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We introduce and analyze a relaxed extragradient-like viscosity iterative algorithm for finding a solution of a generalized mixed
equilibrium problem with constraints of several problems: a finite family of variational inequalities for inverse strongly monotone
mappings, a finite family of variational inclusions for maximal monotone and inverse strongly monotone mappings, and a fixed
point problem of infinitely many nonexpansive mappings in a real Hilbert space. Under some suitable conditions, we derive the
strong convergence of the sequence generated by the proposed algorithm to a common solution of these problems which also solves

a variational inequality problem.

1. Introduction

Let H be a real Hilbert space with inner product (-,-) and
norm || - ||, C a nonempty closed convex subset of H, and
P, the metric projection of H onto C. Let S : C — H bea
nonlinear mapping on C. We denote by Fix(S) the set of fixed
points of S and by R the set of all real numbers. A mapping V
is called strongly positive on H if there exists a constant’y > 0
such that

(Vx,x) = yllx|>, Vx € H. 1

A mapping S : C — H is called L-Lipschitz continuous if
there exists a constant L > 0 such that

ISx=Sy| <L|x-y|, Vx,yeC. )

In particular, if L = 1, then S is called a nonexpansive
mapping; if L € [0, 1), then A is called a contraction.

Let A : C — H be a nonlinear mapping on C. We
consider the following variational inequality problem (VIP)
[1]: find a point x € C such that

(Ax,y-x) >0, VyeC. 3)

The solution set of VIP (3) is denoted by VI(C, A).
In1976, Korpelevi¢ [2] proposed an iterative algorithm for
solving the VIP (3) in Euclidean space R™:

In = PC (xn - TAxn) >
(4)
Xnt1 = pC (xn - TAyn) > Vn =0,
with 7 > 0 a given number, which is known as the
extragradient method. The literature on the VIP is vast
and Korpelevich’s extragradient method has received great
attention given by many authors. See, for example, [3-10] and
references therein.
Letp : C — Rbeareal-valued function, A: H — Ha
nonlinear mapping,and ® : CxC — Rabifunction. In 2008,
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Pengand Yao [11] introduced the following generalized mixed
equilibrium problem (GMEP): finding x € C such that

O(xy)+9(y) -9 + (Ax,y—x) >0, VyeC. (5)

We denote the set of solutions of GMEP (5) by GMEP
(0,9, A).

Throughout this paper, it is assumed as in [11] that ® : Cx
C — Ris a bifunction satisfying conditions (H1)-(H4) and
¢ : C — Risalower semicontinuous and convex function
with restriction (H5), where

(H1) O(x,x) =0forall x € C,

(H2) ® is monotone, that is, ®(x, y) + O(y, x) < 0 for any
x,y €C,

(H3) O is upper hemicontinuous, that is, for each x, y,z €
C)

limsup ® (tz+(1-1)x,y) <O (x,y); (6)

t—0"

(H4) ©(x,-) is convex and lower semicontinuous for each
x €C,

(H5) for each x € H and r > 0, there exist bounded
subsets D, ¢ Cand y, € C such that, for any z €
C\D,,

0(27)+9(1) 9@+ (e-zz-2) <0, ()

given a positive number r > 0. Let S : H — C be the
solution set of the auxiliary mixed equilibrium problem; that
is, for each x € H,

SL (x)
= {}’GC®(J’>Z)+§0(Z)—<P()/) (8)
1 ' ,
+ ;<K (y)-K (x),z—y>20, VzeC}.

In particular, whenever K(x) = (1/2)|x|, for all x € H,
S£®"P) is rewritten as Tf®"P).
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Let {T,}7’, be an infinite family of nonexpansive map-
pings on H and {A,};? a sequence of nonnegative numbers
in [0, 1]. For any n > 1, define a mapping W,, on H as follows:

U,

nntl I,
Un,n = AnTnUn,nH + (1 - /\n) I,

Un,n—l = An—lTn—lUn,n + (1 - /\n—l) I

U,

n,

Upie1 = Mt T Ui + (1= A4 L

k= MU g + (1=A) 1, 9)

Upo = MU, 5 + (1-1,)1
W,=U,, = MTU,, + (1-A))L

Such a mapping W, is called the W-mapping generated by
T,T, 1 ....,Tyand A, A, ..., Ay

In 2010, for the case where C = H, Yao etal. [12] proposed
the following hybrid iterative algorithm:

O (ynz)+9(2) -9 (y,)

l ! !
—(K -K ,Z = >0, H,
(K () - K (5,),2 -3, 20,z

x}’H’l = (xn (u + Yf (xn)) + ﬁn'xn

+((l_ﬁn)l_“n (I+AMV))Wnyn) Vnz1,

(10)

where f : H — H is a contraction, K : H — Riis
differentiable and strongly convex, {«,}, {3,} < (0,1), and
x;, u € H are given, for finding a common element of
the set MEP(®, ¢) and the fixed point set N}, Fix(T,) of an
infinite family of nonexpansive mappings {T,,} >, on H. They
proved the strong convergence of the sequence generated by
the hybrid iterative algorithm (10) to a point x* € Q :=
N2, Fix(T,,)NMEP(®, ¢) under some appropriate conditions.
This point x* also solves the following optimization problem:
minE (Vx, x) + l||x —ul* - h(x), (OP)
xeQ 2 2
where h: H — Ris the potential function of yf.

On the other hand, let B be a single-valued mapping of C
into H and R a set-valued mapping with D(R) = C. Consider
the following variational inclusion: find a point x € C such
that

0 € Bx + Rx. 11)

We denote by I(B,R) the solution set of the variational
inclusion (11). In particular, if B = R = 0, then I(B,R) = C.
If B = 0, then problem (11) becomes the inclusion problem
introduced by Rockafellar [13]. Let a set-valued mapping
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R : D(R) ¢ H — 2" be maximal monotone. We define
the resolvent operator J,, : H — D(R) associated with R
and A as follows:

Jra =+ AR)', VxeH, 12)

where A is a positive number.

In1998, Huang [14] studied problem (11) in the case where
R is maximal monotone and B is strongly monotone and
Lipschitz continuous with D(R) = C = H. Subsequently,
Zeng et al. [15] further studied problem (11) in the case which
is more general than Huang’s one [14].

Inspired by the above facts, we introduce and analyze
an iterative algorithm by relaxed extragradient-like viscos-
ity method for finding a solution of a generalized mixed
equilibrium problem with constraints of several problems: a
finite family of variational inequalities for inverse strongly
monotone mappings, a finite family of variational inclu-
sions for maximal monotone and inverse strongly monotone
mappings, and a fixed point problem of infinitely many
nonexpansive mappings in a real Hilbert space. Under some
suitable conditions, we derive the strong convergence of
the sequence generated by the proposed algorithm to a
common solution of these problems. Such solution also solves
a variational inequality problem. Several special cases are
also discussed. The results presented in this paper are the
supplement, extension, improvement, and generalization of
the previously known results in this area.

2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert
space whose inner product and norm are denoted by (., -)
and | - ||, respectively. Let C be a nonempty closed convex
subset of H. We write x, — x to indicate that the sequence
{x,} converges weakly to x and x, — x to indicate that
the sequence {x,} converges strongly to x. Moreover, we use
w,,(x,) to denote the weak w-limit set of the sequence {x,};
that is,

@, (%)

= {x € H: x, — x for some subsequence {xni} of {xn}}.

(13)
Definition 1. A mapping A : C — H is called
(i) monotone if
(Ax - Ay,x—y) >0, Vx,y€C, (14)

(i) #-strongly monotone if there exists a constant 7 > 0
such that

(Ax - Ay, x-yy zql|x-y|°, VxyeC, — (15)

(iii) {-inverse strongly monotone if there exists a constant
{ > 0 such that

(Ax - Ay, x - y) = {|Ax - Ay, Vx,yeC. (16

It is easy to see that the projection P is 1-ism. Inverse
strongly monotone (also referred to as cocoercive) operators
have been applied widely in solving practical problems in
various fields.

Definition 2. A differentiable function K : H — Ris called
(i) convex, if

K(y)-K@x)2(K'(x),y-x), Vx,yeH, (17)

where K'(x) is the Frechet derivative of K at x;

(ii) strongly convex, if there exists a constant ¢ > 0 such
that

K(3) =K@~ (K (,y=x) 2 T,
(18)

Vx,y € H.

It is easy to see that if K : H — R is a differentiable
strongly convex function with constanto > Othen K’ : H —
H is strongly monotone with constant o > 0.

The metric (or nearest point) projection from H onto C is
the mapping P : H — C which assigns to each point x € H
the unique point Pox € C satisfying the property

[ = Bex]| = tnf Jlx ~ y] = d (%, C). 19)

Some important properties of projections are gathered in
the following proposition.

Proposition 3. For given x € H and z € C,
()z=Pxe(x-2z,y-2)<0, forall y e G

.. 2 2
i)z = Px & |x-Z| < x=yl7 -

ly - z|% forall y € G

(iii) (Pox — Poy,x — y) = [|Pox — Pcy||2, forall y € H.
(This implies that P, is nonexpansive and monotone.)

By using the technique of [16], we can readily obtain the
following elementary result.

Proposition 4 (see [17, Lemma 1 and Proposition 1]). Let C
be a nonempty closed convex subset of a real Hilbert space H
and let ¢ : C — R be a lower semicontinuous and convex
function. Let ® : C x C — R be a bifunction satisfying the
conditions (H1)-(H4). Assume that

(i) K : H — Ris strongly convex with constant ¢ > 0
and the function x — (y — x, K'(x)) is weakly upper
semicontinuous for each y € H;

(ii) for each x € H andr > 0, there exists a bounded subset
D, c Cand y, € Csuch that, for any z € C\ D,,

®(Z:)’x)+(P(yx)—<P(Z)+%<K’(z)—K'(x),yx—z> <0.
(20)



Then the following hold:

(a) for each x € H, S£®"”)(x) +0,
(b) S£®"”) is single valued,

@) S£®"P) is nonexpansive if K' is Lipschitz continuous with
constant v > 0 and

<KI (x1) =K' (x,) 1y = ”z>
< <K' (1)) =K' () 1y - u2> , (21)
Y (x;,x,) € HxH,

where u; = $9) (x;) fori = 1,2,
(d) foralls,t >0and x € H

<KI (si@«p)x) -K (s£®,¢) x) , 809 Sf&q’)x}

s—t o, e, ©.9)
< —~ <K' (S§ “’)x) -K' (x),Si Py — S Y x> ;
(22)
(e) Fix(S'®?)) = MEP(®, ¢),
(f) MEP(®, ¢) is closed and convex.
In particular, whenever © CxC — Risa

bifunction satisfying the conditions (H1)-(H4) and K(x) =
(1/2)||x||2, for all x € H, then that is, for any x, y € H,

S£®’¢)X _ S£®’(P)}’"2 < <S£®,go)x _ S£®’(P)J” X = y> (23)

(S£®"p) is firmly nonexpansive) and

o=

(24)
|s -t
s

<

SOy — x”, Vs, t >0, x € H.

In this case, S is rewritten as T®?). If, in addition, ¢ = 0,
then T'®9) is rewritten as T°.

