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We study a nonmonotone adaptive Barzilai-Borwein gradient algorithm for 𝑙
1
-norm minimization problems arising from

compressed sensing. At each iteration, the generated search direction enjoys descent property and can be easily derived by
minimizing a local approximal quadratic model and simultaneously taking the favorable structure of the 𝑙

1
-norm. Under some

suitable conditions, its global convergence result could be established. Numerical results illustrate that the proposed method is
promising and competitive with the existing algorithms NBBL1 and TwIST.

1. Introduction

In recent years, algorithms for finding sparse solutions to
underdetermined linear systems of equations have been
intensively investigated in signal processing and compressed
sensing. The fundamental principle of compressed sensing
(CS) is that a sparse signal �̄� ∈ 𝑅

𝑛 can be recovered from the
underdetermined linear system 𝑏 = 𝐴�̄�, where 𝐴 ∈ 𝑅

𝑚×𝑛

(often 𝑚 ≪ 𝑛). By defining 𝑙
0
norm (‖𝑥‖

0
) of a vector as

the number of nonzero components in 𝑥, one natural way
to reconstruct �̄� from the system is to solve the following
problem:

min
𝑥∈𝑅
𝑛

‖𝑥‖0 s.t. 𝑏 = 𝐴𝑥 (1)

via certain reconstruction technique. However, the 𝑙
0
norm

problem is combinatorial and generally computationally
intractable. A fundamental decoding model in CS is to
replace 𝑙

0
norm by 𝑙

1
norm, which is defined as ‖𝑥‖

1
=

∑
𝑛

𝑖=1
|𝑥(𝑖)|. The resulting adaptation of (1) is the so-called

basis pursuit (BP) problem [1]
min
𝑥∈𝑅
𝑛

‖𝑥‖1 s.t. 𝑏 = 𝐴𝑥. (2)

It is shown that, under some reasonable conditions, problem
(2) can produce the desired solutions with high probability

[2]. When 𝑏 contains some noise in most practical applica-
tions, the constraint in (2) should be relaxed to the penalized
least squares problem:

min
𝑥∈𝑅
𝑛

1

2
‖𝑏 − 𝐴𝑥‖

2

2
+ 𝜇‖𝑥‖1. (3)

Here, 𝜇 > 0 is related to the Lagrange multiplier of the
constraint in (2).

It follows from some existing results that if a signal is
sparse or approximately sparse in someorthogonal basis, then
an accurate recovery can be obtained when 𝐴 is a random
matrix projection [3]. Quite a number of algorithms have
been proposed and studied for solving the aforementioned 𝑙

1
-

problems arising in CS. Recently, some first-order methods
are popular for solving (3), such as the projection steepest
descent method [4] and the gradient projection algorithm
(GPSR) proposed by Figueiredo et al. [5]. Moreover, based
on a smoothing technique studied in [6], a fast and accurate
first-order algorithm called NESTA was proposed in [7],
and so on. By an operator splitting technique, Hale et
al. derive the iterative shrinkage/thresholding fixed-point
continuation algorithm (FPC) [8]. One most widely studied
first-order method is the iterative shrinkage/thresholding
(IST) method [9–11], which is designed for wavelet-based
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image deconvolution. TwIST [12, 13] and FISTA [14] speed
up the performance of IST and have virtually the same
complexity but with better convergence properties. Another
closely related method is the sparse reconstruction algorithm
SpaRSA [15], which is to minimize nonsmooth convex prob-
lem with separable structures. In [16], the authors proposed
nonsmooth equations-based method for 𝑙

1
-norm problems.

