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Study of dynamic equations in time scale is a new area in mathematics. Time scale tries to build a bridge between real numbers
and integers. Two derivatives in time scale have been introduced and called as delta and nabla derivative. Delta derivative concept
is defined as forward direction, and nabla derivative concept is defined as backward direction. Within the scope of this study, we
consider themethodof obtaining parameters of regression equation of integer values through time scale.Therefore, we implemented
least squaresmethod according to derivative definition of time scale and obtained coefficients related to themodel. Here, there exist
two coefficients originating from forward and backward jump operators relevant to the same model, which are different from each
other. Occurrence of such a situation is equal to total number of values of vertical deviation between regression equations and
observation values of forward and backward jump operators divided by two. We also estimated coefficients for the model using
ordinary least squares method. As a result, we made an introduction to least squares method on time scale. We think that time
scale theory would be a new vision in least square especially when assumptions of linear regression are violated.

1. Introduction

Although theoretical to a high extent, time scale tries to
link a bridge between continuous and discrete analysis [1, 2].
Such calculations provide an integrated structure for the
analysis of difference and differential equations [3–5]. Those
equations [6, 7] have been applied in dynamic programming
[8–13], neural network [10, 14, 15], economic modeling
[10, 16], population biology [17], quantum calculus [18],
geometric analysis [19], real-time communication networks
[20], intelligent robotic control [21], adaptive sampling [22],
approximation theory [13], financial engineering [12] on time
scales, and switched linear circuits [23] among others.

This study deals with the estimation of parameters of
regression equation by using least squares method through
time scale.

Themain purpose of least squares method is to minimize
the sum of squared vertical deviations. For this, to find the
coefficients in simple linear regression model 𝑌 = 𝛽

0
+ 𝛽
1
𝑥 +

𝜀, partial derivatives related to coefficients of equation 𝑄 =

∑
𝑛

𝑖=1
𝜀
𝑖

2
= ∑
𝑛

𝑖=1
(𝑦
𝑖
− 𝛽
0
− 𝛽
1
𝑥
𝑖
)
2 are obtained and the stage

takes place, in which normal equations are to be obtained by
setting partial derivatives for each coefficient equal to zero.
And from normal equations, equation 𝑦

𝑖
= 𝛽
0
+ 𝛽
1
𝑥
𝑖
+ 𝑒
𝑖
,

predictive model for (9) is obtained.
In statistics, least squares method is used in accordance

with the known derivative definition when parameters of
regression equation are obtained. In this study, time scale
derivative definition is applied to the least squaresmethod. In
this regard, (9) simple linear regression model is considered
and 𝛽

0
and 𝛽

1
, estimators of 𝛽

0
and 𝛽

1
coefficients, are

obtained in accordance with forward and backward jump
operators. Different 𝛽

0
and 𝛽

1
parameter values are obtained,

originating from forward and backward jump operators
related to the 𝑦 = 𝛽

0
+𝛽
1
𝑥 simple linear regression equation.

In cases when observation values are discrete, forward jump
operator equation 𝜎(𝑡) = 𝑡 + 1 and backward jump operator
equation 𝜌(𝑡) = 𝑡 − 1 are taken.

The main approach in regression analysis is to minimize
the sum of squared (vertical) deviations between actual and
estimated values. This is a weighed method for regression
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analysis due to its statistical properties [24]. Here, the point
which should be considered is that, since in least squares
method, sum of squared vertical deviations is of interest,
analysis would also operate accordingly.The issue of applying
first and second derivatives should also be taken into con-
sideration since the aim is to minimize the sum of squared
vertical deviations.

The study consists of two main parts and in the last part
takes place an implementation regarding time scale theory.
Main parts discussed are time scale theory and simple linear
regression, respectively. Time scale theory part includes an
explanation of time scale derivative related to and the defi-
nitions of forward and backward jump operators. The other
main part includes explanations to simple linear regression
model being in the form of (9) and to the calculation of 𝛽

0

and 𝛽
1
, estimators of 𝛽

0
and 𝛽

1
, by using the method of least

squares. Time scale derivative definition includes normal
equations for forward and backward jump operators, as well
as𝛽
0
and𝛽
1
values, which are𝛽

0
and𝛽
1
estimators of forward

and backward jump operators.