Remark 5. Suppose K : H — R is strongly convex with
constanto > 0andK' : H — H is Lipschitz continuous with
constant v > 0. Then K' : H — H is o-strongly monotone
and »-Lipschitz continuous with positive constants o, v > 0.
Utilizing Proposition 4 (d) we obtain that, for all s,# > 0 and
x € H,

s—t v
SOy — S§®’(p)x” < szt >
s

5 SOy — x" . (25)

We need some facts and tools in a real Hilbert space H
which are listed as lemmas below.

Lemma 6. Let X be a real inner product space. Then there
holds the following inequality:

lx+y|° <lxl> +2(px+y), VxyeX  (26)
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Lemma 7. Let H be a real Hilbert space. Then the following
hold:

@) lx = yI* = IxI* = IyI* = 2¢x — y, y) forall x, y € H;

O®) Ix+py+vzl? = Mxl® + plyl® + vlzl® -
Aullx = yI> = Mlix = zl)* = wylly — 2| for all x, y, z €
Hand A, y,v € [0, 1] withA+u+v=1;

(¢) if {x,} is a sequence in H such that x,, — x, it follows
that

lim sup |x,, - y|
= limsup ||x,, - x"2 +]x - y||2, Vy e H.

We have the following crucial lemmas concerning the W-

mappings defined by (9).

Lemma 8 (see [18, Lemma 3.2]). Let {T,}°, be a sequence
of nonexpansive self-mappings on H such that 0,2 Fix(T,,) # 0
and let {A,)} be a sequence in (0, b] for some b € (0, 1). Then, for
every x € H and k > 1 the limit lim, | U, ,x exists, where
U, is defined by (9).

Lemma 9 (see [18, Lemma 3.3]). Let {T,}", be a sequence of
nonexpansive self-mappings on H such that N2, Fix(T,) 0,
and let {A,} be a sequence in (0,b] for some b € (0, 1). Then,
Fix(W) = n72, Fix(T,,).

Lemma 10 (see [19, Demiclosedness Principle]). Let C be a
nonempty closed convex subset of a real Hilbert space H. Let T
be a nonexpansive self-mapping on C. Then I -T is demiclosed.
That is, whenever {x,} is a sequence in C weakly converging to
some x € C and the sequence {(I — T)x,} strongly converges
to some y, it follows that (I — T)x = y. Here I is the identity
operator of H.

Lemmall. Let A : C — H be a monotone mapping. In the
context of the variational inequality problem the characteriza-
tion of the projection (see Proposition 3 (i)) implies
ueVI(C,A) = u=P-(u—-AAu), A1>0. (28)
Lemma 12 (see [20]). Let {x,} and {z,} be bounded sequences

in a real Banach space X and {f,} a sequence in [0, 1] with
0 <liminf, _, B, <limsup,_, . B, < 1. Suppose

Xn+1 = ﬁn'xn + (1 - ﬁn) Zn> Vn >0,

) (29)
lim sup ("zn+1 - zn" - "xn+1 - xn") <0.
n-—00

Then, lim,,_, ., llz,, — x,|l = 0.

Lemma 13 (see [21]). Assume that {a,} is a sequence of
nonnegative real numbers such that

a,, <(1-6,)a,+0,5, Vnx1, (30)
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where {3,,} is a sequence in [0, 1] and {o,} is a real sequence
such that

(1) ZZZI 8n = 005
(i) lim sup,,_, ., 0, <0 or Yo’ |0,0,| < co.

Thenlim,, _, ., a, = 0.

Recall that a set-valued mapping T : D(T) c H — 2" is
called monotone if, for all x, y € D(T), f € Txand g € Ty

imply
(f-gx-y)=0. (31)

A set-valued mapping T is called maximal monotone if T is
monotone and (I + AT)D(T) = H for each A > 0, where I
is the identity mapping of H. We denote by G(T') the graph
of T. It is known that a monotone mapping T' is maximal if
and only if, for (x, f) € Hx H, {f — g,x — y) > 0 for every
(¥,g) € G(T) implies f € Tx. Next we provide an example to
illustrate the concept of maximal monotone mapping.

Let A: C — H be a monotone, k-Lipschitz-continuous
mapping and let Nv be the normal cone to C at v € C; that
is,

Nev={weH:{(v-u,w) >0, Yu € C}. (32)

Define

Ty = Av + Nev, %f veC, (33)
0, ifv¢C.

Then, T is maximal monotone and 0 € Tv if and only if v €
VI(C, A); see [13].

Assume that R : D(R) ¢ H — 2 is a maximal
monotone mapping. Let A > 0. In terms of Huang [14],
there holds the following property for the resolvent operator

Jra : H = D(R).

Lemmal4. ]y, is single valued and firmly nonexpansive; that
is,

2
<]R,/\x —JrAYsx — y) = ”]R,/\x - ]R,/\)’" » Vx,ye€H.
(34)

Consequently, ] ) is nonexpansive and monotone.

Lemma 15 (see [9]). Let R be a maximal monotone mapping
with D(R) = C. Then, for any given A > 0, u € C is a solution
of problem (11) if and only if u € C satisfies

u=Jp, (u—ABu). (35)

Lemma 16 (see [15]). Let R be a maximal monotone mapping
with D(R) = C and let B: C — H be a strongly monotone,
continuous, and single-valued mapping. Then, for each z € H,
the equation z € (B+ AR)x has a unique solution x; for A > 0.

Lemma 17 (see [9]). Let R be a maximal monotone mapping
with D(R) = C and B: C — H a monotone, continuous, and
single-valued mapping. Then (I + A(R + B))C = H for each
A > 0. In this case, R + B is maximal monotone.

Lemma 18 (see [22, Lemma 2.8]). Let {a,},>, be a bounded
sequence of nonnegative real numbers and {b,},>, a sequence
of real numbers such that lim sup,_, b, < 0. Then,
lim sup,,_, ., a,b, <0.

3. Main Results

We will introduce and analyze an iterative algorithm by
relaxed extragradient-like viscosity method for finding a
solution of a generalized equilibrium problem with con-
straints of several problems: a finite family of variational
inclusions, a finite family of variational inequalities, and a
fixed point problem in a real Hilbert space. Under appropriate
conditions imposed on the parameter sequences we will
prove strong convergence of the proposed algorithm.

Theorem 19. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let M and N be two integers. Let ©
be a bifunction from C x C to R satisfying (HI)-(H4) and
@ : C — R a lower semicontinuous and convex functional.
Let R; : C — 2" be a maximal monotone mapping and
let A: H - HA,:C — HyandB, : C - H
be {-inverse strongly monotone, {.-inverse strongly monotone,
and n;-inverse strongly monotone, respectively, where k €
{1,2,...,M}andi € {1,2,...,N}. Let {T,}° | be a sequence of
nonexpansive mappings on H and {A,)} a sequence in (0, b] for
some b € (0,1). Let V be a y-strongly positive bounded linear
operator withy € (1,2) and f: H — H a p-contraction with
p € (0,1). Let W, be the W-mapping defined by (9). Assume
that Q := N%°, Fix(T,) N GMEP(®, ¢, A) N %, VI(C, Aj) N
NN, I(B;, R;) #0. Define A = Po(I — v Ay) -+ Po(I = v, A,)
and A; = Jp (I = wB;) - Jg , (I — wBy) for each k €
{1,2,...,M}andi € {1,2,...,N}. Let {«,},{B,}, and {y,} be
three sequences in [0, 1]. Assume that

(i) K : H — Risstrongly convex with constant o > 0 and
its derivative K' is Lipschitz continuous with constant
v > 0 such that the function x — (y — x, K'(x)) is
weakly upper semicontinuous for each y € H,

(ii) for each x € H, there exist a bounded subset D, c C
and z,. € C such that, forany y ¢ D,,

O(y.z,) +9(z) —¢(y)

1, , (36)
+ (K () - K ()2, 7) <0
(iii) {er,} € [0,1—-pland Y2, a0, = 0o,
(iv) lim inf,, oy, > 0 and 0 < liminf,_ fB, <

lim sup, _, o, (B, +y.IVI) < L,

W) hmn—»oo(l(xn+l/(l -1 - (Xn+l)ﬁn+1) - an/(l -(1-
“n)l;n” + |Vn+1/(1 - ﬁnﬂ) - Yn/(l - ﬁn)D =0,

(vi) {r,} < [0,20],lim,_, |ty — 1l = 0 and 0 <
lim inf, , 1, <lim sup,_, 1, < 2(.



Given x, € H arbitrarily, the sequence {x,} is generated
iteratively by

u, = Sif)"”) (I-r,A)x,,

Yn = ﬁnxn + ))anAMun + [(1 - ﬁn) I- YnV] WnANun’

Xnt1 = (an (xn) + (1 - (Xn) Vo> Vn>1,

(37)

where vy € (0,20;) and y; € (0,2n;) for each k € {1,2,..., M}
andi € {1,2,...,N} Ifa,(f(x,) — x,) — 0 and S£®"”) is
firmly nonexpansive, then

x, — x" &= lim sup (I -V)x",x, - x") <0, (38)
n—00

where x* is a unique solution in Q to the VIP

((I-f)x"x"—x) <0, VxeQ. (39)

Proof. As lim inf, |y, > 0,0 < liminf, /B, <

lim sup, _, o, (B, + v.IVI) < 1,and 0 < lim inf, , 1, <

lim sup, , 7, < 2{, we may assume, without loss of
generality, that {8,},{y,} < [a,a] < (0,1), {r,} ¢ [c,c] C
(0,2¢) and S, + ¥,V < 1 foralln > 1. Put

Ap=Po(I-wAy)---Pc(I-vA,)),

(40)
A= TR (I-wB;)- TR (I-wBy),

for each k € {1,2,...,M}andi € {1,2,...,N},and A, =
A = I, where I is the identity mapping on H. Moreover, set
v, = Apu, and w, = A yu,.

Since V is a y-strongly positive bounded linear operator
on H, we know that

VIl =sup {{Vu,u) :u e H,|u| =1} >y > 1. (41)
Taking into account that 3, +y, [Vl < 1foralln > 1, we have

<((1 - ﬁn)I - YnV) M,M> =1- ﬁn ~Vn (VM,M)
21-B,-71VI (42)
> 0.

That s, (1 - 3,)I —y,V is positive. It follows that

I(1-B)I-y.VI
=sup {(((1 = B,) I - y,V)u,u) : u € H, |lul =1}
=sup{l-B, -y, Vuu) :ueH,|ul =1}

<1l- ﬁn - Yn?
(43)
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In the meantime, it is not hard to find that A ), and A  are
nonexpansive. As a matter of fact, observe that, for all x, y €
Ca

18 x = Ay
= P (T = A ) A pgrx = P (T = vagAng) A ey
< (1= vagA ) Anerx = (T = vgAn) Ar |
= (A porx = Ay y) = Vg (A oy x - AMAM—l)’)“2
<A px = Apyl
+ 700 (M = 2800) A pA porx = A g oy

< “AM—lx - AM—lJ’"2

< ||A0x - A()y"2
= | =,
JAnx = Ayl
2
= H]RN,‘IAN (I - VNBN) Anx— ]RN,yN (I - MNBN) ANA}’"
£ “(I - MNBN) Anogx - (I - [/‘NBN) AI\HJ’HZ
= “(AN—lx - AN—1J’) ~—Un (BNAN—lx - BNAN—l)’)||2
<[ Anoix- AN—1)’"2

+Un (.“N - 2’7N) "BNA N-1X — ByA N—1)’"2

s “AN—lx - AJ\HJ’"2

< A gx = Aoy

= ="
(44)
In addition, note that
((I=)x=(T-f)yx-y)
= lx -y - (F @ - F(y).x-y)
2
2(1-p)|x-y|" VxyeH, )

I(T=f)x=(T-f)y|
=|x=yl+1f - fFO
<(+p)x-y, Ve yeH.
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That is, I — f is strongly monotone and Lipschitz continuous.
So, there exists a unique solution x* in Q) to the VIP

(I-f)x",x"—x) <0, VxeQ. (46)

That is, x* € VI(Q,I - f).
We divide the rest of the proof into several steps.