SPGL1 [17] solves a least squares problem with 𝑙
1
-norm

constraint by the spectral gradient projection method with
an efficient Euclidean projection on 𝑙

1
-norm ball. In [18], Yun

and Toh studied a block coordinate gradient descent (CGD)
method for solving (3). Recently, the alternating direction
method (ADM) has received much attention for solving total
variation regularization problems for image restoration and is
also capable of solving the 𝑙

1
-norm regularization problems in

CS [19, 20].
Very recently, Xiao et al. propose a Barzilai-Borwein

gradient algorithm [21] for solving 𝑙
1
regularized nons-

mooth minimization problems (NBBL1) [22], in which they
approximate 𝑓 locally by a convex quadratic model at each
iteration, where the Hessian is replaced by the multiples of
a spectral coefficient with an identity matrix. Motivated by
them, we propose a nonmonotone adaptive Barzilai-Borwein
gradient algorithm for 𝑙

1
-norm minimization in compressed

sensing, which is based on a new quasi-Newton equation
[23] and a new adaptive spectral coefficient.Under reasonable
assumptions, its convergence result could be established.
Numerical experiments illustrate that the proposed method
is efficient to recover a sparse signal arising in compressive
sensing and outperforms NBBL1.

A full description of the proposed algorithm is presented
in the next section. Meanwhile, we establish its global con-
vergence under some suitable conditions. In Section 3, some
numerical results were reported to illustrate the efficiency of
the proposed method. Finally, we have a conclusion section.

2. Proposed Algorithm and
Convergence Result

In this section,we construct an iterative algorithm to solve the
𝑙
1
-norm regularization problems arising from the spare solu-

tion recovery in compressed sensing. Before stating the steps
of our method, we first give a brief description of preliminary
results for the following unconstrained optimization:

min
𝑥∈R𝑛

𝑓 (𝑥) , (4)

where 𝑓 : R𝑛 → R is a continuously differentiable function.
In [23],Wei et al. proposed a new quasi-Newton equation

and then derived a new conjugacy condition by using this
new quasi-Newton equation. Using the Taylor formula for the
objective function 𝑓(𝑥),

𝑓 (𝑥) ≈ 𝑓
𝑘
+ 𝑔
𝑇

𝑘
(𝑥 − 𝑥

𝑘
) +

1

2
(𝑥 − 𝑥

𝑘
)
𝑇

𝐺
𝑘
(𝑥 − 𝑥

𝑘
) , (5)

where𝑓
𝑘
(resp.,𝐺

𝑘
) denotes the function value (resp.,Hessian

matrix) and 𝑔
𝑘
denotes ∇𝑓(𝑥

𝑘
) at 𝑥
𝑘
. Hence, substituting 𝑥 =

𝑥
𝑘−1

,

𝑓
𝑘−1

≈ 𝑓
𝑘
− 𝑔
𝑇

𝑘
𝑠
𝑘−1

+
1

2
𝑠
𝑇

𝑘−1
𝐺
𝑘
𝑠
𝑘−1

. (6)

Therefore,

𝑠
𝑇

𝑘−1
𝐺
𝑘
𝑠
𝑘−1

≈ 2 (𝑓
𝑘−1

− 𝑓
𝑘
) + 2𝑔

𝑇

𝑘
𝑠
𝑘−1

= 2 (𝑓
𝑘−1

− 𝑓
𝑘
) + (𝑔

𝑘−1
+ 𝑔
𝑘
)
𝑇

𝑠
𝑘−1

+ 𝑠
𝑇

𝑘−1
𝑦
𝑘−1

.

(7)

Consider 𝐵
𝑘
as a new approximation of 𝐺

𝑘
such that

𝑠
𝑇

𝑘−1
𝐵
𝑘
𝑠
𝑘−1

= 𝑠
𝑇

𝑘−1
𝑦
𝑘−1

+ 𝜗
𝑘−1

, (8)

where 𝑠
𝑘−1

= 𝑥
𝑘
− 𝑥
𝑘−1

, 𝑦
𝑘−1

= 𝑔
𝑘
− 𝑔
𝑘−1

, ̄𝑦
𝑘−1

= 𝑦
𝑘−1

+

(𝜗
𝑘−1

/‖𝑠
𝑘−1

‖
2
)𝑠
𝑘−1

, and 𝜗
𝑘−1

= 2(𝑓
𝑘−1

−𝑓
𝑘
)+(𝑔
𝑘
+ 𝑔
𝑘−1

)
𝑇
𝑠
𝑘−1

.
This suggests the following new quasi-Newton equation:

𝐵
𝑘
𝑠
𝑘−1

= 𝑦
𝑘−1

. (9)

In [24], Li et al.make amodification of the𝑦
𝑘
in (9) as follows:

𝑦
∗

𝑘−1
= 𝑦
𝑘−1

+
max {𝜗

𝑘−1
, 0}

𝑠𝑘−1

2

𝑠
𝑘−1

, (10)

and Yuan and Wei [25] make some further studies on it.
Observe that this new quasi-Newton equation contains not
only gradient value information but also function value
information at the present and the previous step. In general,
such 𝐵

𝑘+1
will be produced by updating 𝐵

𝑘
with some

typical and popular formulae such as BFGS, DFP, and SR1.
Furthermore, let the approximation Hessian 𝐵

𝑘
be a diagonal

matrix with positive components; that is, 𝐵
𝑘

= 𝜆
𝑘
𝐼 with

an identity matrix 𝐼 and 𝜆
𝑘

> 0. Then, the quasi-Newton
condition (9) possesses the following form:

𝜆
𝑘
𝐼𝑠
𝑘−1

= 𝑦
∗

𝑘−1
. (11)

Multiplying both sides by 𝑠
𝑇

𝑘−1
, it follows that

𝜆
𝐵𝐵
∗

1

𝑘
=

𝑠
𝑇

𝑘−1
𝑦
∗

𝑘−1

𝑠𝑘−1

2

2

, (12)

and, multiplying both sides by 𝑦
𝑇

𝑘−1
, it gives

𝜆
𝐵𝐵
∗

2

𝑘
=

𝑦
∗

𝑘−1


2

2

𝑠𝑇
𝑘−1

𝑦∗
𝑘−1

, (13)

where 𝑦
∗

𝑘−1
is defined as (10). If 𝑠𝑇

𝑘−1
𝑦
∗

𝑘−1
> 0 holds, then the

matrix 𝜆
𝑘
𝐼 is positive definite which ensures that the search

direction −𝜆
−1

𝑘
𝑔
𝑘
is descent at current point.

Now, we focus our attention on the 𝑙
1
-normminimization

problem (3). The algorithm can be described as the iterative
form

𝑥
𝑘+1

= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
, (14)
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Initialization: Give initial point 𝑥
0
∈ 𝑅
𝑛, set parameters 𝜇 > 0, 𝛼 > 0 and 𝜌 ∈ (0, 1),

𝛿 ∈ (0, 1), ℎ ∈ (0, 1] and positive integer𝑚. Set 𝑘 = 0.
Step 1. If 𝑑𝑘

2 = 0, then stop. Otherwise, continue.
Step 2. Compute 𝑑

𝑘
via (18).

Step 3. Compute 𝛼
𝑘
via following nonmonotone line search

𝐹 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
) ≤ max
0≤𝑗≤𝑚(𝑘)

𝐹 (𝑥
𝑘−𝑗

) + 𝛿𝛼
𝑘
(∇𝑓(𝑥

𝑘
)
𝑇

𝑑
𝑘
+

𝜇
𝑥𝑘 + ℎ𝑑

𝑘

1 − 𝜇
𝑥𝑘

1

ℎ
) ,

where the smallest nonnegative integer 𝑗
𝑘
such as the stepsize 𝛼

𝑘
= 𝛼𝜌
𝑗
𝑘 satisfing above,

𝑚(0) = 0 and 0 ≤ 𝑚(𝑘) ≤ min {𝑚(𝑘 − 1) + 1,𝑚}.
Step 4. Let 𝑥

𝑘+1
= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
.

Step 5. Let 𝑘 = 𝑘 + 1. Go to Step 1.

