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3Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany

Correspondence should be addressed to Martin Ehler; martin.ehler@univie.ac.at

Received 13 February 2014; Accepted 19 May 2014; Published 17 June 2014

Academic Editor: Carlo Cattani

Copyright © 2014 M. Ehler and F. Filbir. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We first determine the asymptotes of the 𝜀-covering numbers of Hölder-Zygmund type spaces on data-definedmanifolds. Secondly,
a fully discrete and finite algorithmic scheme is developed providing explicit 𝜀-coverings whose cardinality is asymptotically near
the 𝜀-covering number. Given an arbitrary Hölder-Zygmund type function, the nearby center of a ball in the 𝜀-covering can also
be computed in a discrete finite fashion.

1. Introduction

Data processing in the digital era often deals with finitely
many high-dimensional data chunks stemming from mea-
surements that obey some continuous physical model. The
implementation and numerical evaluation require estimates
on the accuracy of the discretization with respect to the
underlying model. As an elementary tool providing accuracy
guarantees, we will address 𝜀-coverings of some function
spaces related to information theory and machine learning.

As a standard concept in discrete mathematics, the 𝜀-
covering number 𝑛

𝜀
(𝑌) is the minimal number of balls of

radius 𝜀 that cover a compact metric space 𝑌. An arbitrary
element in𝑌 can be represented by a nearby center preserving
precision up to 𝜀. As such, 𝜀-coverings are also an integral
part of approximation theory, especially if𝑌 is some function
space. Covering numbers capture the complexity of 𝑌 and the
approximation aspects are used in many fields such as infor-
mation theory, statistics, nonparametric density estimation,
and machine learning. There are estimates on the asymtotics
of the 𝜀-covering numbers of the standard function spaces
(cf. [1, 2]), but some fields such as machine learning involve
data lying on some manifold, so that target functions are
naturally defined on thismanifold. To clarify the terminology,
we consider smoothness spaces on manifolds as somewhat

nonstandard function spaces. It may be possible that the
covering number of a function space on some compact
Riemannianmanifold can be assembled by covering numbers
of standard function spaces on Euclidian spaces derived from
the charts. However, it is also important to derive explicit
𝜀-coverings whose cardinality is near the benchmark given
by the 𝜀-covering number. We believe that explicit coverings
may be harder to construct using the charts due to interface
problems, and therefore wewill not pursue this direction and,
instead, we will follow a more global approach.

In general, there is still demand for computing coverings
of many discrete and continuous spaces [3]. As an important
additional requirement, any covering of a function space
needs to come with an algorithmic scheme to determine
some function’s nearby center in an effective manner. At first
sight, the latter seems simple enough as we can take the
center whose distance is minimal. However, determining the
distance between two functions is eventually a continuous
operation, and one is particularly interested in finitemethods.

In this paper, we first determine the asymtotics of
the 𝜀-covering number for the unit ball of some Hölder-
Zygmund type space 𝑌 = C𝑠(X) on an underlying smooth
compact Riemannian manifold X (without boundary and
with nonnegative Ricci curvature). In fact, we determine
the asymtotics of the metric entropy log

2
(𝑛
𝜀
(𝑌)), which is
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the number of bits needed to enumerate the 𝜀-covering (cf.
[1]). Moreover, we compute an explicit 𝜀-covering, such that

log
2
(𝑛
𝜀
)

log
2
(𝑛
𝜀
)

≲ (1 + log
2
(

1

𝜀

)) , (1)

where 𝑛
𝜀
is the cardinality of the constructed covering and ≲

means that the left-hand side can be bounded by a generic
constant times the right-hand side. Hence, our covering is
optimal up to a logarithmic factor by means of the metric
entropy. We allow the underlying manifold to be unknown
in our scheme and, instead, to be represented through a finite
sampling. This sampling must be chosen carefully and is the
key to obtaining a finite scheme.The centers of our 𝜀-covering
can then be determined through a finite process, and we can
measure any function’s distance to these centers in a finite
manner.

For constructions of 𝜀-coverings on periodic smoothness
spaces, for instance, we refer to [4, 5]. The concept of 𝜀-
entropy is also closely related to entropy numbers; see [6–8].

