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The concept of Levitin-Polyak well-posedness of an equilibrium-like problem in Banach spaces is introduced. Under suitable
conditions, some characterizations of its Levitin-Polyak well-posedness are established. Some conditions under which an
equilibrium-like problem in Banach spaces is Levitin-Polyak well-posed are also derived.

1. Introduction

In 1966, Tykhonov [1] first established the well-posedness
of a minimization problem, which has been known as
Tykhonov well-posedness. Since it is important in optimiza-
tion problems, various concepts of well-posedness have been
introduced and studied in past decades. For more about
the well-posedness, we refer to [2-4] and the references
therein.

The Tykhonov well-posedness of a constrained mini-
mization problem requires that every minimizing sequence
should lie in the constraint set. In many situations, the
minimizing sequence produced by a numerical optimization
method usually fails to be feasible but gets closer and closer
to the constraint set. Levitin and Polyak [5] generalized
the concept of Tykhnov well-posedness by requiring the
existence and uniqueness of minimizer and the convergence
of every generalized minimizing sequence toward the unique
minimizer, which has been known as Levitin and Polyak well-
posedness. There are a lot of results concerned with Tykhonov
well-posedness, LP well-posedness, and their generalizations
for minimization problems. For details, we refer to [1-3, 5-7].

Recently, the concept of well-posedness has been
extended to many other fields, including Nash equilibrium

[8], inclusion problems, and fixed point problems [9-13].
Lemaire [12, 13] studied the relations between the well-
posedness of minimization problems, inclusion problems,
and fixed point problems. Fang et al. [11] proved that the
well-posedness of a general mixed variational inequality
is equivalent to the existence and the uniqueness of its
solution in the Hilbert space. Recently, Ceng and Yao [9]
got some results for the well-posedness of the generalized
mixed variational inequality, the corresponding inclusion
problem, and the corresponding fixed point problem. On the
other hand, Li and Xia [14] considered the Levitin-Polyak
well-posedness of a generalized variational inequality in
Banach space. And they showed that the Levitin-Polyak
well-posedness of a generalized variational inequality is
equivalent to the uniqueness and existence of its solutions.
However, there has been no result for the Levitin-Polyak
well-posedness of an equilibrium-like problem.

Motivated and inspired by the research work going on in
this field, in this paper, we extend the notion of Levitin-Polyak
well-posedness to an equilibrium-like problem in Banach
spaces and give some metric characterizations of its Levitin-
Polyak well-posedness. Finally, we derive some conditions
under which an equilibrium-like problem is Levitin-Polyak
well-posed.
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2. Preliminaries

Let X be a real reflexive Banach space with its dual X* and
let K be a nonempty, closed, and convex subset of X. Let F :
X — 2% beaset-valued mapping, andlet¢$ : X" xXxX —
R be a functional. In this paper, we consider the following
equilibrium-like problem associated with (F, ¢, K):

ELP (F,¢,K) : find x € K such that for some u € F (x),

¢(u,x,y) <0, VyeKk.

@)

Definition 1. Let A, B be nonempty subsets of X. The Haus-
dorff metric #Z°(:,-) between A and B is defined by

# (A, B) = max{e (A, B),e(B,A)}, (2)

where e(A, B) = sup,,. 4d(a, B) with d(a, B) = inf,glla - b||.

Lemma 2 (Nadler’s theorem [7]). Let (X, | - ||) be a normed
vector space and let F(-,-) be the Hausdorff metric on the
collection CB(X) of all nonempty, closed, and bounded subsets
of X, induced by a metric d in terms of d(u,v) = |lu — v,
which is defined by % (U,V) = max{e(U,V),e(V,U)}, for
U and V in CB(X), where e(U,V) = sup,.,d(x,V) with
d(x,V) = infyevllx - yI. If U and V lie in CB(X), then, for
any € > 0 and any u € U, there exists v € V such that
lu—-vll < (1+e)FU,V). In particular, whenever U and V
are compact subsets in X, one has |u —v| < Z(U, V).

Definition 3 (see [9]). A nonempty set-valued mapping F :
X — 2% issaid to be

(i) #-hemicontinuous if, for any x, y € X, the function
t —» H(F(x + t(y — x),F(x))) from [0,1] into
R* = [0, +00) is continuous at 0*, where Z(-,-) is the
Hausdorff metric defined on CB(X);

(ii) #Z -uniformly continuous if, for all € > 0, there exists
& > 0 such that for all x, y € X with [lx — y|| < J, one
has 7 (F(x), F(y)) < €, where Z(, ) is the Hausdorft
metric defined on CB(X).