2. Time Scale Preliminaries

Bohner and Peterson [1] suggested the concept of time scale
in their studies. Their purpose was to bring together discrete
analysis and continuous analysis under one model. Any
closed nonempty subset 𝑇 of real numbers R is called as
time scale and is indicated with symbol 𝑇. Thus,R, Ζ,𝑁,𝑁

0
,

real numbers, integers, natural numbers, and positive natural
numbers, respectively, are examples of time scale and consid-
ered as [0, 1] ∪ [2, 3], [0, 1] ∪ 𝑁; meaning 𝐿 ̸= 0 and 𝐿 ⊆ R
meaning [ ] ∪ [ ] ∪ ⋅ ⋅ ⋅ =R.

𝑄,R \ 𝑄, 𝐶, (0, 1), rational numbers, irrational numbers,
complex numbers, and open interval of 0 and 1, respectively,
are not included in time scale. Since time scale is closed, it can
clearly be seen that rational numbers are never a time scale.

Delta derivative 𝑓
Δ for function 𝑓 defined at 𝑇 is actually

defined as follows.
(i) If 𝑓Δ = 𝑓

󸀠, 𝑇 = R, then it is a general derivative.
(ii) If 𝑓

Δ
= Δ𝑓, 𝑇 = 𝑍, then it is a forward difference

operator.

Definition 1. Given the function𝑓 : 𝑇 → 𝑅 and 𝑡 ∈ 𝑇
𝐾

∈> 0,
there exists a neighborhood𝑈 of 𝑡 (𝑈 = (𝑡−𝛿, 𝑡+𝛿)) and 𝛿 > 0

such that
󵄨󵄨󵄨󵄨󵄨
[𝑓 (𝜎 (𝑡)) − 𝑓 (𝑠)] − 𝑓

Δ
(𝑡) [𝜎 (𝑡) − 𝑠]

󵄨󵄨󵄨󵄨󵄨
≤ 𝜀 |𝜎 (𝑡) − 𝑠|

(1)

is defined for all 𝑠 ∈ 𝑈, and called as delta derivative of𝑓Δ(𝑡)𝑓
at 𝑡 [1, 25, 26].

Definition 2. Given the function 𝑓 : 𝑇 → 𝑅 and 𝑡 ∈ 𝑇
𝐾

∈>

0, there exists a neighborhood 𝑈 of 𝑡 (𝑈 = (𝑡 − 𝛿, 𝑡 + 𝛿)) and
𝛿 > 0 such that

󵄨󵄨󵄨󵄨󵄨
[𝑓 (𝜌 (𝑡)) − 𝑓 (𝑠)] − 𝑓

∇
(𝑡) [𝜌 (𝑡) − 𝑠]

󵄨󵄨󵄨󵄨󵄨
≤ 𝜀

󵄨󵄨󵄨󵄨𝜌 (𝑡) − 𝑠
󵄨󵄨󵄨󵄨

(2)

X

Y Observed value
of datum Y

regression line
Estimated

ei

Figure 1: Variance of data from estimated regression model.

is defined for all 𝑠 ∈ 𝑈, and called as nabla derivative of
𝑓
∇
(𝑡)𝑓 at 𝑡 [16, 26].

Definition 3. Given the function𝑓 : 𝑇 → 𝑅 and 𝑡 ∈ 𝑇
𝐾

∈> 0,
there exists a neighborhood𝑈 of 𝑡 (𝑈 = (𝑡−𝛿, 𝑡+𝛿)) and 𝛿 > 0

such that
󵄨󵄨󵄨󵄨[𝑓 (𝜎 (𝑡)) − 𝑓 (𝜌 (𝑡))] − 𝑓

𝑐
(𝑡) [𝜎 (𝑡) − 𝜌 (𝑡)]

󵄨󵄨󵄨󵄨

≤ 𝜀
󵄨󵄨󵄨󵄨𝜎 (𝑡) − 𝜌 (𝑡)

󵄨󵄨󵄨󵄨

(3)

is defined for all 𝑠 ∈ 𝑈, and called as center derivative of
𝑓
𝑐
(𝑡)𝑓 at 𝑡 [27].