The outline of this paper is as follows. In Section 2 we
introduce the setting, define the Hölder-Zygmund type space
C𝑠(X), and determine the metric entropy for its unit ball. An
explicit covering is computed in Section 3.

2. Covering Numbers for
Hölder-Zygmund Type Spaces

We first fix the setting and list some technical assump-
tions used throughout the paper. Let X ⊂ R𝑑 be an 𝛼-
dimensional compact and connected Riemannian manifold
without boundary and with nonnegative Ricci curvature,
geodesic distance 𝜌, and 𝜇 being the normalized Riemannian
volume measure on X; {𝜑

𝑘
}
∞

𝑘=0
are the eigenfunctions of

the Laplacian on X, and {−𝜆
2

𝑘
}
∞

𝑘=0
are the corresponding

eigenvalues arranged in nonincreasing order, so that 0 = 𝜆
0
≤

𝜆
1
≤ ⋅ ⋅ ⋅ . Readers who are not familiar with some terms from

differential geometry that are used here may simply think
of a “nice” manifold without boundary, such as the sphere,
the real projective space, the (real) Grassmann manifold,
or more generally compact homogeneous spaces. The above
properties ensure certain estimates on the heat kernel on X

(see [9, 10]), which were used in a series of papers [9, 11–13]
to develop approximation schemes for smooth functions on
the manifold. Here, we will make use of those approximation
schemes, but we will keep the technical details at a minimum
level.

Let 𝑁 be a positive integer and most of the time we will
restrict ourselves to 𝑁 = 2

𝑗, where 𝑗 is some nonnegative
integer. The space of diffusion polynomials up to degree𝑁 is

Π
𝑁

:= span {𝜑
𝑘
: 𝜆
𝑘
≤ 𝑁} . (2)

Later, we will use the fact that the above conditions imply the
following estimate on the Christoffel function:

∑

𝜆𝑘≤𝑁

󵄨
󵄨
󵄨
󵄨
𝜑
𝑘
(𝑥)

󵄨
󵄨
󵄨
󵄨

2

≍ 𝑁
𝛼

, 𝑥 ∈ X, 𝑁 > 0 (3)

(cf. [9–11]), so that integration and orthonormality yield
dim(Π

𝑁
) ≍ 𝑁

𝛼. Here, the symbol ≍ indicates that each side is
bounded by a generic positive constant times the other side.

In traditional scenarios, the accuracy of approximation
by polynomials is closely related to the smoothness of the
function. Therefore, the accuracy of approximation itself is
nowadays considered to be a measurement of smoothness.
This viewpoint is particularly useful in our setting because
defining smoothness in a classical manner would require
more technical details. Here, we define the Hölder-Zygmund
type space of order 𝑠 > 0 by C𝑠(X) = {𝑓 ∈ 𝐿

∞
(X) :

‖𝑓‖C𝑠(X) < ∞}, where its norm is given by

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩C𝑠(X)

:=
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝐿∞(X)

+ sup
𝑁≥1

𝑁
𝑠

𝐸 (𝑓,Π
𝑁
, 𝐿
∞

(X)) , (4)

with 𝐸(𝑓,Π
𝑁
, 𝐿
∞
(X)) := inf

𝑔∈Π𝑁
‖𝑓 − 𝑔‖

𝐿∞(X)
. Hence, 𝑓 ∈

𝐿
∞
(X) is contained in the Hölder-Zygmund type space if

and only if it can be approximated by Π
𝑁
at rate 𝑁

−𝑠. Since
the eigenfunctions {𝜑

𝑘
}
∞

𝑘=0
are known to be smooth and

we consider the 𝐿
∞
-norm, each function in C𝑠(X) has a

continuous representative and point evaluation makes sense.
The unit ball inC𝑠(X) is denoted byC𝑠(X) := {𝑓 ∈ 𝐿

∞
(X) :

‖𝑓‖C𝑠(X) ≤ 1}. To compute its covering number, we first
establish compactness. SinceC𝑠(X) is not finite-dimensional,
C𝑠(X) is not compact in theHölder-Zygmund type space, but
we consider it as a subspace of 𝐿

∞
(X).