Definition 4. Let X and Y be two topological spaces and
x € X. A set-valued mapping F : X — 2% is said to
be upper semicontinuous (u.s.c. in short) at x, if for any
neighbourhood V' of F(x), there exists a neighbourhood U
of x such that F(y) ¢ V, forall y € U.If F is u.s.c. at each
point of X, we say that F is u.s.c. on X.

Definition 5 (see [15]). Let A be a nonempty subset of X. The
measure of noncompactness p of the set A is defined by
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y(A):inf<|e>0:

n
Ac|JA,diam 4, <e, 3)
i=1

i= 1,2,...,n},

where diam A; denotes the diameter of the set A;, for i =
1,2,...,n.

Definition 6. Let X be a real reflexive Banach space with its
dual X* andlet F : X — 2% be a set-valued mapping. A
functional ¢ : X* x X x X — R is said to be monotone
with respect to F, if for any x, y € X and u € F(x),v € F(y),
(U, x, y) = d(v, x, ).

Remark 7. It ¢p(u,x,y) = (u,x — y), forall x,y € X and
u € F(x), it is easy to know that ¢ is monotone with respect
to F which reduces to F being monotone.

We first prove the following proposition.

Proposition 8. Let K be a nonempty, closed, and convex subset
of XandletF : X — 2% bea nonempty compact-valued
mapping which is  -hemicontinuous. Let ¢ : X" xXxX — R
be monotone with respect to F, continuous in first argument,
and concave in third argument. Moreover, ¢(u, x,x) = 0, for
allu € X, x € K. Then, for a given x € K, the following
statements are equivalent:

(i) there exists u € F(x) such that ¢(u, x,y) < 0, for all
yeK;

(ii) ¢(v,x, ¥) <0, forall y € K, v € F(y).
Proof. First, we assume that for some u € F(x), ¢(u, x, y) <0,

for all y € K. Because ¢ is monotone with respect to F, we
have

¢(v,x,y) <0, VyeK, veF(y). (4)

Conversely, suppose that for all y € K, v € F(y), we
obtain

¢ (v,x,y)<0. (5)

For any given y € K, we define y, = ty + (1 — t)x for all
t € (0,1). Replacing y by y, in the left-hand side of the last
inequality, we have that, for each v, € F(y,),

0=¢ (v, x )
=¢(vpox,ty+(1-1)x)

(6)
>t (v, x, ) + (1= 1) ¢ (v, x, x)
=t¢(vox. y).
This implies that
¢(vx,¥) <0, Vv, €F(y,), t€(0,1). (%)
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Since F: X — 2% isa nonempty compact-valued mapping,
F(y,) and F(x) are nonempty compact and hence lie in
CB(X). From Lemma 2, we get that, for each t € (0,1) and
for each fixed v, € F(y,), there exists a u, € F(x) such that

lve =l < @+ 1) 7 (F (3,), F (). 7)

Since F(x) is compact, without loss of generality, we assume
that u, — u € F(x)ast — 0. Since F is #-
hemicontinuous, we get thatast — 07,

[ve —u| <@ +1)# (F(y,),F(x)) — 0. (8)

This implies that v, — u € F(x) ast — 0. Since ¢
is continuous in first argument, by (*) we obtain that there
exists an u € F(x) such that

¢(u,x,y) <0, VyeKk. 9)

This completes the proof. O

3. Levitin-Polyak Well-Posedness of
ELP(F, ¢, K)

In this section, we extend the concepts of Levitin-Poylak well-
posedness to the equilibrium-like problem and establish its
metric characterizations. Let « > 0 be a given number, and
let X, K, F, and ¢ be defined as the previous section.

Definition 9. A sequence {x,} C X is called an LP «-
approximating sequence for ELP(F, ¢, K), if there exist w, €
X withw, — 0and 0 <€, — 0such thatx, + w, € K for
all n € N and there exists u,, € F(x,,) such that

¢ (u,, x,, y) < %l]xn ~y|P+en VyeK, neN. (10)

Ifa; > &, > 0, then every LP «,-approximating sequence
is LP o -approximating. When « = 0, we say that {x,} is an
LP approximating sequence for ELP(F, ¢, K).