Definition 4 (forward jump operator [1]). Let 𝑇 be a time
scale. Then, for 𝑡 ∈ 𝑇, forward jump operator 𝜎 : 𝑇 → 𝑇

is defined by

𝜎 (𝑡) := min {𝑠 ∈ 𝑇 : 𝑠 > 𝑡} . (4)

For right-graininess function for all 𝑥 ∈ 𝑇, 𝜇
𝜎

: 𝑇 → [0,∞)

is defined as follows:

𝜇
𝜎
(𝑡) := 𝜎 (𝑡) − 𝑡. (5)

Definition 5 (backward jump operator [1]). Let 𝑇 be a time
scale. Then, for 𝑡 ∈ 𝑇, backward jump operator 𝜌 : 𝑇 → 𝑇 is
defined by

𝜌 (𝑡) := max {𝑠 ∈ 𝑇 : 𝑠 < 𝑡} . (6)

Left-graininess function 𝜇
𝜌

: 𝑇 → [0,∞) is defined as
follows:

𝜇
𝜌
(𝑡) := 𝑡 − 𝜌 (𝑡) . (7)

3. Simple Linear Regression Analysis

Simple linear regression [28, 29] consists of one single
explanatory variable or independent variable or response
variable or dependent variable. Let us take that a real
relationship exists between 𝑌 and 𝑥 and 𝑌 values observed at
each 𝑥 level are random. Expected value of 𝑌 at each 𝑥 level
is defined by the equation

𝐸 (𝑌 | 𝑥) = 𝛽
0
+ 𝛽
1
𝑥, (8)
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where 𝛽
0
is the interceptor and 𝛽

1
is the slope and 𝛽

0
and 𝛽

1

are unknown regression coefficients. Each 𝑌 observation can
be defined with the model below.

In equation

𝑌 = 𝛽
0
+ 𝛽
1
𝑥 + 𝜀 (9)

𝜀 is the random error term with zero mean constitution of
(unknown) variance 𝜎

2.
Take 𝑛 binary observations of (𝑥

1
, 𝑦
1
), (𝑥
2
, 𝑦
2
), . . . ,

(𝑥
𝑛
, 𝑦
𝑛
). Figure 1 shows the distribution diagram of observed

values and the estimated regression line. Estimators of 𝛽
0

and 𝛽
1
would pass the “best line” through the data. German

scientist Karl Gauss (1777–1855) made a suggestion in
estimation of parameters 𝛽

0
and 𝛽

1
in (9) to minimize the

sum of squared vertical deviations in Figure 1.
This criterion used in estimation of regression parameters

is the least squares method. By using (9), 𝑛 observations in the
sample can be defined as follows:

𝑦
𝑖
= 𝛽
0
+ 𝛽
1
𝑥
𝑖
+ 𝜀
𝑖
, 𝑖 = 1, 2, . . . , 𝑛 (10)

and sum of squared deviations of observations from the
actual regression line is as follows:

𝑄 =

𝑛

∑

𝑖=1

𝜀
2

𝑖
=

𝑛

∑

𝑖=1

(𝑦
𝑖
− 𝛽
0
− 𝛽
1
𝑥
𝑖
)
2
. (11)

Least square estimators of 𝛽
0
and𝛽
1
are𝛽
0
and 𝛽
1
, whichmay

be calculated as follows:

𝜕𝑄

𝜕𝛽
0

| 𝛽
0
, 𝛽

1
= −2

𝑛

∑

𝑖=1

(𝑦
𝑖
− 𝛽
0
− 𝛽
1
𝑥
𝑖
) = 0,

𝜕𝑄

𝜕𝛽
1

| 𝛽
0
, 𝛽

1
= −2

𝑛

∑

𝑖=1

(𝑦
𝑖
− 𝛽
0
− 𝛽
1
𝑥
𝑖
) 𝑥
𝑖
= 0.

(12)

When these two equations are simplified

𝑛𝛽
0
+ 𝛽
1

𝑛

∑

𝑖=1

𝑥
𝑖
=

𝑛

∑

𝑖=1

𝑦
𝑖
,

𝛽
0

𝑛

∑

𝑖=1

𝑥
𝑖
+ 𝛽
1

𝑛

∑

𝑖=1

𝑥
2

𝑖
=

𝑛

∑

𝑖=1

𝑦
𝑖
𝑥
𝑖
.

(13)

These equations may be called as normal equations of least
squares.

Thus, estimated regression line will be as follows:

𝑦 = 𝛽
0
+ 𝛽
1
𝑥. (14)

Each observation pair is provided with the relation below:

𝑦
𝑖
= 𝛽
0
+ 𝛽
1
𝑥
𝑖
+ 𝑒
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, (15)

where 𝑒
𝑖

= 𝑦
𝑖
− 𝑦
𝑖
: residuals; 𝑦

𝑖
: observation values; 𝑦

𝑖
:

estimated 𝑦
𝑖
values.

