝑃𝐴𝐴(R, 𝑋, 𝜇) if 𝛾 is sufficiently small by
Theorem 27.
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