Lemma 1. The setC𝑠(X) is compact in 𝐿
∞
(X).

The compactness of this embedding can be derived from
(4) by abstract arguments involving Kolmogorov numbers
(cf. [6]). Here, we provide a simple elementary proof for the
sake of completeness.

Proof. We aim to verify that any sequence (𝑓
𝑗
)
∞

𝑗=1
⊂ C𝑠(X)

must have an accumulation point in this set. Since each space
Π
𝑁

is finite-dimensional, there are 𝑔
𝑗,𝑁

∈ Π
𝑁
, such that

‖𝑓
𝑗
‖
𝐿∞(X)

+ sup
𝑁≥1

𝑁
𝑠

‖𝑓
𝑗
− 𝑔
𝑗,𝑁

‖
𝐿∞(X)

≤ 1. The latter implies
that ‖𝑔

𝑗,𝑁
‖
𝐿∞(X)

is bounded for all 𝑗 and 𝑁. Thus, there is
𝑔
1

∈ Π
1
such that the subsequence (𝑔

𝜋1(𝑗),1
)
∞

𝑗=1
converges

towards 𝑔
1
. For any𝑁 = 1, 2, . . ., we can recursively construct

𝑔
𝑁

∈ Π
𝑁
such that

𝑔
𝜋𝑁(𝑗),𝑘

󳨀→ 𝑔
𝑘
, ∀𝑘 = 1, . . . , 𝑁, (5)

and (𝑔
𝜋𝑁(𝑗),𝑘

)
∞

𝑛=1
is a subsequence of (𝑔

𝜋𝑁−1(𝑗),𝑘
)
∞

𝑛=1
. For 𝑁󸀠 ≥

𝑁, this construction yields that (𝑔
𝜋
𝑁
󸀠 (𝑗),𝑁

)
∞

𝑗=1
is a subsequence

of (𝑔
𝜋𝑁(𝑗),𝑁

)
∞

𝑗=1
, so that we derive

󵄩
󵄩
󵄩
󵄩
𝑔
𝑁

− 𝑔
𝑁
󸀠

󵄩
󵄩
󵄩
󵄩𝐿∞(X)

= lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝜋
𝑁
󸀠 (𝑗),𝑁

− 𝑔
𝜋
𝑁
󸀠 (𝑗),𝑁

󸀠

󵄩
󵄩
󵄩
󵄩
󵄩𝐿∞(X)

≤ lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
𝜋
𝑁
󸀠 (𝑗),𝑁

− 𝑓
𝜋
𝑁
󸀠 (𝑗)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿∞(X)

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓
𝜋
𝑁
󸀠 (𝑗)

− 𝑔
𝜋
𝑁
󸀠 (𝑗),𝑁

󸀠

󵄩
󵄩
󵄩
󵄩
󵄩𝐿∞(X)

≤ 𝑁
−𝑠

+ 𝑁
󸀠
−𝑠

.

(6)
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Therefore, (𝑔
𝑁
)
∞

𝑁=1
is a Cauchy sequence and, hence, con-

verges towards some 𝑔 ∈ 𝐿
∞
(X). Standard calculations

reveal that 𝑔 is an accumulation point of (𝑓
𝑗
)
∞

𝑗=1
and is

contained inC𝑠(X), which concludes the proof.

We can now derive the asymptotes of the 𝜀-covering
number ofC𝑠(X) in 𝐿

∞
(X).

Theorem 2. If 𝑠 > 0 is fixed and 0 < 𝜀 ≤ 1, then

log
2
(𝑛
𝜀
(C𝑠 (X))) ≍ 𝜀

−𝛼/𝑠 (7)

holds, where the generic constants do not depend on 𝜀.