Algorithm 1: NABBL1 for (3).

where 𝛼
𝑘
is a stepsize and 𝑑

𝑘
is a search direction defined

by minimizing a quadratic approximated model of 𝐹(𝑥) =

(1/2)‖𝐴𝑥 − 𝑏‖
2

2
+ 𝜇‖𝑥‖

1
. Since 𝑙

1
-term is not differentiable,

hence, at current 𝑥
𝑘
, objective function 𝐹 is approximated by

the quadratic approximation 𝑄
𝑘
,

𝐹 (𝑥
𝑘
+ 𝑑) = 𝑓 (𝑥

𝑘
+ 𝑑) + 𝜇

𝑥𝑘 + 𝑑
1

≈ 𝑓 (𝑥
𝑘
) + ∇𝑓(𝑥

𝑘
)
𝑇

𝑑 +
𝜆
𝑘

2
‖𝑑‖
2

2

+ 𝜇[
𝑥𝑘

1 +

𝑥𝑘 + ℎ𝑑
1 −

𝑥𝑘
1

ℎ
]Δ𝑄
𝑘
(𝑑) ,

(15)

where 𝑓(𝑥) = ‖𝐴𝑥 − 𝑏‖
2

2
and ℎ is a small positive number.

The term in [⋅] can be considered as an approximate Taylor
expansion of ‖𝑥

𝑘
+ 𝑑‖
1
with a small ℎ, and the case ℎ = 1

reduces the equivalent form ‖𝑥
𝑘
+ 𝑑‖
1
.Minimizing (15) yields

min
𝑑∈𝑅
𝑛

𝑄
𝑘
(𝑑)

⇐⇒ min
𝑑∈𝑅
𝑛

∇𝑓(𝑥
𝑘
)
𝑇

𝑑 +
𝜆
𝑘

2
‖𝑑‖
2

2
+

𝜇
𝑥𝑘 + ℎ𝑑

1

ℎ

⇐⇒ min
𝑑∈𝑅
𝑛

ℎ
2

𝜆
𝑘

(∇𝑓(𝑥
𝑘
)
𝑇

𝑑 +
𝜆
𝑘

2
‖𝑑‖
2

2
+

𝜇
𝑥𝑘 + ℎ𝑑

1

ℎ
)

⇐⇒ min
𝑑∈𝑅
𝑛

1

2


𝑥
𝑘
+ ℎ𝑑 −(𝑥

𝑘
−

ℎ

𝜆
𝑘

∇𝑓 (𝑥
𝑘
))



2

2

+
𝜇ℎ

𝜆
𝑘

𝑥𝑘 + ℎ𝑑
1

⇐⇒ min
𝑑∈𝑅
𝑛

𝑛

∑

𝑖=1

{
1

2
(𝑥
𝑖

𝑘
+ ℎ𝑑
𝑖
− (𝑥
𝑖

𝑘
−

ℎ

𝜆
𝑘

∇𝑓
𝑖
(𝑥
𝑘
)))

2

+
𝜇ℎ

𝜆
𝑘


𝑥
𝑖

𝑘
+ ℎ𝑑
𝑖1

} ,

(16)

where 𝑥
𝑖

𝑘
, 𝑑𝑖, and ∇𝑓

𝑖
(𝑥
𝑘
) denote the 𝑖th component of 𝑥

𝑘
,

𝑑, and ∇𝑓(𝑥
𝑘
), respectively. The favorable structure of (16)

admits the explicit solution

𝑥
𝑖

𝑘
+ ℎ𝑑
𝑖

𝑘
= max{


𝑥
𝑖

𝑘
−

ℎ

𝜆
𝑘

∇𝑓
𝑖
(𝑥
𝑖

𝑘
)


−

𝜇ℎ

𝜆
𝑘

, 0}

×
𝑥
𝑖

𝑘
− (ℎ/𝜆

𝑘
) ∇𝑓
𝑖
(𝑥
𝑘
)

𝑥
𝑖

𝑘
− (ℎ/𝜆

𝑘
) ∇𝑓𝑖 (𝑥

𝑘
)


.