4. Ordinary Least Square Method

4.1. Normal Equations. These include normal situation and
formula values of 𝛽

0
and 𝛽

1
estimators for forward and

backward operators.
Normal equations in normal (usual) situations

𝑛𝛽
0
+ 𝛽
1

𝑛

∑

𝑖=1

𝑥
𝑖
=

𝑛

∑

𝑖=1

𝑦
𝑖
,

𝛽
0

𝑛

∑

𝑖=1

𝑥
𝑖
+ 𝛽
1

𝑛

∑

𝑖=1

𝑥
2

𝑖
=

𝑛

∑

𝑖=1

𝑦
𝑖
𝑥
𝑖
,

𝛽
0
=

∑
𝑛

𝑖=1
𝑥
𝑖
∑
𝑛

𝑖=1
𝑦
𝑖
− 𝑛∑
𝑛

𝑖=1
𝑦
𝑖
𝑥
𝑖

−𝑛∑
𝑛

𝑖=1
𝑥
2

𝑖
+ (∑
𝑛

𝑖=1
𝑥
𝑖
)
2

,

𝛽
1
=

−∑
𝑛

𝑖=1
𝑦
𝑖
∑
𝑛

𝑖=1
𝑥
2

𝑖
+ ∑
𝑛

𝑖=1
𝑥
𝑖
∑
𝑛

𝑖=1
𝑦
𝑖
𝑥
𝑖

−𝑛∑
𝑛

𝑖=1
𝑥
2

𝑖
+ (∑
𝑛

𝑖=1
𝑥
𝑖
)
2

.

(16)

Time scale normal equations (forward jump operator)

𝑛𝛽
0
+

𝑛

2
+ 𝛽
1

𝑛

∑

𝑖=1

𝑥
𝑖
=

𝑛

∑

𝑖=1

𝑦
𝑖
,

𝛽
0

𝑛

∑

𝑖=1

𝑥
𝑖
+ 𝛽
1

𝑛

∑

𝑖=1

𝑥
2

𝑖
+

∑
𝑛

𝑖=1
𝑥
2

𝑖

2
=

𝑛

∑

𝑖=1

𝑦
𝑖
𝑥
𝑖

𝛽
0𝑧𝑖

= −(𝑛

𝑛

∑

𝑖=1

𝑥
2

𝑖
+

𝑛

∑

𝑖=1

𝑥
𝑖

𝑛

∑

𝑖=1

𝑥
2

𝑖
− 2

𝑛

∑

𝑖=1

𝑥
𝑖

𝑛

∑

𝑖=1

𝑦
𝑖
𝑥
𝑖

+2

𝑛

∑

𝑖=1

𝑦
𝑖

𝑛

∑

𝑖=1

𝑥
2

𝑖
)

× ((−𝑛

𝑛

∑

𝑖=1

𝑥
2

𝑖
+ (

𝑛

∑

𝑖=1

𝑥
𝑖
)

2

)2)

−1

,

𝛽
1𝑧𝑖

= (𝑛

𝑛

∑

𝑖=1

𝑥
2

𝑖
− 2𝑛

𝑛

∑

𝑖=1

𝑥
𝑖
𝑦
𝑖
− 𝑛

𝑛

∑

𝑖=1

𝑥
𝑖

+2

𝑛

∑

𝑖=1

𝑦
𝑖

𝑛

∑

𝑖=1

𝑥
𝑖
)

× ((−𝑛

𝑛

∑

𝑖=1

𝑥
2

𝑖
+ (

𝑛

∑

𝑖=1

𝑥
𝑖
)

2

)2)

−1

.

(17)

Time scale normal equations (backward jump operator)

𝑛𝛽
0
−

𝑛

2
+ 𝛽
1

𝑛

∑

𝑖=1

𝑥
𝑖
=

𝑛

∑

𝑖=1

𝑦
𝑖
,

𝛽
0

𝑛

∑

𝑖=1

𝑥
𝑖
+ 𝛽
1

𝑛

∑

𝑖=1

𝑥
2

𝑖
−

∑
𝑛

𝑖=1
𝑥
2

𝑖

2
=

𝑛

∑

𝑖=1

𝑦
𝑖
𝑥
𝑖
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𝛽
0𝑧𝑔

= (−𝑛

𝑛

∑

𝑖=1

𝑥
2

𝑖
+

𝑛

∑

𝑖=1

𝑥
𝑖

𝑛

∑

𝑖=1

𝑥
2

𝑖
+ 2

𝑛

∑

𝑖=1

𝑥
𝑖

𝑛

∑

𝑖=1

𝑦
𝑖
𝑥
𝑖

−2

𝑛

∑

𝑖=1

𝑦
𝑖

𝑛

∑

𝑖=1

𝑥
2

𝑖
)