Analogous results can be derived for similar concepts
such as different types of 𝑛-widths of functions spaces (cf.
[14–16]). Theorem 2 and its proof are rather classical and can
be derived from [17]. To guide the interested reader, we will
provide the outline of the proof that is based on a general
Banach space result and is also used in [18, Theorem 4.1]. Let
𝑋 be a Banach space and let {𝜙

𝑘
}
∞

𝑘=1
⊂ 𝑋 be a sequence of

linearly independent elements whose linear span is dense in
𝑋, and define 𝑋

𝑘
:= span{𝜙

1
, . . . , 𝜙

𝑘
} with 𝑋

0
= {0}. Let

{𝛿
𝑘
}
∞

𝑘=0
be a nonincreasing sequence of positive numbers with

lim
𝑘→∞

𝛿
𝑘
= 0. The full approximation space is

A (𝑋; {𝛿
𝑘
}
∞

𝑘=0
, {𝜙
𝑘
}
∞

𝑘=1
)

:= {𝑓 ∈ 𝑋 : 𝐸 (𝑓,𝑋
𝑘
, 𝑋) ≤ 𝛿

𝑘
, for 𝑘 = 0, 1, . . .} .

(8)

A proof similar to Lemma 1 yields that this space is compact,
and we can formulate the result from Banach space theory
that goes back to Lorentz in [17].

Theorem 3 (see [19, Theorem 3.3]). Let {𝛿
𝑘
}
∞

𝑘=0
be a nonin-

creasing sequence of positive numbers such that 𝛿
2𝑘

≤ 𝑐𝛿
𝑘
,

for 𝑘 = 1, 2, . . . and some constant 𝑐 ∈ (0, 1). For ℓ ≥ 0, let
𝑀
ℓ
:= min{𝑘 : 𝛿

𝑘
≤ 𝑒
−ℓ

}. If 𝑛
𝜀
denotes the 𝜀-covering number

ofA(𝑋; {𝛿
𝑘
}
∞

𝑘=0
, {𝜙
𝑘
}
∞

𝑘=1
) in 𝑋, then one has, for 0 < 𝜀 ≤ 1,

log
2
(𝑛
𝜀
) ≍

𝐿

∑

ℓ=1

𝑀
ℓ
, (9)

where 𝐿 := 2 + ⌊log(1/𝜀)⌋.

At this point our preparations are complete.

Proof of Theorem 2. We aim to apply Theorem 3 with the
function system {𝜑

𝑘
}
∞

𝑘=0
and with 𝑋 being the closure of

⋃
∞

𝑁=1
Π
𝑁
in 𝐿
∞
(X). There, the index set is supposed to start

with 𝑘 = 1, so we set 𝜙
𝑘

= 𝜑
𝑘−1

, 𝑘 = 1, 2, . . .. To define the
sequence {𝛿

𝑘
}
∞

𝑘=0
, we need some preparations. As pointed out

before, integrating (3) overX yields dim(Π
𝑁
) ≍ 𝑁

𝛼. By using
𝑋
𝑘
:= span{𝜑

0
, . . . , 𝜑

𝑘−1
}, we derive, for𝑁𝛼 ≤ 𝑘 ≤ (2𝑁)

𝛼,

(2𝑁)
𝑠

𝐸 (𝑓,Π
2𝑁

, 𝑋) ≲ 𝑘
𝑠/𝛼

𝐸 (𝑓,𝑋
𝑘
, 𝑋) ≲ 𝑁

𝑠

𝐸 (𝑓,Π
𝑁
, 𝑋) .

(10)

Therefore, there are constants 𝐶
𝑖
≥ 1, for 𝑖 = 1, 2, such that

the definitions 𝛿
1;0

= 1/2, 𝛿
1;𝑘

:= (2𝐶
1
)
−1

𝑘
−𝑠/𝛼, and 𝛿

2;0
= 𝐶
2
,

𝛿
2;𝑘

:= 𝐶
2
𝑘
−𝑠/𝛼, lead to

A (𝑋; {𝛿
1;𝑘

}
∞

𝑘=0
, {𝜙
𝑘
}
∞

𝑘=1
)

⊂ C𝑠 (X) ⊂ A (𝑋; {𝛿
2;𝑘

}
∞

𝑘=0
, {𝜙
𝑘
}
∞

𝑘=1
) ,

(11)

which also yields

𝑛
𝜀
(A (𝑋; {𝛿

1;𝑘
}
∞

𝑘=0
, {𝜙
𝑘
}
∞

𝑘=1
))

≤ 𝑛
𝜀
(C𝑠 (X)) ≤ 𝑛

𝜀
(A (𝑋; {𝛿

2;𝑘
}
∞

𝑘=0
, {𝜙
𝑘
}
∞

𝑘=1
)) .