Definition 10. ELP(F, ¢, K) is strongly LP «-well-posed if
ELP(F,¢,K) has an unique solution and every LP «-
approximating sequence converges strongly to the unique
solution. In the sequel, strong LP 0-well-posedness is always
called as strong LP well-posedness. If«; > a, > 0, then strong
LP «,-well-posedness implies strong LP «,-well-posedness.

Definition 11. ELP(F, ¢, K) is strongly LP a-well-posed in the
generalized sense if ELP(F, ¢, K) has nonempty solution set
S and every LP a-approximating sequence has a subsequence
which converges strongly to some point of S. In the sequel,
strong LP 0-well-posedness in the generalized sense is always
called as strong LP well-posedness in the generalized sense.
If ¢, > «, > 0, then strong LP «,-well-posedness in the
generalized sense implies strong LP «,-well-posedness in the
generalized sense.

Remark 12. Tfdp(u, x, y) = (u, x—y)+¢@(x)—¢(y),forall x, y €
X, u € F(x), then Definitions 10 and 11 reduce to Definitions
3.3 and 3.4 of [14], respectively. Moreover, when X is a Hilbert
space, K = X, and w,, = 0, Definitions 10 and 11 reduce to
Definitions 3.2 and 3.3 of [11], respectively.

To obtain the metric characterizations of LP «-well-
posedness, we consider the following LP «-approximating
solution set of ELP(F, ¢, K):

Q, (e) = {x € dom¢:

d(x,K) <e,

and there exists u € F (x)
such that Vy € K,¢(u,x, y) < %"x _ y"Z n 6} i

Ve > 0.
(11)

Theorem 13. Let K be a nonempty, closed, and convex subset
of Xandlet F : X — 2% be a I -hemicontinuous and
nonempty compact-valued mapping. Let ¢ : X* x X x X —
R be monotone with respect to F, lower semicontinuous in
second argument, and concave in third argument. Moreover,
G(u,x,x) = 0, forallu € X*, x € K. Then, ELP(F, $,K) is
strongly LP a-well-posed if and only if

Q. (e) #0, Ve >0 and diam(Q,(e)) — 0 ase — 0.

(12)

Proof. First, we assume that ELP(F, ¢, K) is strongly LP «-
well-posed and x™ € K is the unique solution of ELP(F, ¢, K).
It is easy to see that x* € Q, (). If diam(Q,(€)) » Oase —
0, then there exist constant I > 0 and sequences {¢,} ¢ R,

withe, — 0and {xill)}, {xf)} with xfll),xf) € Q,(e,) such
that

[ = xP| > 1 vneN. (13)

Because of xﬁll), xff) € Q,(€,), by the definition of Q(¢,), for
xill), we obtain

1
d(xﬁll),K) <€, <€, + o (14)

and there exists u,, € F (xﬁll)) such that
(1) ad OB
¢ (un,xn ,y) < E"x” - y” +€,, VyeKk. (15)

Since K is closed and convex, then there exists X’ € K such
that ||x£ll) —%21) | <e,+(1/n). Letw, = Eﬁ) - xfll); we get w,, +
) _ 1 y = T
x;) = xﬁl) € Kand ||lw,| = ||x£l) - x;)ll — 0. This implies
that w, — 0. Thus, {qul)} is an LP approximating sequence
for ELP(F, ¢, K). By the similar argument, we obtain that

{xf)} is an LP approximating sequence for ELP(F, ¢, K). So



they have to converge strongly to the unique solution of
ELP(F, ¢, K), which contradicts condition (13).

Conversely, suppose that condition (12) holds. Let {x,,} C
X bean LP a-approximating sequence for ELP(F, ¢, K). Then,
there exists w,, € X with w,, — 0 such that x,, + w, € K, and
there exist 0 < e,’1 — 0andu, € F(x,) such that

¢ (u,, x,, y) < %”xn —y|P+€, VyeK, neN. (16)

Since x, + w, € K, then there exists x,, € K such that
x, + w, = X,. It is obvious that d(x,,K) < lx, - X,/ =
lw,l — 0.Suppose thate, = max{er'l, w,ll}; we get that x,, €
Q,(e,). From (12), we have that {x,,} is a Cauchy sequence and
converges strongly to a point x € K. Since ¢ is monotone with
respect to F and lower semicontinuous in second argument,
it follows from (16) that, for any y € K, v € F(y),