Step 1. We show that {x,} is bounded. Indeed, take p € Q
arbitrarily. Since p = $'®%)(p —r, Ap), A is {-inverse strongly
monotone, and 0 < r,, < 2{, we have, for any n > 1,

oty = oI

SO (1 - 1,4) %, - 509 (1 -1,4) p|

< ”(I - rnA) Xn — (I - rnA) P"2
= ”(’xn - P) Ty (Axn - Ap)”2
= ||xn - P"2 - 2r, <xn - P Ax, - AP>
(47)
+rylAx, - Ap|”
< x — oI ~ 28l Ax, — Ap
+roAx, - Ap|’
= = oI + 1 (r, = 20) | Ax, — Ap|
< - ol
Since p = Po(I — v A)p, Axp = p, and Ay is {i-inverse

strongly monotone, where v, € (0,2(}), k € {1,2,..., M}, by
Proposition 3 we obtain that for each n > 1

v, - oI’
< (I = VA ) A yprtty — (I = vagAn) A P
S SYRTAE AM—lP"2
+ 90 (ag = 2000) A A mpythy — AngA ars P

< Ay, - AM—lP"2

<[ Agu, ~ dopl

=, - pI.
(48)

Since p = Jp ,, (I = w;B)p, A;p = p, and B; is ;-inverse
strongly monotone, where y; € (0,27,),i € {1,2,...,N}, by
Lemma 14 we deduce that for each n > 1

w, - ol
< ||(1 = unBy) A nythy, — (I = piyBy) AI\HP"2
< AN u, - AN—lP"2
2
+ iy (un = 21n) | BNA n-1 4, — ByA oo P

) (49)
< AN, = Anap|

< Aoty = Aopl’

=, - oI

Hence from (37)-(49), we have

Iy = pl

=B (0 = P) + ¥ (W, s, — p)
+[(1=B) T =7V (Wal yuty = p) + 7, (1= V) p
< Bullxw = Il + v W ps, — |
+ 1= B) T =3, VT (WA gt = p)| + 9, [T = V)
< Bl = pll + va [Wv - pl

+ (1 - ﬂn - Yn?) ||ann - p" + VY "(I - V) p”

Sﬁn“xn_p"+ynl|vn_p"

+ (1= By = 1a¥) lw, = pll + v, [T = V) p
< B[l =l + v [ - P

+ (1= By = 1a¥) = 2l + v [T = V) p
< Bl = pll + va 1%, -

+ (1= By = 1) %0 = 2l + 1 [T = V) p
=(1-y. =) xu— pl+ v T -V p]

:(1_Yn(?_l))”xn_p"-'—)}n(?_I)H(I;fvl)p"

(I-Vv)
Smax{“xn—p",%}.

(50)
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Since f : H — H is a p-contraction with p € (0,1), from  Observe that
(37) and (50) we get
Zne1 T Zp

1 -
Xn42 ~ Opi1Xns1 a1 T OnXy

<o, |If (x,) = p| + (1 =) |y, - =T C 1-o,
<o, (|f (x) = f (P + 1S (p) - pl)

Ont1

‘xn+1f (xn+1) + (1 B ‘xn+1) Yn1 ~ On1Xp41

+(1—¢x)max{||x -rl n(IV_Vl)P"} : -

Ont1

<a, (plx,— Pl +1£ (p) - pl) _ Ouf () + (1= ) 3, = 0%,

1-o0,
1-V
(1) max - . 1221 (S o))
1- On+1 I- 0y
la-v)p|
= Cap X {”xn - P" ' ? -1 - ((1 - (xn) [ﬁnxn + annvn
+ (1 - (Xn) max {”xn - p" N —“(I?__Vl) p" } (51) + [(1 - ﬁn) I- ynV] ann] - Unxn)
x(1-0,)"
+a, [ f(p) - pl ( s
+ (1 =y n+1%n41 T Vet Wia1 Vi
(1 ) max "x pnw 1 1 X1 F Vot Wit Van
p Y- 1 [( ﬁn-«-l)l Yn+1 ] n+1wn+l]
o, "(I - P" - 0n+1xn+1) x (1 - ‘7n+1)_1
I-v n+ n+ n n 1- n+
- (1= (1= ) max b, - L2 - (el Bot) /)], Lo
ta (1 _ P) "(I B f) P" X (Vn+1 n1Vnr1 T ((1 - ﬁn+1) I- )/n+1V) Wn+lwn+1)
" I-p -«
- - (annvn + ((1 - ﬁn) I- YnV) ann)
Smax‘lw ~ 7l Iz - V)P")”(I f)P"} 1-o,
' L=p _ (awf(xm) af (xn>>
By induction, we get 1-0, 1-o0,
"xn —P“ < max ||x1 _ " ”(I V)p”) "(I p" _ + (1-a,1) (1= Bo)
1 lL-p 1 -0,
(52)

Therefore, {x,} is bounded and so are the sequences

% |:Yn+1Wn+1Vn+l + ((1 B /3n+l) I- ynJer) Wn+1wn+1
{ub v, b {w, 1 {f (x,)}, and (W, w,}.

1- ﬁn+l

Wy +((1- I1-y.V) Wuw

Step 2. We show that lim, , llx, — x,, = 0 and Bl (« lﬁ_") 1Y) W "]
lim, _, o llx,—y,l = 0.Indeed, puto, = (1-«,)p,, for all n > B
1. Then it follows from conditions (iii) and (iv) that (1-a,)(1-8.) (1-a)1-8)

ﬁnzonz(l_“n)ﬂn [ 1_O-n+1 - l_an :|

(53)
2 (1_(1_P))ﬁnzpﬁn’ Vn2>1, « YanVn+((l_ﬁn)I_YnV)ann
and hence 1-B,
0< lir?liorolf(f” < llnm_)S(:élp g, < 1. (54) _ — n+1 (f( n+1) _ f(xn))
Define
+ K1 f( )+ (1_ n+1)(1_ﬂn+1)
Xy = 0%, +(1=0,)z,, VYn>1. (55) -0, 1_ *n 1-0,,
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Y Yn
X [ 1 _n;;ﬂ Wn+1Vn+1 1-— ﬁnW Vu + Wn+1 n+l
Yn+1
-Wuw, + VW, w, - VW, ., w
n l_ﬁ" _ﬁn+1 m n+1]

_<£_L>

1_0n+1 l_an

« annVn + ((1 B ﬁn) I- an) ann
1_/3;1

Sl (f( Xpr) = f (%4))

o
+<n_+1
1_0n+1 1_

x |:<11/n—;:+1 - 11/—nlgn> (Wn+1 Vit1 VWn+1 n+1)

(1-a0) (1-

1- Ont1

ﬁn+1)

) 1)+

Y
ann) 1 _

( n+1Vne1 —
n

((1 B ﬁn) I- YnV) ( ann)

1_ﬁn
_< X1 _ Xy >
1_(7n+1 l_an

« Yanvn + ((1 - ﬁﬂ) I- YnV) ann
1_ﬁn '

n+1Wni1 —

(56)
and hence
||zn+1 - Zn”
n+1 ”f( n+1) f (xn)"
T L T
iG]
" (1 B ‘xn+1) (1 B ﬂnﬂ)
1- Opnt1
Yn+1 _
H 1-— ﬁn+1 1- ﬁn " 1Vl — VWn+1wn+1”
Vyrr — W,V
" n+l'n+l ” ﬁn
+ "((1 - ﬁn) I- VnV) ( n+t1Wnel — ann)"
1- ﬁn
X1 ||ann + ((1 - ﬁn) I- YnV) ann"
1_0-n+1 1_0n l_ﬁn
X1 X1 _
< Ty - ¢ [ 2 )l

9
1- X1 ~ Ontl
1- Opt1
Yn+1 _ VW
X 1_—/3+1 1— ,B ” n+1Vn1 — n+1wn+1“
n n
" n+1Vne1 — W Y, ” /3n
(1 - ﬁn VnV) || n+1Wne1 — ann"
1- ﬂn
Gt %
1- On+1 1- 0y
« Yn "ann" + (1 - ﬁn - Yn?) “ann”
1- lgn
04
=1 _n;:L+ ”xn+1 - xn"
X1
1- Ont1
1- X1 ~ Onyl
1- On+1
Yn+1 _ VW
x 1-B,.. l—ﬁ Wi 1Vnar = VW 0|
n n
" n+1Vni1 — WV, " .Bn
( Yn))) " +1wn+1 ann“
+
1- ﬁn
Ot [Wavall + W]l
1_o.n+1 l_an l_ﬁn
(57)

From (9), since W,, T,,, and U,,; are all nonexpansive, we have

||Wn+lvn+1 - ann"

" +1Vn+1 n+1v “ + “ +1w ann"

WiVl + M T1U 12V = MT1U 0|

" n+1Vn+1 —
< ||Vn+1 v " +A " n+12Vn Un,ZVn“
= ||V,,+1 v || +A ||/\ TyU, 13, /\szUn,3vn||

< ||vn+1 V ||+/\ A, || w13V Un‘3vn||

< ||Vn+1 - Vn" + /\1/\ )‘ ” n+1n+1Vn Un,n+lvn"

n
< ||vn+1 - vn" + MHAi,

i=1
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”W 1 Wil — W w, "
" n+1Wne1 — n+1w ” + " n+1Wn ann”

= [Wonisr = Wy,
+ M Ty U1 w0, = M T\ U o,
< wnir = wall + A1 Ui 20 = Uy
= [wnir = w,ll + A1 A ToUp1 30, = A, ToU, 5w, |

< ||wnJrl w, || + A1, || 1,3 Wh Un,3wn||

< ||wn+l - wn" + /\1/\ /X “ n+l, w1 Wy Un,n+1wn“

n
< wp —w,| + Ml—[/\i,
i=1
(58)

where sup,. {IlU,.;1 pi1vall + U, 0velll < M and

SUP, s Ui 1 i1 Wall + U, w,lI} < M for some M > 0.
On the other hand, we estimate ||v,,, , —v, |l and |w,,; —w,,].
First observe that

[V = vl
= |Pc (I = varApr) A ppoythir = P (I = vy A ) AM—lunHZ
< (T = varAng) A prrthr = (T = VA ) Ayt
= ”(AM—lun+1 = Appgy)
~vat (A yrrthyer = Ayt
S ”AM—lunﬂ - AM—l“n"2
+ 700 (V= 2600) A M a1t — A g gyt

< ”AM—1“n+1 - AM—lunllz

< l|A0un+1 - AOI’ln“2

= ”un+1 - un”2'

(59)