(12)

Since 𝛿
𝑖;2𝑘

≤ 𝑐𝛿
𝑖;𝑘
, for 𝑐 := 2

−𝑠/𝛼

∈ (0, 1), we can apply
Theorem 3. According to [18, Lemma 4.1], ∑𝐿

ℓ=1
𝑀
ℓ
≍ 𝑒
𝐿𝛼/𝑠,

so that the choice of 𝐿 in (9) implies (7).

Remark 4. The proof of Theorem 2 discovers that (7) also
holds under much weaker conditions, and we have only used
the fact that there is a sequence of linearly independent
functions {𝜑

𝑘
}
∞

𝑘=0
, so that the polynomial spaces in (2) satisfy

dim(Π
𝑁
) ≍ 𝑁

𝛼.

3. Near Optimal Covering

This section is dedicated to constructing our covering of the
unit ball in the Hölder-Zygmund type space, which is based
on localized summation kernels as developed in a series of
papers [9, 11–13]. We first need some preparations. A Borel
probability measure ] onX is called a quadrature measure of
order𝑁 if

∫

X

𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝜇 (𝑥) = ∫

X

𝑓 (𝑥) 𝑔 (𝑥) 𝑑] (𝑥) , ∀𝑓, 𝑔 ∈ Π
𝑁
.

(13)

Note that our setting yields that there is a constant 𝑎 > 0 such
that 𝑓 ⋅ 𝑔 ∈ Π

𝑎𝑁
for all 𝑓, 𝑔 ∈ Π

𝑁
and all 𝑁 (cf. [11, Theorem

A.1]); see also [20] for homogeneous spaces. The existence
of quadrature measures with finite support is proved for
fairly general smooth Riemannian manifolds in [11], where
a construction procedure is outlined. In fact, the support of ]
can be chosen to be contained in any sufficiently dense finite
sampling {𝑥

ℓ
}
𝑚

ℓ=1
ofX, so that ] can be identified with {𝑥

ℓ
}
𝑚

ℓ=1

and nonnegative weights {𝜔
ℓ
}
𝑚

ℓ=1
satisfying ]({𝑥

ℓ
}) = 𝜔

ℓ
.

Examples on the sphere, for instance, are given in [21].
The results in [11] yield that we can even choose a

sequence (]
𝑁
)
∞

𝑁=1
of quadraturemeasures of order𝑁, respec-

tively, such that # supp(]
𝑁
) ≲ 𝑁

𝛼. For the remaining part
of the paper, we will suppose that this estimate holds and we
define, for 𝑁 = 2

𝑗,

𝜎
𝑁
(𝑓) := ∫

X

𝑓 (𝑦)𝐾
𝑁
(⋅, 𝑦) 𝑑]

𝑁
(𝑦) ,

where 𝐾
𝑁
(𝑥, 𝑦) =

∞

∑

𝑘=0

ℎ(

𝜆k
𝑁

)𝜑
∗

𝑘
(𝑦) 𝜑
𝑘
(𝑥) ,

(14)
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where ℎ : R
≥0

→ R is an infinitely often differentiable
and nonincreasing function with ℎ(𝑡) = 1 for 𝑡 ≤ 1/2 and
ℎ(𝑡) = 0 for 𝑡 ≥ 1. Although we will not explicitly use it in the
present paper, we want to point out that many advantageous
properties of 𝜎

𝑁
are steered by the so-called localization of

the kernel 𝐾
𝑁
; that is, for fixed 𝑆 > 𝛼 and all 𝑥 ̸= 𝑦 with

𝑁 = 1, 2, . . .,

󵄨
󵄨
󵄨
󵄨
𝐾
𝑁
(𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
≲

𝑁
𝛼−𝑆

𝜌(𝑥, 𝑦)
𝑆
. (15)

See [12, 13]. Later, we will apply

sup
𝑥∈X

∫

X

󵄨
󵄨
󵄨
󵄨
𝐾
𝑁
(𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
𝑑
󵄨
󵄨
󵄨
󵄨
]
𝑁

󵄨
󵄨
󵄨
󵄨
(𝑦) ≲ 1 (16)

(cf. [11]). Those estimates are used in [12, 13] to characterize
the Hölder-Zygmund type smoothness by means of 𝜎

𝑁
.