¢ (v, %, y) < liminf {¢ (v, x,,, y)}

< hﬂn;l)lol'(l)f {(P (un> xn’ )’)}

17)
< liminf { S, - oI + <1

- Yol

Forany y € K, let y, = x+t(y—X), forallt € [0, 1]. Since K is
a nonempty, closed, and convex subset, we have that y, € K.
Then, (17) implies that

_ (o AT,
‘/)(Vpx’ yt) < Ellx - J’t“2> Vv, € F(yt)' (18)

Since ¢ is concave in third argument and ¢(u, x, x) = 0, for
allue X", x ek,

—_ t,_
p®y)< TR W eF(n), yeK.  (9)

Since F is a nonempty compact-valued mapping and 7-
hemicontinuous, by Lemma 2, for each fixed v, € F(y,)
and each t € (0,1), there exists a u, € F(x) such that
lv, — ull < F(F(y,),F(x)). Since F is #-hemicontinuous,
we get that ||v, — u,|| < #Z(F(y,),F(X)) — Oast — 0.
Since F is compact, without loss of generality, we assume that
u, —» u € F(x)ast — 0%, Thus, we obtain that

[ve = ull < v = ]| + e = u]
<H(F(y),F®@)+|u,—u| —0 ast— 0"
(20)
This implies that v, — uast — 0". It follows from (19) that
¢(u,x,y)<0, VyeKk. (21)

Therefore, x solves ELP(F, ¢, K).

To complete the proof, we only need to prove that
ELP(F, ¢, K) has a unique solution. Suppose that ELP(F, ¢, K)
has two distinct solutions x; and x,. Then, it is obvious that
X1, %, € Qu(€) forall e > 0 and

0 < [x; = x,|| < diam (Q,, (€)) — 0, (22)

a contradiction to (12). This completesthe proof. O
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Theorem 14. Let K be a nonempty, closed, and convex subset

of Xandlet F : X — 2X" be a F-hemicontinuous and
nonempty compact-valued mapping. Let ¢ : X" xXxX — R
be monotone with respect to F and lower semicontinuous in
second argument. Moreover, ¢(u,x,x) = 0, for allu € X*,
x € K. Then, ELP(F, ¢, K) is strongly LP «-well-posed in the
generalized sense if and only if

Q. (e) #0, Ve>0and u(Q, () —0 ase— 0.

(23)

Proof. Assume that ELP(F, ¢, K) is strongly LP «-well-posed
in the generalized sense. Let S be the solution set of
ELP(F, ¢, K). Then, S is nonempty and compact. Indeed,
let {x,} be any sequence in S. Then, {x,} is an LP «a-
approximating sequence for ELP(F, ¢, K). Since ELP(F, ¢, K)
is strongly a-well-posed in the generalized sense, {x,} has a
subsequence which converges strongly to some point of S.
Thus, S is compact. It is easy to see that O, (e) > S#0 for
all € > 0. Now we show that

#(Qq(e)) — 0

It is easy to see that, for every e > 0,

as € — 0. (24)

Z (Q, (€),S) = max{e(Q, (€),S),e(S, Q, (€)}
25)
=e(Q,(e),S).

Taking into account the compactness of S, we obtain
1(Q () < 29 (O (€),5) + 1 (S) = 26 (2 ), 5). (26)
To prove (23), it is sufficient to show that
e(Q,(€),S) —0 ase—0. (27)

Indeed, if e(Q,(€),S) - 0ase — 0, then there exist! > 0
and {¢,} ¢ R" withe, — 0,and x,, € Q,(€,) such that

x,¢S+B(0,]), VneN, (28)

where B(0,) is the closed ball centered at 0 with radius I. By
the definition of Q(¢,,), we know that d(x,,K) < ¢, < €, +
(1/n), and there exists u,, € F(x,) such that

¢ (urvxn’ y) < %“xn - ynz + €, Vy € K. (29)

Thus, there exists x,, € K such that ||x, — x,|| < ¢, + (1/n).
Let w, = X, — x,; then, we have w, + x, € K with
w, — 0.So {x,} is an LP «a-approximating sequence for
ELP(F, ¢, K). Since ELP(F, ¢, K) is strongly LP a-well-posed
in the generalized sense, there exists a subsequence {x, }
of {x,} which converges strongly to some point of S. This
contradicts (28) and so

e(Q,(€),S) —0 ase—0. (30)

Conversely, suppose that (23) holds. We first show that
Q,(€) is closed for all € > 0. Let {x,} ¢ Q,(€) with x, — x;
then, there exists u,, € F(x,) such that d(x,, K) < e and