(17)

Hence, the search direction at current point is

𝑑
𝑘
= −

1

ℎ

[
[
[

[

𝑥
𝑘
−max{


𝑥
𝑖

𝑘
−

ℎ

𝜆
𝑘

∇𝑓
𝑖
(𝑥
𝑖

𝑘
)


−

𝜇ℎ

𝜆
𝑘

, 0}

×
𝑥
𝑖

𝑘
− (ℎ/𝜆

𝑘
) ∇𝑓
𝑖
(𝑥
𝑘
)

𝑥
𝑖

𝑘
− (ℎ/𝜆

𝑘
) ∇𝑓𝑖 (𝑥

𝑘
)


]
]
]

]

.

(18)

In this paper, we adopt the following adaptive Barzilai-
Borwein step in (18):

𝜆
𝐴𝐵𝐵

𝑘
=

{

{

{

𝜆
𝐵𝐵
∗

1

𝑘
, if√𝜆

𝐵𝐵
∗

2

𝑘
/𝜆
𝐵𝐵
∗

1

𝑘
> 0.9

𝜆
𝐵𝐵
∗

2

𝑘
, otherwise,

(19)

where 𝜆𝐵𝐵
∗

1

𝑘
and 𝜆

𝐵𝐵
∗

2

𝑘
are defined in (12) and (13), respectively.

In the light of all derivations above, we now describe the
nonmonotone adaptive Barzilai-Borwein gradient algorithm
(abbreviated as NABBL1) (see Algorithm 1).

Remark 1. We have shown that if 𝜆
𝑘
> 0, then the generated

direction is descent. However, in this case, the condition 𝜆
𝑘
>

0 may fail to be fulfilled and the hereditary descent property
is not guaranteed any more. To cope with this defect, we
should keep the sequence {𝜆

𝑘
} uniformly bounded; that is,

for sufficiently small 𝜆min > 0 and sufficiently large 𝜆max > 0,
the 𝜆
𝑘
is forced as

𝜆
𝑘
= min {𝜆max,max {𝜆

𝑘
, 𝜆min}} . (20)
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−4
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(a)
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0
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Observation

−1

−0.5
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500 1000 1500 2000

0

2

4

−4

−2

NABBL1 (RelErr = 1.59%)

(c)

Figure 1: (a) Original signal with length of 2048 and 64 nonzero elements. (b) Noisy measurement with length of 512. (c) Recovered signal
by NABBL1 (red circle) versus original signal (blue peaks).

This approach ensures that 𝜆
𝑘
is bounded from zero and

subsequently ensures that 𝑑
𝑘
is descent at per-iteration.

We prepare to show our main global convergence result
of algorithm NABBL1. The desirable convergence is directly
fromTheorem 3.3 of [22]; we state it for completeness here.

Theorem 2. Let the sequences {𝑥
𝑘
} and {𝑑

𝑘
} be generated by

Algorithm 1. Then, there exists a subsequence 𝐾 such that

lim
𝑘→∞,𝑘∈𝐾

𝑑𝑘
2 = 0. (21)

3. Experimental Results

In this section, we describe some experiments to illustrate the
good performance of the algorithmNABBL1 for reconstruct-
ing sparse signals. These experiments are all tested in Matlab
R2010a. The relative error is used to measure the quality of
the reconstructive signals which is defined as

RelErr = ‖𝑥 − �̄�‖2

‖�̄�‖2

, (22)

where 𝑥 denotes the reconstructive signal and �̄� denotes the
original signal.

In our experiments, we consider a typical compressive
sensing scenario, where the goal is to reconstruct an 𝑛

length sparse signal from 𝑚 observations. The random 𝐴

is the Gaussian matrix whose elements are generated from
shape i.i.d. normal distributions N(0, 1) (randn (𝑚, 𝑛) in
Matlab). In real applications, the measurement 𝑏 is usually
contaminated by noise; that is, 𝑏 = 𝐴𝑥 + 𝜂, where 𝜂 is the
Gaussian noise distributed asN(0, 𝜎

2
𝐼).