Theorem 5. Assume that (]
𝑁
)
∞

𝑁=1
is a family of quadrature

measures of order𝑁, respectively. Then, for all 𝑓 ∈ C𝑠(X), one
has

󵄩
󵄩
󵄩
󵄩
𝑓 − 𝜎
𝑁
(𝑓)

󵄩
󵄩
󵄩
󵄩𝐿∞(X)

≲ 𝑁
−𝑠󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩C𝑠(X)

, (17)

where the generic constants do not depend on 𝑁 or 𝑓. On the
other hand, if, for 𝑓 ∈ 𝐿

𝑝
(X), there are generic constants not

depending on𝑁 such that ‖𝑓 − 𝜎
𝑁
(𝑓)‖
𝐿∞(X)

≲ 𝑁
−𝑠 holds, then

𝑓 ∈ C𝑠(X).

Next, by using ℎ(𝜆
𝑘
/𝑁)ℎ(𝜆

𝑘
/2𝑁) = ℎ(𝜆

𝑘
/𝑁) and

applying the quadrature property of ]
𝑁
, a straightforward

calculation yields

𝜎
𝑁
(𝑓, 𝑥) = ∫

X

𝜎
𝑁
(𝑓, 𝑦)𝐾

2𝑁
(𝑥, 𝑦) 𝑑]

𝑁
(𝑦) . (18)

For some fixed 𝑆 > 1, we define the actual approximation by

𝜎
∘

𝑁
(𝑓, 𝑥) := ∫

X

𝐼
𝑁
(𝑓, 𝑦)𝐾

2𝑁
(𝑥, 𝑦) 𝑑]

𝑁
(𝑦) ,

where 𝐼
𝑁
(𝑓, 𝑦) = 𝑁

−𝑆

⌊𝑁
𝑆

𝜎
𝑁
(𝑓, 𝑦)⌋ .

(19)

In other words, we replace 𝜎
𝑁
(𝑓, 𝑦) in (18) with a number on

the grid (1/𝑁
𝑆)Z. We define the following collection:

M
𝑆,𝑁

:= {𝜎
∘

𝑁
(𝑓) : 𝑓 ∈ C𝑠 (X)} , (20)

which induces a covering ofC𝑠(X) in 𝐿
∞
(X).

Theorem 6. For fixed 𝑠 > 0 and 𝑆 > max(1, 𝑠), one applies the
discretization (19). Then, there is a constant 𝑐 > 0 such that,
for all 𝑓 ∈ C𝑠(X), ‖𝑓 − 𝜎

∘

𝑁
(𝑓)‖
𝐿∞(X)

≤ 𝑐𝑁
−𝑠 holds. Thus, for

𝑐𝑁
−𝑠

= 𝜀 ≤ 1, the collection M
𝑆,𝑁

induces an 𝜀-covering of
C𝑠(X) in 𝐿

∞
(X). Its cardinality 𝑛

𝜀
satisfies

log
2
(𝑛
𝜀
) ≲ 𝜀
−𝛼/𝑠

(1 − log
2
(𝜀)) , (21)

where the generic constant does not depend on 𝜀.

Proof of Theorem 6. The triangle inequality yields

󵄩
󵄩
󵄩
󵄩
𝑓 − 𝜎
∘

𝑁
(𝑓)

󵄩
󵄩
󵄩
󵄩𝐿∞(X)

≲
󵄩
󵄩
󵄩
󵄩
𝑓 − 𝜎
𝑁
(𝑓)

󵄩
󵄩
󵄩
󵄩𝐿∞(X)

+
󵄩
󵄩
󵄩
󵄩
𝜎
𝑁
(𝑓, ]
𝑁
) − 𝜎
∘

𝑁
(𝑓)

󵄩
󵄩
󵄩
󵄩𝐿∞(X)

.