Utilizing Remark 5 and Lemma 14, we have

"wn+1 - wn“Z

= ]RN,MN (I - HNBN) A N1Up
2
R (I - uyBy) AN—l”n”

s ||(I = N By) ANy — (1= #NBN)AN—lun“Z

Abstract and Applied Analysis

= (A Nyt — A nytty)
—piny (ByA Nty — BNAN_lun)||2
< A ns s = A gty
+ iy (= 210) B eyt = BaA ot

< |lAN—1un+1 - AN—l”n"2

< | Agthyar — Ao”n"2

= ”un+l - un”2>

"(I n+1A n+l — (I - TnA) xn"

= |lxn+1 X T Tyl (Axn+l - Axn) + (rn n+1 Ax ”

- X,

n+l1 Tn+1

= ”x (Axwrl - Axn)” + |rn+1 - rn| "Axn"
= ||xn+1 - xn" + |rn+1 - rnl "Axn" 4

"un+1 - un"

= sr 9 (I - rn+1A) Xn+1 ~ Sf’n@’q)) (I

ntl

A ) (I - rn+1A) Xnt1 ~ Sin@;fp) (I - rnA) Xy

+S£”®+’fp) (I-r,A)x, - Sﬁ?"p) (I-r,A) xn“

[ ) (I - n+1A) Xn+1 ~ sf’n@:ﬂ) (I

+ |29 (1 - 7,4) x,, - SO (1 -,

= ”(I - rn+1A) Xn+1 ~ (I - rnA) xn“

—1,A) x, = SOP (I

< llxn+1 - xn" + |rn+1 - rnl "Axn"

+ Sii’l“’) (I-r,A)x, - Si?’q’) (I-r,A) xn"

< ”xn+1 - xn" + |rn+1 - rnl "Axn"

+ |rn+1 - 7’n| oy

Tpt1 o

: (I - rnA) Xn — (I - rnA) xn"

Tl

= ”xn+1 - xn" + |rn+1 - rnl

x(Jlax) + = s

< ”xn+1 - xn" + |rn+1 - rnlﬁl’

6"’)(1 L A) x, — (I -1,A) n“)

Tnt1

(60)
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where sup,., {[[Ax,| + (v/ca)llSﬁ(?’f")(I - rAx, - I -
r,A)x,l} < M, for some M, > 0. So, combining (57)-(60)
we get

“Zn+1 - Zn“
Xpi1 _ Xpi1 B a,
S s =l + | Sl by If ()l
1- Xn1 ~ Onyl
1- On+1

" 1Vl ~ VW, +1wn+1"

XH Yn+1 _
l_ﬁnﬂ 1_/3,,

|| n+l V}’H—l ann” 1

1
+— lﬁ— 5 Ya¥ W1 — ann"]
Xpr1 ||ann||
1_0n+1 l—Un l_ﬁn
X1 _ (¢t B o,
e e TR R ot ey a,,’ 1 ()l

1= =0
-0,

"Wn+1vn+1 VWn+1wn+l ”

Yn+1 Yn
X _
|: ‘1 - /3n+1 1- ﬁn
+ ("vn+1 - vn" + MHM) __”
i=1 1 lgn
1-p,- n_ —
+% <||wn+1 —w,| +MHAi>]

i=1

i [Wovall + [Wow, |
1_0n+1 l_an ]-_ﬂn
Kn+1 3 Oy
s 1— Ol "xnﬂ xn" + 1= Ot xn)”

1- Opt1

" +1Vn+1 VWn+1wn+1 ”

Yn+1
X _ -
|: ‘ 1- ﬁn+1 1- ﬁn
) <||un+1 | +Mﬁai) e
i=1 1_1811
1- n n_ B
WL lﬁ_ﬁy y (IIun+1 u| +MH)»,~>]

i=1
Wyl + [Wow,|
1- ﬁn

Xnt1

l-0,, 1-0,

1

X1

- 1-0,4 "x”” N xn" +

nel l_nan "f (xn)“

1- Opv1

1- Op+1

” n+1Vnr1 — VWn+1wn+1“

X“&_
1_Bn+1 l_ﬁn

P B,

1-p,- n_
+ ﬁl—yﬁfy MH/\]

i=1

Upi1 — un"

[Wavall + [Wren
1= B,

X1 _
I- O+l 1- o,

‘xn+1 _ ocn+1 B (xn
< T | —l_an‘"f(xn)“
Yn+1 _
| = T P = Wi

1= = Oy, ~ﬁ
+ 1-— 0,11 ”un+1 un” + Mi:1 A,‘
Ot _ [Wavall + [Wo|
l1-0y, 1-o0, 1_ﬁn
& _ ‘xn+1 _
< 1-— Ot "xn+1 xn" + 1- 0,01 (xn)H
Vrt1 _
[ T e =Vl

1-a,,-o0 _

= (e = 2l [ = 7] ML)
n+l
v o [ W]
i=1 1- 01 1- o, 1- ﬂn
[4¢ «
e 21
n+ n

+‘ " B " n+1Vnel ~ VW+1wn+1"

1_ﬂn+1 l_ﬁn

n
+ |rn+1 - rn|M1 +MHAI-

i=1

[Wovall + [Wow
1-a

n+1

1- On+1

1-o0,

< ||xn+1 - xn"
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K1 Xy

+M2<

1_o-n+1 l_Gn

‘ Yn+1 _ yn
1- /3n+1

l_ﬁn

+ |rn+1 - rn| + bn> ,
(61)

where sup,, {1LF (e, -+ (W, v, I+ Wy 0,1/ (1)) +1W, v, ~
VW,w, | + M, + M} < M, for some M, > 0. Thus, from (61),
b € (0,1), and conditions (v)-(vi) it follows that

tim sup (2. = 2] = %1 = %) <0 (62)

Since x,,,, = 0,x, + (1 — 0,)z, for alln > 1, by Lemma 12 we
obtain from 0 < lim inf, _, o, <lim sup,_, o, < 1 that
nlLr%O “zn - xn" =0, (63)

which immediately yields

nILIIéO "xn+1 - xn“ = nhj%o (1 - Un) "Zn - xn” =0. (64)
Note that

plyn=xll = (1= (1=p)) |y, - x|
< (1 - (xn) ”yn - xn"
= "xn+1 Xy T 0y (f (xn) - xn)”

< "xn+1 - xn" + ||(Xn (f (x”) h x”)” ’

Consequently, it follows from (64) and «,,(f(x,) — x,) — 0
that

(65)

nlgréo ”yn - Xn” =0. (66)

Step 3. We prove lim,, _, llx,, — u,|l = 0.
Indeed, for any p € Q, we find that

2
. - £l
2
= ”81(*,,@’@ (I - rnA) Xp — SE*”@’(P) (I - rnA) P"
= “(I - rnA) Xn — (I - rnA) P”Z

(67)
T (Axn - Ap)”Z

=|x, - p-
< | = ol + 1, (r = 20) | Ax,, - Ap]®
< %, - "
From (37), (48), (49), and (67), we obtain
Iy, - oI
=B (= P) + v (Wv, = p)
(=B T= V] (Wow, = p) +7, (T = V) p|’
< By (x4 = P) + v Wy, = p)
+[(1=B) =V (W, - p)I°

+2))n <(I—V)P’J’n_P>

Abstract and Applied Analysis

< Bn"xn - P”Z + Yn”WnVn - P||2
+ (1 - ﬁn - Yn)

2

P (LS DL (LAY

+2yn <(I—V)P’)’n_P>

X

< ﬁn"xn - p“2 + Yn“"n - P||2

(1 B ﬂn B Yn?)z
(1 - :8n - YH)Z
+2)/n <(I—V)P’)’n‘P>

+ (1 - ﬁn - Yn) "ann - P”z

< Bulle, = oI+ yallw, = I

(1 - ﬁn - %17)2 2
+ W“wn -7

+2y, (I=V) p, ¥, — P)
< Bllxu = I+ vallun — 2l
+ (1= B = 18) = I + 20, (T = V) p, 3, = )
= Bullxu = ol + (1= B, =7, (7 - 1))
x [, = plI* + 2y, (L= V) p, 3, — p)
< Bl = pI + (1= Bu=1a (7 - 1))
x [, = pIf + 1, (1 - 20) | Ax, - Aplf']
+2y, (I=V) p, y, = P)
= (=9 G- 1) |x. -l
+ (1= B, =9, (7= 1)) 1, (1, = 20) || Ax, - Ap|
+2y, (I=V) p, ¥, — P)
<leu-pl*+ (1= B, =1 G- 1)1,

X (rn - 2:) "Axn - AP||2 + ZYn <(I - V) P Yn— P> >
(68)

which immediately yields

(1 - ﬁn ~Ya ”V") Ty (rn - 2() “Axn - Apllz
< (1 - ﬁn = Vn ()_/_ 1)) Ty (1”” - 2() "A‘xn - Ap"2
= ”xn _P"2 - "yn _p“z + ZYn <(I _V)p’yn _p>

< ”xn - yn” (”xn - P" + "yn - p”) + 2%1((1 - V) PV~ P>
(69)
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In particular, putting p = x™ we have

(1= B, = 1 IVI) 7, (= 20) | Ax, = A"
< loen = il (s = 271+ L = %71
+2y, (I -V)x", y, — x")
< ”xn - yn“ (”xn - X* || + "yn - X*”)
20, [ = V) x| [ = (70)
+2y, {(I-V)x",x, —x")
=[x, =l
X (e = 2"+ 1 = %"+ 2T = V) 7]
+2y, (I-V)x",x,—x").
Since lim sup,, _, (B, + y.IVI) < 1,0 < lim inf,H
lim sup, _, ., 1, < 2{,and lim sup, _, . ((I-V)x", x,

x")
0, we obtain from (66) and the boundedness of {x,} and {y,
that

OOrt’lS
N <
}

Jim [Ax, - Ax"| = 0. (71)
Furthermore, from the firm nonexpansivity of S£®“”), we have

Jut, ~ I
= Sin@"p) (I-r,A)x, I-r1,A) p“2

< <(I - rnA) Xn — (I - rnA) puy _P>

_ S£®"P) (
= 211G =) %, - (1= 7,8) oI
+ = ol
- "(I - rnA) Xn — (I - rnA)p - (un - p)llz]
< > [ = 7 + bt 21 = 3, = 0, = 7, (4%, — 4p)]
1 2 2 2
= - [l = 2l + s = I = s — ]

+ 2r, (Ax, - Ap, x, rﬁ [ Ax, — Ap||2] ,

(72)

which implies that

= pI* < I =PI = 6, = ]
+ 2rn "Axn - AP" "xn - un" .