¢ (u,, x,, y) < %”xn —y|’+e VyeK neN. (31)
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Since F is an upper semicontinuous and nonempty compact-
valued mapping, there exist a sequence {u,, } of {u,,} and some
u € F(x) such thatu, — u. Therefore, it follows from (31)
and the lower semicontinuity of ¢ that

¢ (u,x,y) < %le ~y|*+e Vyek. (32)

It is obvious that d(x, K) < e. This implies that x € Q,(e) and
s0 Q,(e) is nonempty closed for all € > 0. Observe that

S= ﬂ sz (6) . (33)
>0
Since pu(Q,(€)) — 0, the theorem in page 412 of [15] can be
applied and one concludes that S is nonempty and compact
with

e(Q (€),S) = F (Q, (€),S) — 0. (34)

Let {X,}] < X be an LP a-approximating sequence for
ELP(F, ¢, K). Then, there exists w,, € X with w, — 0 such
that X, + w, € K, and there exist i, € F(%,) and0 <€, — 0
such that

¢ (U, %, y) < %"En ~-y|P+€, VyeK, neN. (35

Since X,,+w,, € K, then thereexistsX,, € K such that X, +w, =
x,,. It follows that

(%K) < |7y = %o = ] — 0. (36)

Sete, = rnax{||wn||,6:,}; we get X, € Q,(€,). From (23) and
the definition of Q(e,,), we obtain

d(x,,8) <e(Qy,(€,),S) — 0. (37)
Since S is compact, there exists p, € S such that
|pn = %]l = d(%,.8) — 0. (38)

From the compactness of S, there exists a subsequence {p,, }
of {p,} which converges strongly to p € S. Hence, the
corresponding subsequence {X,, } of {X,} converges strongly
to p € S. Thus, ELP(F, ¢, K) is strongly LP a-well-posed in
the generalized sense. The proof is complete. O

4. Conditions for Levitin-Polyak
Well-Posedness

In this section, we get some conditions under which the
ELP(F, ¢, K) in Banach spaces is Levitin-Polyak well-posed.

For any §, > 0, we denote M(8,) = {x € X : dg(x) < §,}.
We have the following result.

Theorem 15. Let K be a nonempty, closed, and convex subset

of Xandlet F : X — 2% be a I -hemicontinuous and
nonempty compact-valued mapping. Let ¢ : X* x X x X —
R be monotone with respect to F, lower semicontinuous in
first and second arguments, and concave in third argument.
Moreover, ¢p(u,x,x) = 0, forallu € X*, x € K. If there
exists some 8, with §, > 0 such that M(8,) is compact, then
ELP(F, ¢, K) is strongly LP «-well-posed in the generalized
sense.

Proof. Let {x,} be an LP approximating sequence for
ELP(F, ¢, K). Then, there exist 0 < €, — 0and w, € X
with w,, — 0 such that

x,+w, €K, (39)

and there exists u,, € F(x,) satisfying
¢ (5 x,, ) < %"xn ~y|P+€, VyeK, neN. (40)

Since x,,+w,, € K, then thereexists X, € K such that x,+w, =
x,. Thus,

d(x,,K) < ||x, = %,|| = |lw,| — o. (41)

Lete, = max{e;, lw,|l}; we can get d(x,,K) < €,. Without
loss of generality, suppose that {x,} < M(§,) for n is
sufficiently large. By the compactness of M(§,), there exist a
subsequence {xnk} of {x,} and x € M(§,) such that Xy, — X
It is easy to see that X € K. Furthermore, by the u.s.c. of
F at X and compactness of F(x), there exist a subsequence
{unk} of {u,} and some u € F(x) such that U, — u. Since
¢ is lower semicontinuous in first and second arguments, it
follows from (40) that

¢ (1%, y) < gll?— yIP, vyek. (42)

Forany y € K,let y, = x + t(y — x), for all t € (0,1); it is
obvious that y, € K. Now, from (42), we have

¢ (% y) < %llf - (43)

By the convexity of ¢, it follows that, for each t € (0, 1), we
obtain

_ t—
¢ (@% ) < %llx -y’ vyek. (44)

Lett — 0" in the last inequality; then, we have

¢(mx,y)<0, VyeKk. (45)
This shows that x solves ELP(F, ¢, K). Thus, ELP(F, ¢, K) is
strongly LP a-well-posed in the generalized sense. O
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