× ((−𝑛

𝑛

∑

𝑖=1

𝑥
2

𝑖
+ (

𝑛

∑

𝑖=1

𝑥
𝑖
)

2

)2)

−1

,

𝛽
1𝑧𝑔

= (−𝑛

𝑛

∑

𝑖=1

𝑥
2

𝑖
− 2𝑛

𝑛

∑

𝑖=1

𝑦
𝑖
𝑥
𝑖
+ 𝑛

𝑛

∑

𝑖=1

𝑥
𝑖

+2

𝑛

∑

𝑖=1

𝑦
𝑖

𝑛

∑

𝑖=1

𝑥
𝑖
)

× ((−𝑛

𝑛

∑

𝑖=1

𝑥
2

𝑖
+ (

𝑛

∑

𝑖=1

𝑥
𝑖
)

2

)2)

−1

.

(18)

4.2. Graphs with Data 10-20-30-40-50 of Normal Situation,
Forward and Backward Jump Operator. Respective illustra-
tions of simple linear regression equations obtained from
samples of 10, 20, 30, 40, and 50 data for normal situation
forward and backward jump operators are shown in Figure 2.

Sum of vertical distances between simple linear regres-
sion model for normal and forward and backward operators
and observation values 𝑌

𝑖
for sample sizes of 𝑛 = 10, 20, 30,

40, and 50 are provided in Table 1.
There is a relationship between sample size and sum of

vertical distances between regression line and observation
values 𝑌

𝑖
. This is derived from the result of sum of vertical

distances between regression lines equal to half of sample size
and observation values 𝑌

𝑖
. Results of implementation can be

seen in Table 1.

4.3. Minimum Test. Let (𝑘,𝑚), 𝑄(𝑎, 𝑏) the critical point;
meaning: 𝑄

𝑎
(𝑘,𝑚) = 0 and 𝑄

𝑏
(𝑘, 𝑚) = 0

𝐿 = 𝑄
𝑎𝑎

(𝑘,𝑚)𝑄
𝑏𝑏

(𝑘,𝑚) − [𝑄
𝑎𝑏

(𝑘,𝑚)]
2
. (19)

If 𝐿 > 0 and 𝑄
𝑎𝑎

(𝑘,𝑚) > 0, 𝑄(𝑘,𝑚) has a minimum value.
Minimum test calculated according to normal derivative
definition is as follows [30]:

𝜕
2
𝑄

𝜕𝑎𝑎
= 𝑛,

𝜕
2
𝑄

𝜕𝑏𝑏
=

𝑛

∑

𝑖=1

𝑥
2

𝑖
,

𝜕
2
𝑄

𝜕𝑎𝑏
=

𝑛

∑

𝑖=1

𝑥
𝑖

𝐿 = 𝑛

𝑛

∑

𝑖=1

𝑥
2

𝑖
− (

𝑛

∑

𝑖=1

𝑥
𝑖
)

2

= 𝑛

𝑛

∑

𝑖=1

𝑥
2

𝑖
− (

𝑛
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Figure 2: Simple linear regression equations for normal situation
and forward and backward operators.

Minimum test calculated according to time scale derivative
definition for forward and backward jump operators is as
follows:
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Since 𝐿 > 0 and 𝑄
𝑎𝑎

> 0 always, 𝑄(𝑘,𝑚) always has a
minimum value.

5. Results

In statistics, least squares method is used in accordance
with the known derivative definition when parameters of
regression equation are obtained. In the study, time scale
derivative definition is applied to the least squaresmethod. In
this regard, (9) simple linear regression model is considered
and both 𝛽

0
and 𝛽

1
, estimators of 𝛽

0
and 𝛽

1
coefficients, are

obtained in accordance with forward and backward jump
operators. Different 𝛽

0
and 𝛽

1
parameter values are obtained,

originating from forward and backward jump operators
related to the 𝑦 = 𝛽

0
+𝛽
1
𝑥 simple linear regression equation.