(73)

13
From (68) and (73), we have
Iy, - oI
< Bullxa—pI* + (1= By =y, = V) Ju, - oI
+2yn <(I - V)p’yn _P>
< ﬁn”xn - P"2 + (1 - ﬁn ~Vn (7_ 1))
o [y P
+ 2}"" “Axn - Ap“ “'xn - un“]
+2y,(I-=-V)p,y, —
Pul ) P> Y= P) 1)
<(1-y,F-1)|x-p|°
- (1 - Bn ~Vu (? - 1)) ”xn - un"2
+2r, ||Axn - Ap“ ||xn - unH
+ zyn <(I—V)P>)’n _p>
< ”xn - P"2 - (1 - ﬁn ~Ya (? - 1)) "xn - “n"z
+2r, |Ax, — Ap|| |x, —
+2}}n <(I_V)P’yn_P>’
which immediately yields
(1 - ﬁn ~Vn (?_ 1)) ||xn - un“Z
2 2
S — - —_
I, = 2" = . - Pl 75)

+2r, ||Axn - Ap|| Hxn - un”

+2Vn ((I—V)P>}’n—P>-

In particular, putting p = x* we have

(1= By =¥ IVI) |5, — |

< (1= B = 1 (7= 1) s — ol

<o =17 = Iy = %I
+2r, [Ax, — Ax"| [|x, — u|
+2y, (T V)x", y, — x7)

< 1% = all Qe = 7| + 1y = %)
+ 29, [T = V) x| Ly = .
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+2y,{I-V)x",x, —x")
+2r, |Ax, - Ax"||||x, - u,|

= "xn - yn"
X (s = 2"+ 1y = 2" + 2T = V) #7])
+2y, (I-V)x",x, - x")
+2r, |Ax, - Ax"||||x, - u,] -

(76)

Since lim sup,,_, (B, + y,IVI) < 1 and lim sup,_, (I -
V)x*,x, — x") < 0, we deduce from (66) and (71) and the
boundedness of {u,}, {x,}, and {y,} that

Jim x, —u,[ =0. (77)

Step 4. We prove that lim,, _, 1A _ju, — Agu,ll = 0 and
lim, , A _qu, — Aju,| = 0 foreach k € {1,2,..., M} and
i€{l,2,...,N}L
Indeed, let us show that lim,, _, A A u, — Ax™| =0
and lim,, _, o |B;A ;u,, — B;x"|| = 0 for each k € {1,2,..., M}
andi € {1,2,..., N}. Observe that, for any p € Q,
1, = Pl
= |Pc (I - veAr) Ay, = P (I - veAy) pl
< (1= veAR) Ay, = (T=9eAL) p|°
< Ak u, - P"2 + 9 (V= 280) | AR oyt — AkP”2
< u, = pI* + v (0 = 28) A ey — Agp]”
< x, = oI+ % (0 = 280) [ AgA g1, — Agp],
2
I, = p
2
= "]R,.,H,- (I - wB;) Aj_yu, — TR, (I - w;B;) P“
< (1= wB) Ajoyu, — (I - w:B;) P”2
< Aiu, - P"2 + i (g = 21) | B 1y, — BiP"2
< fu, - P”2 + i (45— 211;) | BiA -y, — BiP||2

< "xn - P”2 +u; (= 21;) "BiAi—l”n - Bz‘P”Z-
(78)

From (68) and (78) we have

Iy, - oI’
< ﬁn"xn - P||2 + yn"Vn - P"z

Abstract and Applied Analysis

+(1_ﬁn_]/n)%”ww

n n_p"2
(l_ﬁn_)’n)
+2yn <(I—V)P’)’n—P>

< ﬁn”xn - P"2 + Vn"Akun - P||2

—\2
1 =0, = Vn
+ST%%_gliﬂAﬂn—Pw+2n(U—VﬁpJ%—p)
n Vn
< Bl - oI

T Vn ["xn - P“2 + v (v = 20 AR oyt~ AkP||2]
+ (1= B = 1Y)
x ["xn = p|* + s (= 2m) | BA -y, - BiP“z]
+2y, (I =V)p,y, - p)

=(1-y,F-D) %, - pl’
9k (0 = 28) [ AxA gy, — Agp?
+ (1= B, = v¥) s (4 = 21,) | BiA i, = Bip|”
+2y, (I =V) p,y,— p)

< = pI + v (0 = 26) AR oy, = Agpl’
+ (1= By = 7)1 (s = 21) | BA .y, — Bip*

+ 2yn <(I —V)PJ’n _P> >
(79)

which leads to

Vv (28 = %) | AkA o, — Apl
+ (1= Bo = va¥) (21— ) |BA s, — By
< lxu = 2l = Iy = 2l + 20 (T = V) p, 3, P)
< [l = yull (I = 2l + I3 = 21D
+2y,(I=V) P yu = P) -
(80)

In particular, putting p = x* we have

Vi (28 = i) [AkA oy, — AkX*NZ
+ (1 =Bu—n ||V||) Ui (2’1i - Mi) "BiAi—l”n - Bix*Hz

%12
< Pk (20 = vi) AR oyt — Agx
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+ (1= By = y0) i (21— ) |BiA 1, — Bix™ |
< e = 2all e = 7 + Ly = 7))
+2p, (I =V)x", y, = x")
< lxw = 9 -x")
+ 29, [ = V) ™| [y =l + 20 (T = V) 67, 5, = x7)
= e = pall (2 = 27|+ 3 = x| + 2T = V) 7))

+2y, (I-V)x",x,—x").

(81)

Since 0 < lim inf, _, ¥, < lim sup, _, . (B,+7,1V]) < 1and
lim sup, _, ., ((I - V)x*,x, — x*) < 0, we obtain from (66),
Ve € (0,20,), p; € (0,21;), k €{1,2,...,M},i € {1,2,...,N},
and the boundedness of {x,,} and {y,} that

Jim Ak ku, = Arx™| =0,
(82)
Jim [[BA; yu, - Bix™| =0,

foreachk € {1,2,...,M}andi € {1,2,...,N}
Furthermore, by Proposition 3(iii) and Lemma 7(a), we
obtain

A, - p|
= ||Pc (I = vA) Agoyu, = Po (I - v Ay) P”Z

< (I =9Ap) Ay, = (I =% AL) p A, = p)

1
= 2 (10 =) Ay, = (1= A ol

+ A, - p|
— (T = wAp) A1,

(I =wAp) p— (Agu, — P)||2)

1
5 ("Ak 14 P"2 + 1A —P“z

- “Ak—lun = Aty = vy (ApA gy, — AkP)||2)
1 2
< 3 (o = 2l + A0, - p

- ||Ak—1“n = Aty = Vi (ApA gy, — AkP)||2)

1
< (b ol + 20, o

- “Ak—lun - Akun — Yk (AkAk—lun - Akp)”z) >

(83)

15

which implies that

s, - pl

< e = I = 18 keatt = Aty = 95 (A iyt = Agp) [
= lxu = pI" = 1A kcrtty = A saanl” = Vi ARA g ytay = Arpl
+ 20 (D gyt — Aty A g1, — Ap)
< e = I = 1851 = At

Akun” ”AkAk—lun

+ 20 [| A gy, — - Agp||.

(84)

By Lemmas 7(a) and 14, we get

A, - ol

2
= "]Ri,yi (I-wB) A yu, — TR, (I - u;B;) P"
< (I - ;B;) Aj_yu, — (I - y;B;) p, Aju, — p)

1
= 2 (10 = iBy) Aty = (1= B) I + A 0, —

0~ B Aty — (1~ B) p (A s, = )
< 2 (18 it = oI+ 14,00, - oI
A it~ At~ i (Bt~ Bp))
< 2 (ls = I + |, - o
A it = Attt (B -y, ~ Bp))
< 2 (I oI + 1A, - oI
A ity = Aty — i (BN, — Bip)[).
(85)
which implies that
A0, oI
< Jx, = oI = A auy — A, — s (BiA 1, - Bip)|

= |, - P"2 —|A i, - Ai”n”2 - Miz"BiAi—lun - BiP"2

+2p; (A _yu, — A ju,, BA_yu, — B;p)
< ”xn - P"2 - "Aiflun - A'unuz
+ 244 | A j_qu, — Au|| |BiA Zu, - Bip|| -

(86)
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From (68), (84), and (86) we have

15 - ol
2 2
S/3'1||xrt_p|| +)/n||Vn—P"

(1 _ﬁn _Yn?)z
(1 - ﬁn - Yn)z
+2yn <(I—V)P’)’n_P>

+ (1 - ﬁn - Yn) "ann - P||2

< Bullx. - oI’
¥ [ = 217 = 18 kst = B as |
+ 20 [|A gyt — Aty || | AR eyt — Ap]
+ (1= B, = 7.7)
X[l = pI” = 1A i-rtty = A |

+ 24 | Aoy, = A || |BiA -y, — Bipl]

(87)

+27,{(I=V) P,y = P)
< (1=, (7= D) e = I = valld sty = Agas |
= (1= By = 1) A gty = A
+ 20 A gyt — Aty | | ArA iyt — Arpl]
+ 20 | A iy, = Ay || | BiA i-yuy, = Bpl|
+27, (I=V) p,y, — P)
< =PI = ull A ictty — A, |
~ (1= B =y Aty = A |
+ 20 A gyt — Aty | | AxA iyt — Arpl]
+ 20 | Ay, — A || | BiA - yu, = Bpl|

+2y, (I =-V)p ¥, — P>

which hence implies that

Yn”Ak—lun - Akunnz + (1 - :Bn ~Yu ”V") "Ai—lun - Ai”ln”2

< Yl Ayt - Akun"2 + (1= B = va) A i~ Ai”n"2
< w2l = 1y - I

+ 20 A gyt — Aty || | ArA iyt — Arpl]

+ 20 [ Ay, = A ||| BiA -y, = Byp

+2y, (I~ V) p, y, — p)
< = wull (= 2l + 1y = 21D
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+ 20 [|A gyt = Aty || [ ARA oy, — A
+ 20 | A oy, = A ||| BA 1w, = Bip|

+2y,(I-V)p,y, - p).
(88)

In particular, putting p = x™ we have
Yn“Ak—lun - Akun"2 + (1 - ﬂn “Vn ”V") "Ai—lun - Aiun”2

<l = all (e = 27+ 1w = 71D

+ 20 [|A gyt = Aty || | AR oyt — Agx”
+ 20 [|A oyt — A || | BiA -y — Bix|
+2y, (I =V)x", y, = x")

< [, = 2

X (e = %"+ ym = <"+ 2T = V) #7]))

+ 20 A gy = Aty || AR ey, — Agx”
+ 20 | Ay, = Ay | |BiA g1, = Bix” ||

+2y, (I-V)x",x,—x").
(89)

Since 0 < lim inf, _, ¥, < lim sup, _, . (B,+7,1VI) < 1and

lim sup, _, . ,((I = V)x*,x, — x*) < 0, we obtain from (66)
and (82) and the boundedness of {1, }, {x,}, and {y,} that
nllnéo [A gyt = Ags,]| = 0,
(90)
Jim [|A;u, = A, =0,

foreachk € {1,2,..., M}andi € {1,2,..., N}. Consequently,
from (90) it follows that

e, = v
= | Agu, — A |
< Aoty = Aqu,| + A, — Aju (91)
+oot Ay, — Ay
— 0 asn— oo,
—
= | A gty — A |
< [ Aguy = Ay | + Ay, = A, | (92)
+oo ot |A Nou, — A
— 0 asn-— oo
By (77), (91), and (92), we have

lim |x, - w,| = 0. (93)

Jim e, = v, =0 lim
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Step 5. We show that lim, , llv, — Wv,| = 0. Indeed,
utilizing Lemma 7(b), from (37), (48), (49), and (67) we
obtain that, for any p € Q,

Iy, - ol
=By (0 = P) + ¥ (Wyv,, — p)
(1= B) =3 V] (Wow, = p) + 7, U= V) p|
< |1B. (x5 = ) + ¥ Wy, = p)
#[(1=B)I=7,V] (W, - p)|°
+2y, {U-V) .y, = P)
< Bullxs = £ + vul Wy, - ol
+ (1= By = 1)