(22)

Since Theorem 5 implies ‖𝑓 − 𝜎
𝑁
(𝑓)‖
𝐿∞(X)

≲ 𝑁
−𝑠

‖𝑓‖C𝑠(X) =

𝑁
−𝑠, we only need to take care of the term on the farmost

right. The quantization (19) immediately yields

󵄨
󵄨
󵄨
󵄨
𝜎
𝑁
(𝑓, 𝑦) − 𝐼

𝑁
(𝑓, 𝑦)

󵄨
󵄨
󵄨
󵄨
≤ 𝑁
−𝑆

, ∀𝑦 ∈ supp (]N) , (23)

so that (18) and (16) imply

󵄩
󵄩
󵄩
󵄩
𝜎
𝑁
(𝑓) − 𝜎

∘

𝑁
(𝑓)

󵄩
󵄩
󵄩
󵄩𝐿∞(X)

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

X

(𝜎
𝑁
(𝑓, 𝑦) − 𝐼

𝑁
(𝑓, 𝑦))𝐾

𝑁
(⋅, 𝑦)𝑑]

𝑁
(𝑦)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝐿∞(X)

≲ 𝑁
−𝑆

≤ 𝑁
−𝑠

.

(24)

Hence, we have derived the estimate on ‖𝑓 − 𝜎
∘

𝑁
(𝑓)‖
𝐿∞(X)

.
To tackle (21), we apply (23), which yields

󵄨
󵄨
󵄨
󵄨
𝐼
𝑁
(𝑓, 𝑦)

󵄨
󵄨
󵄨
󵄨
≲

󵄩
󵄩
󵄩
󵄩
𝜎
𝑁
(𝑓)

󵄩
󵄩
󵄩
󵄩𝐿∞(X)

. (25)

According to [13, Theorem 5.1], ‖𝜎
𝑁
(𝑓)‖
𝐿∞(X)

≲ ‖𝑓‖
𝐿∞(X)

holds. Since 𝑓 is contained in the ball of radius 1, we see that
󵄨
󵄨
󵄨
󵄨
𝐼
𝑁
(𝑓, 𝑦)

󵄨
󵄨
󵄨
󵄨
≲ 1. (26)

Thus, the number of possible values of 𝐼
𝑁
(𝑓, 𝑦) for fixed 𝑦 is

at most 𝑐
1
𝑁
𝑆, where 𝑐

1
≥ 1 is a positive constant. Note that

we can assume that 𝑐
1
𝑁
𝑆

≥ 1 because, otherwise, 𝐼
𝑁
(𝑓, 𝑦)

would be zero. Since # supp(]
𝑁
) ≲ 𝑁

𝛼, we have #{𝐼
𝑁
(𝑓, 𝑦) :

𝑦 ∈ supp(]
𝑁
)} ≲ 𝑁

𝛼. Therefore, we have 𝑛
𝜀
≤ (𝑐
1
𝑁
𝑆

)
𝑐2𝑁
𝛼

, for
some positive constant 𝑐

2
. By using 𝑐𝑁

−𝑠

= 𝜀 ≤ 1, we obtain

log
2
(𝑛
𝜀
) = 𝑐
2
𝑐
𝛼/𝑠

𝜀
−𝛼/𝑠log

2
(𝑐
1
(

𝑐

𝜀

)

𝑆/𝑠

)

≲ 𝜀
−𝛼/𝑠log

2
(

(𝑐
1
)
𝑠/𝑆

𝑐

𝜀

)

≲ 𝜀
−𝛼/𝑠log

2
(

(𝑐
1
/𝜀)
𝑠/𝑆

𝑐

𝜀

)

≲ 𝜀
−𝛼/𝑠

(1 + log
2
(

1

𝜀

)) ,

(27)

which concludes the proof.