In cases when observation values are discrete, forward jump
operator equation 𝜎(𝑡) = 𝑡 + 1 and backward jump operator
equation 𝜌(𝑡) = 𝑡 − 1 are taken [31].

The study includes the analysis of integers 𝑍 in
accordance with time scale derivative definition. Standard
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Table 1: Values for results obtained.

For 𝑛 = 10

Simple linear regression equation Sum of vertical deviations Observation 𝑌
𝑖

Estimation 𝑌
𝑖

Normal 3.27 + 1.01x 0 62 62
Fwd 7.42 − 0.59x 5 62 57
Bckwd −0.89 + 2.62𝑥 −5 62 67

For 𝑛 = 20

Simple linear regression equation Sum of vertical deviations Observation 𝑌
𝑖

Estimation 𝑌
𝑖

Normal 2.90 + 1.09𝑥 0 155 155
Fwd 11.26 − 0.90𝑥 10 155 145
Bckwd −5.46 + 3.08𝑥 −10 155 165

For 𝑛 = 30

Simple linear regression equation Sum of vertical deviations Observation 𝑌
𝑖

Estimation 𝑌
𝑖

Normal 3.45 + 0.97𝑥 0 291 291
Fwd 14.17 − 0.77𝑥 15 291 276
Bckwd −7.27 + 2.70𝑥 −15 291 306

For 𝑛 = 40

Simple linear regression equation Sum of vertical deviations Observation 𝑌
𝑖

Estimation 𝑌
𝑖

Normal 3.38 + 0.96𝑥 0 448 448
Fwd 17.94 − 0.89𝑥 20 448 428
Bckwd −11.17 + 2.81𝑥 −20 448 468

For 𝑛 = 50

Simple linear regression equation Sum of vertical deviations Observation 𝑌
𝑖

Estimation 𝑌
𝑖

Normal 3.54 + 0.93𝑥 0 638 638
Fwd 22.07 − 0.99𝑥 25 638 613
Bckwd −15.00 + 2.86𝑥 −25 638 663

approach in regression analysis is to minimize the sum of
squared (vertical) deviations between actual and estimated
values. Here, the point which should be considered is
that, since in least squares method, sum of squared
vertical deviations is of interest, analysis would also operate
accordingly.The issue of applying first and second derivatives
should also be taken into consideration since the aim is to
minimize the sum of squared vertical deviations. Since 𝐿 > 0

and 𝑄
𝑎𝑎

> 0 always, 𝑄(𝑘,𝑚) always has a minimum value.
Least square method yields results such that sum of

vertical deviations is minimum. When least squares method
is used according to time scale derivative definition, a
relationship emerges between sample size and sum of vertical
distances between regression line and observation values 𝑌

𝑖
.

This is derived from the sum of vertical distances between
regression lines equal to half of sample size and observa-
tion values 𝑌

𝑖
. To minimize the sum of vertical distances,

different 𝛽
0
and 𝛽

1
parameter values resulting from forward

and backward jump operators for simple linear regression
equation 𝑦 = 𝛽

0
+ 𝛽
1
𝑥 have been of interest. An alternative

solution is to create a regression equation in time scale. As a
conclusion, time scale derivative definition is applied to the
study with integers 𝑍 and suggested solutions are proposed
for the results obtained.

6. Discussion and Possible Future Studies

This study is only introducing a very basic derivative concept
from the time scale and applying for obtaining the regression
parameters. An extension of this study would be determining
the integer 𝑍 apart from the value 1. This would be useful
especially when the actual assumptions of linear regression
model have been violated and need a robust estimation of
linear regression line. Perhaps it is hard to determine an
optimum of 𝑍 analytically. We would suggest that the study
should be performed for generated data containing outliers
that is replicated at least 1000 times.

It is also possible to extend the number of regressors
from a single explanatory variable to multiple ones in the
linear regression model and estimate the parameters using
time scale of both forward and backward jump operators.
Analytically speaking, it will not be easy to estimate the
parameters in a simple form of equation using time scale.
In fact we would be dealing with very complicated either
formulas ormatrices. However it may be worth extending the
study to a multiple linear regression model.

In the meantime taking 𝑍 to be 1 results with the sum
of vertical distances between regression lines equal to half of
sample size (See Table 1 and Figure 2). The 𝑍 value in both
forward and backward jump operators should be determined
in a way that the estimated regression line from both forward
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and backward operator is fairly close to the actual regression
line especially when the assumptions of linear regression
model are violated.
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