2

N [(1 _Bn)l - ynV] (ann _P)

1
1=y =Yn
= Ba¥alln = Wil + 2, (I = V) p, 3, — )
< Bullxa = 21 + vallv = 2l
(1-B.-17)

+ (1 - ﬁn - Yn) ”ann - p“2
(l_ﬂn_yn)z
- ﬁn}}n"xn - ‘/anrl"2 + 2%’1 <(I - V) PV — p>
2 » (=B, -v¥) 2
<Bulx. -2l + vallt — | + —————|w,, -
Bullen = I+ vl = 2+ = = =

+ 21, (L= V) p, 3 = P) = Buvallxs = Wom |
< Bullxu = 21" + vallts = " + (1= By = 97 =
= BaYall 2 = Worall” + 23, (T = V) p. 3, = p)
= Ballxa = ol + (1= By =3 (7= 1) - pI
= Bl = Worall” + 23, (T = V) p. 3, — p)
< Ballw = oI + (1= B = G = 1) - 2l
= Bayall%n = Wovall* + 23, (T = V) p. 3, - p)
= (=9, F = V) % = 2l = Bavallxs = Wy
+2y, (U =V) P,y — )

< "xn - P||2 - ﬁnyn"xn - ‘/Vn"n”2 +2y, <(I -V) P> Yn— P> >
(94)

which implies that
ﬁnYn”xn - annllz

< "xn_P”z_ "yn_pllz +2))n <(I_V)P’yn_p>

17

<l = yull = 2l + 17 = )

+ 2y, (I=-V)p,y, = ).
(95)

In particular, putting p = x* we have
ﬁnyn"xn - annnz
<l = yll (e = %7+l = =71
+2y, {(I-V)x",y, - x")

< e = yall e = =70+ = %71
+27, |- V)7

|yn - xn" + zyn <(I _V)x*’xn _x*>
= "xn - yn" ("xn - x*" + "yn - x*" +2 "(I -V) x*“)

+2y, (I-V)x",x,—x").
(96)

Since lim inf, , B, > O, liminf, , vy, > 0, and
lim sup, _, (I = V)x",x, - x*) < 0, we deduce from (66)
and the boundedness of {x,,} and {y,} that

Jimx, =W, [ = 0. (97)
Also, observe that
[ = Wl = =t i = ]+ e = Wi 99)
Thus, from (77), (91), and (97) it follows that
Jim [v,, = W,v,|| = 0. (99)
Moreover, note that
[~ Wl < v~ Wl + Wi, - W] . 00)

From (99), [23, Remark 3.2], and the boundedness of {v,} we
immediately obtain

Jim v, -Ww,[ =o0. (101)

Step 6. We show that lim sup, _, . .((f — )x",x, —x") <0.
Indeed, we observe that there exists a subsequence {xni}
of {x,} such that

lim sup ((f —I)x",x, - x")
e (102)
= lim <(f—I)x*,xni —x*>.

Since {x, } is bounded, there exists a subsequence {x, } of

{x,,,} which converges weakly to some w. Without loss of
generality, we may assume that x, — w. From (77), (90),
and (93), we have that u, — w,v, — w, Ayu, — w,and
Ayu, — w, where k € {1,2,...,M}and m € {1,2,...,N}.
By (101) we have that |lv, - Wv,|| — 0asn — oco. Then,
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by Lemma 10 we obtain w € Fix(W) = N2, Fix(T,) (due to
Lemma 9). Next we prove that w € ﬂﬁl VI(C, Ap). Let

(103)

Tkv= Awv+ Ngv, veC,
0, v¢C,

where k € {1,2,...,M}. Let (v,u) € G(Tk). Sinceu — A,v €
Nevand A, € C, we have

(v=Agu,,u— Apv) 2 0. (104)

Also, from A u, = Po(I — v Ay)A_ u, and v € C, we have

(v = Aty At = (A gty = Ve ARAg_yu,)) 20, (105)

and hence
<v— A, M + AkAk,lun> >0.  (106)
k
Therefore we have
<v - A, u>
> <v - Akuni,Akv>

> <v - Akuni,Akv>

Akun- _Ak—lun
- <v— Aty e +AkAk_luni>
k

+ <v - Ay, A uy, — AkAk—lun,->

Akun,- - Ak—luni
-(v-Aw,, ————
i v

> (v = Agtty, ApAgtty, — AAy 1, )

Akuni - Ak—luni
-(v-Aw,, —— ).
1 ‘Vk

(107)

From (90) and since A, is uniformly continuous, we obtain
that lim,, _, [l AxA u, — ApAg_yu,ll = 0. From Ay, — w,
v € (0,20y), for all k € {1,2,..., M} and (90), we have

v—w,u) >0. (108)
Since T is maximal monotone, we have w ¢ T,'0 and
hence w € VI(C,A;), k = 1,2,..., M, which implies w €
Nt VI(C, Ay). Next, we prove that w € NN_ I(B,,, R,,). Asa
matter of fact, since B, is #,,-inverse strongly monotone, B,,
is a monotone and Lipschitz continuous mapping. It follows
from Lemma 17 that R,, + B,, is maximal monotone. Let
(v,g) € G(R,, + B,,); thatis, g — B,,v € R, v. Again, since
Aty = gy (= i Bp)A i, n > 1,m € {1,2,...,N},
we have

Am—ll’ln - ."lmBmAm—lun € (I + tumRm) Amun' (109)
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That is,
1

‘Ll_ (Amflun - Amun - .MmBmAmflun) € RmA mUn- (110)
m

In terms of the monotonicity of R,,,, we get

<v -A,u,,g-B,v
1)
1
D (Am—lun - Amun - ["mBmAm—lun)> =20

m

and hence

<V_ Amun’g>

> <v— A u,

1
B, v +— (At —

Amun - ."lmBmAm— un)>
. :

= <v -A,u,,B,v-B,A u,+B,A, u,

_BmAm—lun + L (Am—lun - Amun)>
I

m

> (v—A,u,, B, A ,u

m”-n “mttm—n

- BmAm—lun>

1
+ <V_ Amun’ M_ (Am—lun - Amun)> .

" (112)
In particular,
<v - Amun,-’ g>
> (v= At By, — BN, 1, ) (113)

+ <v - Au,, € (Am,luni - Amuni)> .
Hm
Since |A,u, — A, u,l|l — 0 (dueto (90)) and |B,,A ,,u, —
B, A, 4, — 0 (due to the Lipschitz continuity of B,,),
we conclude from A,u, — wandy, € (0,21,), m €
{1,2,..., N}, that

lim <v — Ay, g> =(v-w,g) > 0. (114)

1— 00

It follows from the maximal monotonicity of B,, + R,, that
0 € (R, + B,)w; that is, w € I(B,,,R,,). Therefore, w €
nN_1(B,, R,,).

Next, we show that w € GMEP(®, ¢, A). In fact, from
u, = $©P(I - r,A)x,, we know that

O (uy y) + 9 (¥) — 9 (u,) + (Ax,, y —u,)

1 (115)
+—<K'(un)—K’(xn),y—un>20, Vy e C.
rn
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From (H2) it follows that
¢ (¥) — o (u,) + (Ax,, y —uy,)
1
+T_<K,(un)_K,(xn)’y_un>2®(y’un)’ V}/EC.
(116)

Replacing n by n;, we have

QD()/) _go(un,-) + <Axni’y _u”i>

’ _ !
+<K (u,,i) K (x""),y—un,-> 2@()/,%,-)’

Tni

Vy eC.
(117)

Putu, =ty + (1 —t)wforallt € (0,1] and y € C. Then, from
(117) we have

<ut - “n,.>A”t>

> <ut - uni,Aut> —p(w)+e (”n,-)
’ o
B <ut B uni)Axni> _ <K (u”i) K (xni),ut — un,->

+ 0 (ut,uni)

> <ut — Uy, Au, - Auni> + <ut - U, Au, — Axni>

— ¢ (u) + 9 (u,)

! ot
) <K (uni) K (x""),ut—”n~> +@)(ut,un,).
Ty, 1 l

(118)

Since ||”n,. - X, [ - 0asi — o0, we deduce from the
Lipschitz continuity of A and K " that IIAuni - Ax, | — 0

and IIK'(uni) - K'(xni)ll — 0asi — oo. Further, from the
monotonicity of A, we have (4, — u,, Au, — Au,, ) > 0. So,

from (H4), the weakly lower semicontinuity of ¢, (K ’(“n,.) -
K'(xni))/rni — 0, and U, — w, we have

as i — 00.
(119)

(u, —w, Auy) > —9 (1) + ¢ (W) + O (u, w),

From (H1), (H4), and (119) we also have
0=0 (up,u,) +¢ () - (u)
< tO (uy, y) + (1 - 1) © (1, w)
+tp(y) + (1 -1) @ (w) — ¢ (1)
=t[0(upy) + ¢ () — o ()]
+(1-1) [0 (u, w) + 9 (w) — ¢ (W) — 9 (u,)]

19
<t[®(u,y) +9(y) - ¢ (u)]
+(1=1t)(u, —w, Au,)
=t[0(u,y) + 9 (¥) — ¢ (u)]
+(1-t)t{(y-w, Au,),
(120)

and hence

0<O(u,y)+o(y)—¢(u)+ 1 -1 {(y—w, Au,). (121)
Lettingt — 0, we have, for each y € C,

0<O(wy)+e(y)-pW) +(Aw,y-w).  (122)

This implies that w €  GMEP(®,¢,A). Therefore,
w € N% Fix(T,) N GMEP(®,9,A) N Ny, VI(A,,C) N
nfi I(B;, R;) = Q. This shows that w,,(x,) ¢ Q. Consequently,
from (102) and x* € VI(Q, I — f), we have

lim sup ((f—I)x",x,-x") ={((f-I)x", w-x") <0.
(123)

Step 7. Finally, we show that x, — x* € Qasn — oo.
Indeed, in terms of (68) we get

ly = x|
<=y, G- 1) |x, -
(1= By =10 (7= 1)) 1 (1, = 20) | Ax, — AX7|
+2y, (I=V)x", 3, - x")
<=y, F-1) x, -
+2y, (I -V)x", y, - x"),
(124)

which, together with (37), implies that

||xn+1 _x*”2

= flov, (f () = £ (7)) + (1 - @,) (3, = x7)
o, (f (") =)

ES "(xn (f (xn) - f(x*)) + (1 - (xn) (yn - x*)"z

+ 20, ((f = 1) %7, %000 = X7)
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<a|f () = F (P +(1-
+ 20, ((f -
<, x|+ (1 - a)
x[(1 =9, (7= 1) e - x|
+2y, (I = V) x", y, = x7)]
+ 20, ((f -
=(1-(1-

+2(1-

o) lyu ="

D)X %y, — ")

DENENEEY)
n)))n _1)) "x —-X "
(xn)))n <(I_V)x*’yn_x*>
+2“n <(f_
(1_(1_ n)Yn

2<(1—V)x*,yn—x*>
¥-1)

20, -Dx*,x,., —x"
o) TS =)

D)%™, %41 = X7)

(xn) Yn (? - 1)

= (1-8,) |x, = %" + 0,8,
(125)
where 8, = (1 - a,)y,(7 - 1) and
_2{U=W)xty, = x7)
' 72—1 (126)
a0 U D).