We test a small size signal with 𝑛 = 2
11, 𝑚 = 2

9; the
original contains randomly 𝑘 = 2

6 nonzero elements. The
proposed algorithm starts at a zero point and terminates
when the relative change of two successive points is suffi-
ciently small; that is,

𝑥𝑘 − 𝑥
𝑘−1

2
𝑥𝑘−1

2

< 𝜏. (23)

In this experiment, we take 𝜏 = 10
−4, ℎ = 0.8, 𝜆min = 10

−30,
and 𝜆max = 10

30. In the line search, we choose 𝛼 = 10
−2,

𝜌 = 0.35, 𝛿 = 10
−4, and𝑚 = 5.The original signal, the limited

measurement, and the reconstructed signal when the noise
level 𝜎2 = 10

−3 are given in Figure 1.
Comparing (a) to (c) in Figure 1, we clearly see that

the original sparse signal is restored almost exactly. We
see that all the blue peaks are circled by the red circles,
which illustrates that the original signal has been found
almost exactly. Altogether, this simple experiment shows that
our algorithm performs quite well and provides an efficient
approach to recover large sparse nonnegative signal.

We choose four different signals with noise level of 𝜎2 =
10
−3 compared with algorithms NBBL1 [22] and TwIST [13]

in our next experiment. In order to test the speed of the
algorithms more fairly, we list the average of the five results
in Table 1. Numerical results are listed in Table 1, in which
we report the CPU time in seconds (time) required for the
whole reconstructing process and the relative error (RelErr).
FromTable 1, we can see that algorithmNABBL1 is faster than
algorithmsNBBL1 andTwIST, and the number of iterations of
algorithm NABBL1 is less than that of the algorithms NBBL1
and TwIST with different signals.

From Figure 2, NABBL1 usually decreases relative errors
faster than NBBL1 and TwIST throughout the entire iteration
process. We conclude that NABBL1 provides an efficient
approach for solving 𝑙

1
regularized nonsmooth problem from

compressed sensing and is competitive with or performs
better than NBBL1 and TwIST.

4. Conclusion

In this paper, we proposed a nonmonotone adaptive Barzilai-
Borwein algorithm (NABBL1) for solving a 𝑙

1
regularized

least squares problem arising from spare solution recovery
in compressed sensing. At each iteration, the generated
search direction enjoys descent property and can be easily
derived by minimizing a local approximal quadratic model
and simultaneously taking the favorable structure of the 𝑙

1
-

norm. Numerical results illustrate that the proposed method
is promising and competitive with the existing algorithms
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Figure 2: Comparison result of NABBL1, NBBL1, and TwISTwith 𝜎
2
= 10
−3. (a) Original signal with length of 2048 and 64 nonzero elements.

(b) Original signal with length of 4096 and 128 nonzero elements. The 𝑥-axes represent the CPU time in seconds. The 𝑦-axes represent the
relative error.

Table 1: Test results of NABBL1 and NBBL1 with different combinations of (𝑛,𝑚, 𝑘).

𝑛 𝑚 𝑘
NABBL1 NBBL1 TwIST

Time RelErr Time RelErr Time RelErr
8192 2048 256 2.9844 1.73𝑒 − 02 3.5313 1.97𝑒 − 02 4.0156 4.83𝑒 − 02

4096 1024 128 0.6875 1.93𝑒 − 02 0.9063 2.09𝑒 − 02 1.7500 4.96𝑒 − 02

2048 512 64 0.2344 1.66𝑒 − 02 0.3125 1.90𝑒 − 02 0.5625 4.50𝑒 − 02

1024 256 32 0.0625 1.55𝑒 − 02 0.0938 2.23𝑒 − 02 0.1718 4.54𝑒 − 02

NBBL1 and the two-step IST (TwIST). Our future topic is
to extend NABBL1 method for solving matrix trace norm
minimization problems in compressed sensing or some min-
imization problems in computed tomography reconstruction
[26, 27].
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