According to Theorems 2 and 6, the 𝜀-covering number
𝑛
𝜀
of C𝑠(X) and the number 𝑛

𝜀
of 𝜀-balls induced by M

𝑆,𝑁

satisfy

log
2
(𝑛
𝜀
)

log
2
(𝑛
𝜀
)

≲ (1 + log
2
(

1

𝜀

)) . (28)
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Therefore, our scheme is optimal up to a logarithmic factor
by means of the metric entropy.

Our results are also related to the field of manifold
learning, in which a function must be reconstructed from
finite training data (cf. [22–25]). When actually applying our
scheme, we first acquire a set of samples {𝑥

ℓ
}
𝑚

ℓ=1
sufficiently

well covering X and we also need the function values
{𝑓(𝑥
ℓ
)}
𝑚

ℓ=1
, which altogether build the training data. Next, we

compute a quadrature measure ]
𝑁
for some maximal𝑁 such

that supp(]
𝑁
) ⊂ {𝑥

ℓ
}
𝑚

ℓ=1
; see [11, 21] for an algorithm. Here,

we need that the sample points {𝑥
ℓ
}
𝑚

ℓ=1
are well distributed

and larger𝑁 require more samples. An element inM
𝑆,𝑁

that
is 𝜀-close to 𝑓 is simply given by 𝜎

∘

𝑁
(𝑓), whose computation

only requires knowledge of 𝑓 and {𝜑
𝑘

: 𝜆
𝑘

≤ 𝑁} on
the finite set supp(]

𝑁
); see (14) and (19). In other words,

we do not need to know the entire manifold but only the
finite sampling of the training data {𝑥

ℓ
}
𝑚

ℓ=1
, the sampling

of the target function {𝑓(𝑥
ℓ
)}
𝑚

ℓ=1
, and, more delicately, the

sampling of the eigenfunctions {𝜑
𝑘
(𝑥
ℓ
) : 𝜆

𝑘
≤ 𝑁, ℓ =

1, . . . , 𝑚} of the Laplacian.Those eigenfunctions, however, are
not explicitly known except for few special cases, such as the
sphere, projective space, the Grassmann manifold, and few
more. Fortunately, approximation of those eigenfunctions is
a common procedure in manifold learning. Computational
schemes are based on the graph Laplacian to be built from
the training data and, at least under suitable assumptions,
converging towards the Laplacian on the manifold when the
cardinality of the data increases (cf. [26–28] and references
therein). Those schemes approximately sample the first few
eigenfunctions on the training data. Thus, our proposed
approach is indeed fully discrete and computationally feasible
even if the eigenfunctions {𝜑

𝑘
}
∞

𝑘=0
are not explicitly known. In

fact, themanifold itself can be unknown.As long asX satisfies
the theoretical assumptions, it is simply represented bymeans
of a finite sample.

Remark 7. The technical assumptions on the manifoldX and
the function system {𝜑

𝑘
}
∞

𝑘=0
imply certain estimates on the

heat kernel on X (see [9, 10]), mainly used to ensure that the
localization property (15) holds (cf. [12, 13]). Our assumptions
also imply the existence of quadrature measures ]

𝑁
and that

𝑓 ⋅ 𝑔 ∈ Π
𝑎𝑁

for all 𝑓, 𝑔 ∈ Π
𝑁
and some constant 𝑎 > 0. These

items lead to the characterization of the Hölder-Zygmund
type space by means of 𝜎

𝑁
in Theorem 5. Moreover, the

family (]
𝑁
)
∞

𝑁=1
can be chosen with finite support, in fact with

# supp(]
𝑁
) ≲ 𝑁

𝛼 (cf. [11]). Theorem 5 and # supp(]
𝑁
) ≲ 𝑁

𝛼

are indeed the twomain ingredients of the poof of our results
in Theorem 6.

Remark 8. The reader familiar with the approximation
scheme developed in [9, 11–13] may expect that the presented
results can be generalized to a wider class of Besov spaces on
metric spaces.This is indeed true but requires more technical
details and does not lead to a fully discrete scheme in the end.
Here, we intended to emphasize the main ideas by keeping
technical details at a minimum level and to focus on the
development of a fully discrete covering algorithm.Themore
general approach will be described elsewhere.
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