Since {p,} < [0,1 - p], {y,} € [a,a] c (0,1),and ¥, &, =
00, we deduce thatz 8, =Y (1-0a,)y,(y-1) = coand

2a, /(1 = &,)y, (¥ - 1n))1<n2/pa(7— 1). Note that

lim sup (I - V) x", y, - x")
n— 00

x,) +{I-V)x",x, —x")]

=lim sup [((I-V)x", y, -

n— 00

<0.
(127)

Hence from (123) and Lemma 18 it follows that

lim supo,
) 2{(I-V)x*, y,—x") 2a,,

=lim sup — + —
neo -1 (1-a)y, (y-1)

X ((f =1 %7 %00 = X7)
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2{I-V)x",y,—x")

< lim sup 71

lim sup ot (f = 1) X"\ %y — )
n—oo (1= )Vn(y 1)

<0.

(128)

Applying Lemma 13 to (125), we infer that the sequence {x,,}
converges strongly to x*. This completes the proof. O

Corollary 20. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let N be an integer. Let ® be a bifunction
from C x C to R satisfying (H1)-(H4) and ¢ : C — R a lower
semicontinuous and convex functional. Let R; : C — 2 be
a maximal monotone mapping and let A : H — H, A,

C — H,andB; : C — H be {-inverse strongly monotone, (-
inverse strongly monotone, and n;-inverse strongly monotone,
respectively, where i € {1,2,...,N}. Let {T,},°, be a sequence
of nonexpansive mappings on H and {A,} a sequence in
(0,b] for some b € (0,1). Let V be a y-strongly positive
bounded linear operator withy € (1,2) and f : H —
H a p-contraction with p € (0,1). Let W, be the W-
mapping defined by (9). Assume that Q = 02, Fix(T,) N
GMEP(®, ¢, A) N VI(C A;) n Y I(B, R;) #0. Define A; =
Jrou I =wiBy) -+ Jg, (I =y By) for eachi € {1,2,..., N}. Let
{cx } {B,}, and {yn} be three sequences in [0, 1]. Assume that

(i) K : H — Risstrongly convex with constant o > 0 and
its derivative K' is Lipschitz continuous with constant
v > 0 such that the function x — (y — x, K'(x)) is
weakly upper semicontinuous for each y € H,

(ii) for each x € H, there exist a bounded subset D, c C
and z,. € C such that, forany y ¢ D,,

0(y,z,) +o(z) —o(y)

) (129)
+; <K' (y)-K' (x),z, —y> <0

(iii) {er,} € [0,1 = pland Y2, a0, = 0o,

(iv) lim infn_woyn > 0and 0 < liminf, B, <
lim sup, _, (B, + y.IVI) < 1,

W) hmn%oo(l‘xrﬁl/(l -(1- an+1)ﬁn+l) - (xn/(l -1 -
‘xn)ﬁn” + |Yn+1/(1 - ﬁm—l) - Yn/(l - /jn)D =0,

(vi) {r,} < [0,2¢], lim,_, |ty — 7] = 0, and 0 <

lim inf, _, 1, <lim sup,_, 7, < 2.

Given x, € H arbitrarily, the sequence {x,}is generated
iteratively by

u, = Sin@"”) (I-r,A)x,,
Yn = ﬂnxn + YnPC (I - lel)un
+ [(1 - ﬁn) I- YnV] WnANun’

Xn+1 = (an (xn) + (1 - (xn) Yo

(130)

Vn>1,
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where v, € (0,2(,) and y; € (0,2%;) for eachi € {1,2,...,N}.
Ifa,(f(x,)—x,) — 0and S£®"”) is firmly nonexpansive, then

x, — x" e lim sup (I -V)x",x,-x") <0, (131
where x* is a unique solution in Q to the VIP
(I-f)x",x"-x)<0, VxeQ. (132)

Corollary 21. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let N be an integer. Let © be a bifunction
from C x C to R satisfying (H1)-(H4) and ¢ : C — R a lower
semicontinuous and convex functional. Let R; : C — 2 be
a maximal monotone mapping and let A : H — H and B :
C — H be(-inverse strongly monotone and ;-inverse strongly
monotone, respectively, wherei € {1,2,...,N}. Let {T,},°, bea
sequence of nonexpansive mappings on H and {A,)} a sequence
in (0,b] for some b € (0,1). Let V be a y-strongly positive
bounded linear operator withy € (1,2) and f: H — H a p-
contraction with p € (0,1). Let W,, be the W-mapping defined
by (9). Assume that Q = N2, Fix(T,) N GMEP(®, ¢, A) N
N, I(B, R) #0. Define A; = Jp ,, (I-4;B)) -+ Jg . (=4, B)
for each i € {1,2,...,N}. Let {a,}, {B,}, and {y,} be three
sequences in [0, 1]. Assume that

(i) K : H — Risstrongly convex with constant o > 0 and
its derivative K' is Lipschitz continuous with constant
v > 0 such that the function x — (y — x, K'(x)) is
weakly upper semicontinuous for each y € H,

(ii) for each x € H, there exist a bounded subset D, c C
and z,. € C such that, forany y ¢ D,,

O (y.z,) +o(z,) —o(y)
L, , (133)
+;<K (y)—K (x),zx—y> < 05

(iii) {er,} € [0,1 - pland Y, a, = 0o,

IN

(iv) lim inf,, |y, > 0 and 0 < liminf,_ B,
lim sup, _, (B, + v.IVI) < 1,

(V) lim,, _, o (lotyy ) /(1 = (1 = 06,41)B01) — o, /(1 = (1
“n)ﬂnﬂ + |Vn+1/(l - ﬁn+1) - yn/(l - ﬁn)l) =0,

(vi) {r,} < [0,20], lim,,_, |ty — 7] = 0, and 0 <
lim inf, , 1, <lim sup,_, . 7, < 2.

Given x, € H arbitrarily, the sequence {x,}is generated
iteratively by

u, = Sﬁn@"”) (I-r,A)x,,

Yn = ﬁn'xn + ynwnun + [(1 - ﬁn) I- an] WnANun’ (134)

Xne1 = (xnf (xn) + (1 - (Xn) Vo> Vn>1,

where y; € (0,2y;) for each i € {1,2,...,N}. If o,(f(x,) —
x,) — 0and S is firmly nonexpansive, then

x, — x" &= lim sup (I - V) x",x, - x") <0, (135)
n— 00
where x* is a unique solution in Q) to the VIP
(I-f)x",x"—x) <0, VxeQ. (136)
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Proof. In Theorem 19, putting A, = 0 for each k =
1,2,..., M, we know that the iterative scheme (37) reduces
to (134). In this case, we get ﬂ,’lﬁ L VI(C, A,) = C. Utilizing
Theorem 19 we derive the desired result. O

Corollary 22. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let M be an integer. Let © be a bifunction
from C x C to R satisfying (H1)-(H4) and ¢ : C — R a lower
semicontinuous and convex functional. Let R, : C — 2 be
a maximal monotone mapping and let A : H — H, A, :
C — H,andB, : C — H be{-inverse strongly monotone, (.-
inverse strongly monotone, and n, -inverse strongly monotone,
respectively, where k € {1,2,..., M}. Let {T,};2, be a sequence
of nonexpansive mappings on H and {A,} a sequence in
(0,b] for some b € (0,1). Let V be a y-strongly positive
bounded linear operator with y € (1,2) and f : H —
H a p-contraction with p € (0,1). Let W, be the W-
mapping defined by (9). Assume that Q = N2, Fix(T,) N
GMEP(®, ¢, A) N M, VI(C, A,) NI(B,, R,) #0. Define A, =
Po(I - v Ap)---Po(I —v,A,) foreach k € {1,2,..., M}. Let
{a,}, B}, and {y,} be three sequences in [0, 1]. Assume that

(i) K : H — Risstrongly convex with constant o > 0 and
its derivative K' is Lipschitz continuous with constant
v > 0 such that the function x — (y — x, K'(x)) is
weakly upper semicontinuous for each y € H,

(ii) for each x € H, there exist a bounded subset D, ¢ C
and z,. € C such that, forany y ¢ D,,

O(y.z,) +9(z,) -9 (»)

- , (137)
- <K (y)-K (x),zx—y> < 0;
(iii) {er,} € [0,1—=pland Y2, a, = 0o,
(iv) lim inf, |y, > 0 and 0 < liminf, , _f, <

lim sup,,_, (B, + y.IVI) < 1,
(V) lirnn—w)o(locrﬁl/(l - (1 - “n+l)ﬁn+1) - “n/(l - (1
“n)l;n” + |Vn+1/(1 - ,Bnﬂ) - Yn/(l - ﬁn)D =0,

(vi) {r,} < [0,20], lim,_, |t — 7] = 0, and 0 <
lim inf, _, 1, <lim sup,_, . 7, < 2.

Given x, € H arbitrarily, the sequence {x,} is generated
iteratively by

u, = Sif)"p) (I-r,A)x,,
Yn = ﬁnxn + VanA MUn

+ [(1 - [;n) I- an] ‘/Vn]Rl,y1 (I - .ulBl) Uy»

Vn=>1,

(138)

Xpt1 = (an (xn) + (1 - (Xn) V>

where v, € (0,20;) and y, € (0,2,) for each k ¢
{L2,...,M}. If a,(f(x,) — x,) — 0 and S? is firmly
nonexpansive, then

x, — x e limsup (I -V)x",x,-x") <0,
n—0oo

(139)
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where x* is a unique solution in Q) to the VIP

((I-f)x",x"-x) <0, VxeQ. (140)
Corollary 23. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let M and N be two integers. Let ® be a
bifunction from C x C to R satisfying (HI)-(H4) and ¢ : C —
R a lower semicontinuous and convex functional. LetR; : C —
2" be a maximal monotone mapping andlet A, : C — H and
B; : C — H be {i-inverse strongly monotone and n;-inverse
strongly monotone, respectively, where k € {1,2,..., M} and
i € {1,2,...,N}. Let {T,};>, be a sequence of nonexpansive
mappings on H and {A,} a sequence in (0,b] for some b €
(0,1). Let V be a y-strongly positive bounded linear operator
withy € (1,2) and f : H — H a p-contraction with
p € (0,1). Let W, be the W-mapping defined by (9). Assume
that Q = N Fix(T,) N MEP(®,¢) N N, VI(C, A}) N
NN, I(B;, R;) #0. Define Ay, = Po(I — vAy) -+ Po(I — v, A,)
and A; = Jp (I = @B Jg (I — wBy) for each k €
{1,2,...,M}andi € {1,2,...,N}. Let {a,,}, {B,}, and {y,} be
three sequences in [0, 1]. Assume that

(i) K : H — Risstrongly convex with constant o > 0 and
its derivative K' is Lipschitz continuous with constant
v > 0 such that the function x + (y — x,K'(x)) is
weakly upper semicontinuous for each y € H,

(ii) for each x € H, there exist a bounded subset D, c C
and z,. € C such that, forany y ¢ D,,

0 (y,2,) + 9 (2:) —9(¥)
) (141)
+ (K () - K ()2, - 7) <0

(iii) {er,} € [0,1=pland ¥ 2, a, = 00,

n=1"n
(iv) lim inf, |y, > 0 and 0 < liminf, B, <
lim sup, , (8, + v.IVI) < 1,

) hmn—>oo(|(xn+l/(l - (1 - an+l)ﬁn+1) - (Xn/(l -1 -
“n)/';n” + |Vn+1/(1 - ,Bn+1) - Yn/(l - ﬁn)l) =0,

(vi) {r,} is a bounded sequence in (0, co0) such that

lim infr, >0, Jim [Fe1 = 7] = 0. (142)

Given x, € H arbitrarily, the sequence {x,}is generated
iteratively by

O (upy) +o(y) — 9 (u,)

1 ! !
+Z<K (u,) - K (xn),y—un> >0,

Vy € C,
Yn = ﬁnxn + YanAMun + [(1 - /Sn) I- YnV] WnANun’
Xnt1 = “nf (xn) + (1 - ‘Xn) V> Vnz1,

(143)
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where v, € (0,2(;) and p; € (0,2x;) for each k € {1,2,..., M}
andi € {1,2,...,N}. If(xn(f(xn) — xn) = 0and Si@;‘l’) is
firmly nonexpansive, then

x, — x" &= lim sup (I - V) x",x, - x") <0, (144)
n— 0o

where x* is a unique solution in Q) to the VIP

((I-f)x"x"—x) <0, VxeQ. (145)

Proof. In Theorem 19, foralln > 1,u, = S£®"”)(I - r,A)x, is
equivalent to

O (upy) + ¢ (¥) — 9 (u,) + (Ax,, y —u,)

(146)
+l<K'(un)—K/(xn),y—un> >0, VyeC.
rn

Put A = 0. Then it follows that

© (u, y) + 9 (y) = ()

L <K' (u,) - K'(x,),y - un> >0, VyeC.
rﬂ
(147)
Observe that for all { € (0, 00)

(Ax - Ay,x - y) 2 {|Ax - Ay“z, Vx,y € H.  (148)
So, whenever 0 < lim inf, , 7, < limsup, 1, < 2¢
for some { € (0,00), we obtain the desired result by using
Theorem 19. O

Let T : H — H be a k-strictly pseudocontractive
mapping. For recent convergence result for strictly pseudo-
contractive mappings, we refer to [24]. Putting A = I - T, we
know that for all x, y € H

|- 2 x~ A=Ay < |x—yI" +xfAx - A" (149)

Note that
(I-A)x—(I-A) 9y =|x-y| +||Ax - Ay’
|| I =l =yl + Ax - 4y 150)
-2{(Ax-Ay,x-y).
Hence we have forall x, y € H
(Ax - Ay,x—y) > ! ; £ [Ax - Ay||2. (151)

Consequently, if T : H — H is a x-strictly pseudocontrac-
tive mapping, then the mapping A = I -T'is (1 —«)/2-inverse
strongly monotone.

Corollary 24. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let M and N be two integers. Let ® be a
bifunction from C x C to R satisfying (H1)-(H4) and ¢ : C —
R a lower semicontinuous and convex functional. LetR; : C —
2H be a maximal monotone mapping andletT : H — H, A, :
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C — H,and B, : C — H be k-strictly pseudocontractive, (-
inverse strongly monotone, and v;-inverse strongly monotone,
respectively, where k € {1,2,...,M} andi € {1,2,...,N}
Let {T,}° | be a sequence of nonexpansive mappings on H and
{A,} a sequence in (0,b] for some b € (0,1). Let V be a y-
strongly positive bounded linear operator withy € (1,2) and
f+ H — H a p-contraction with p € (0,1). Let W, be the
W-mapping defined by (9). Assume that Q = n;2, Fix(T,)) N
GMEP(®, ¢, A)nMyL VI(C, A )NNY I(B;, R;) # 0 where A =
I-T. Define A, = Po(I — wAy) -+ Po(I = v A)) and A, =
Jrou(I=tiB;) - Jg, u (I=piy By) foreach k € {1,2,..., M} and
ie€{l,2,...,N}. Let {«,}, {B,}, and {y,} be three sequences in
[0, 1]. Assume that
(i) K : H — Risstrongly convex with constant o > 0 and
its derivative K' is Lipschitz continuous with constant
v > 0 such that the function x — (y — x, K'(x)) is
weakly upper semicontinuous for each y € H,
(ii) for each x € H, there exist a bounded subset D, ¢ C
and z,. € C such that, forany y ¢ D,,

O(y.z,) +9(z,)—¢(»)
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(K () =K (9,2, - 7) < 0 12

(iii) {er,} € [0,1-pland Y2, a, = 0o,
(iv) lim inf, , Y, > 0 and 0 < liminf, B, <

lim sup, _, (B, + v.IVI) < 1,
(V) lim,, , o (loty /(1 = (1 = @) Bsn) — @, /(1 = (1 =
(xn)ﬁn” + |Yn+1/(1 - ﬁn+1) - Yn/(l - ﬁn)l) =0,
(vi) {r,} < [0,1 —«], lim,,_, J|r,s1 — 1l = 0, and 0 <
lim inf, , 1, <lim sup, _, 7, <1 -« Given x, €
H arbitrarily, the sequence {x, }is generated iteratively
by
U, = Sin@ll’) ((1 - rn) Xy + rnTxn) >
Vn = BuXp + YaWol puty, + [(1 - /Sn) I- YnV] WA Nty

Xny1 = “nf (xn) + (1 - ‘Xn) Yo Vn>1,

(153)

where vy € (0,20;) and y; € (0,2n;) for each k € {1,2,..., M}
andi € {1,2,...,N}. Ifa,(f(x,) — x,) — 0 and S£®"”) is
firmly nonexpansive, then

x, — x" &= lim sup (I - V) x",x, —x") <0, (154)
n— 00
where x* is a unique solution in Q) to the VIP
((I-f)x",x"—x) <0, VxeQ. (155)

Proof. Since T is a k-strictly pseudocontractive mapping, the
mapping A = I — T is (1 — x)/2-inverse strongly monotone.
In this case, put { = (1 — k)/2. Moreover, we obtain that

u, = Sin&q’) (I - rnA) Xn
= SS)’(P) (Xn T (I-T) xn) (156)
= SS),(P) ((1 - rn) Xp t rnTxn) .

So, from Theorem 19, we obtain the desired result. O
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Corollary 25. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let M and N be two integers. Let ® be a
bifunction from C x C to R satisfying (H1)-(H4) and ¢ : C —
R a lower semicontinuous and convex functional. LetR; : C —
2H be a maximal monotone mappingandlet A: H — H, A, :
C — H,andB; : C — H be{-inverse strongly monotone, (.-
inverse strongly monotone, and n;-inverse strongly monotone,
respectively, where k € {1,2,...,M} andi € {1,2,...,N}. Let
V' be a y-strongly positive bounded linear operator with y €
(1,2)and f: H — H a p-contraction with p € (0, 1). Assume
that Q) := GMEP(®, ¢, A)nN}L, VI(C, A) NN I(By, R;) #0.
Define Ay, = Po(I-vAp) - Po(I-v,A))and A = Tro (I =
#iB) -+ Jp (I = By) for each k € {1,2,...,M} and i €
{1,2,...,N§4. Let {a,}, {B,}, and {y,} be three sequences in
[0, 1]. Assume that

(i) K : H — Risstrongly convex with constant o > 0 and
its derivative K' is Lipschitz continuous with constant
v > 0 such that the function x — (y — x, K'(x)) is
weakly upper semicontinuous for each y € H,

(ii) for each x € H, there exist a bounded subset D, ¢ C
and z,. € C such that, forany y ¢ D,,

©(y.2) +9(2) —9(¥)

1 ) , (157)
+ (K (1) - K ()2, 7) <0
(iii) {er,} € [0,1—-pland Y2, a0, = 0o,
(iv) lim inf, , Y, > 0 and 0 < liminf, B, <

lim sup,, _, oo (B, + yIVI) < 1;

(V) hmn—>oo(|‘xn+l/(l - (1 - (xn+1)/3n+l) - (xn/(l - (1
‘xn)ﬁn” + |Vn+1/(1 - ﬁrﬁ—l) - Yn/(l - /311)|) =0,

(vi) {r,} < [0,20], lim,_, |t — 7] = 0, and 0 <
lim inf, , 1, <lim sup,_, . 7, < 2.

Given x, € H arbitrarily, the sequence {x,} is generated
iteratively by

u, = Sif)"”) (I-r,A)x,
Vo = B + Yl sty + [(1 = B) I =y, V] A gus,,,  (158)
xn+1 = (an (xn) + (l - (xn) }’w Vn 2 1,

where v € (0,2(}) and y; € (0,2#;) for each k € {1,2,..., M}
andi € {1,2,...,N}. If a,(f(x,) — x,) — 0 and S©? is
firmly nonexpansive, then

x, — x" &= limsup (I - V) x",x, -x") <0, (159
n—oo
where x* is a unique solution in Q) to the VIP
((I-f)x",x"—x)<0, VxeQ. (160)

Proof. Put T,,x = x for all integers n > 1 and all x € H. Then,
the desired result follows from Theorem 19. O
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Corollary 26. Let C be a nonempty closed convex subset of
a real Hilbert space H. Let M and N be two integers. Let
R; : C — 2" be a maximal monotone mapping and let A, :
C — HandB; : C — H be (i -inverse strongly monotone
and w;-inverse strongly monotone, respectively, where k €
{1,2,...,M}andi € {1,2,...,N}. Let {T,}2, be a sequence of
nonexpansive mappings on H and {A,)} a sequence in (0, b] for
someb € (0,1). Let V be a y-strongly positive bounded linear
operator with’y € (1,2) and f: H — H a p-contraction with
p € (0,1). Let W, be the W-mapping defined by (9). Assume
that Q := N, Fix(T,) N NpL, VI(C, A,) N Y, I(B,, R;) #0.
Define Ay = Po(I-vAy) -+ PcI=v,Ay) and A = Jp (I -
#iB) -+ Jr (I — i By) for each k € {1,2,...,M} and i €
{1,2,...,N,(4. Let {a,}, {B,}, and {y,} be three sequences in
[0, 1]. Assume that

() {o,} c[0,1-pland Y2, a, = o,
(ii) lim inf, , oy, > 0 and 0 < lim inf
lim sup,,_, (B, + y.IVI) < 1,

(111) lirnn—w)o(locrﬁl/(l - (1 - “n+l)ﬁn+1) - (Xn/(l - (1 -
an)ﬁn” + |Yn+1/(l - ﬁn+1) - Yn/(l - ﬁn)l) =0.

HHOOﬁn S

Given x, € H arbitrarily, the sequence {x,}is generated
iteratively by
In = /D’nxn + YanAMxn + [(1 - /jn) I- ynV] WnAan’

Xn+1 = “nf (xn) + (1 - “n) Ve Yn21,

(161)

where v, € (0,2(;) and y; € (0,2n;) for each k € {1,2,..., M}
andi € {1,2,...,N} Ifa,(f(x,) — x,) — 0 and S£®’(P) is
firmly nonexpansive, then

x, — x" &= lim sup (I - V) x",x, —x") <0, (162)
n—00

where x* is a unique solution in Q) to the VIP
((I-f)x"x"—x) <0,

Proof. Put O(x, y) = 0,¢(x) = 0, forallx,y € C,Ax =0
for all x € H,and r, = 1. Take K(x) = (1/2)|lx]|* for all

x € H.Thenwe getu, = x,,in Theorem 19 and the conclusion
follows. O

Vx € Q. (163)
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