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The existence of equilibrium points, and the essential stability of the set of equilibrium points of the equilibrium problem with
lower and upper bounds are studied on Hadamard manifolds.

1. Introduction

Let 𝐾 be a given nonempty set, 𝑓 : 𝐾 × 𝐾 → 𝑅 a given
function, and 𝑎 and 𝑏 two real numbers satisfying 𝑎 ≤ 𝑏. The
equilibrium problem with lower and upper bounds is that of
finding 𝑥 ∈ 𝐾 such that

𝑎 ≤ 𝑓 (𝑥, 𝑦) ≤ 𝑏, ∀𝑦 ∈ 𝐾. (1)

If 𝑎 = 0, 𝑏 = 1, and 𝑓(𝑥, 𝑦) = 𝑒
−𝐹(𝑥,𝑦), then problem (1)

is said to be the scalar equilibrium problem: find 𝑥 ∈ 𝐾 such
that

𝐹 (𝑥, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐾, (2)

where 𝐹 : 𝐾×𝐾 → 𝑅 is a given function satisfying 𝐹(𝑥, 𝑥) ≥
0 for all 𝑥 ∈ 𝐾. It is well known that problem (2) is a unified
model of several problems, such as variational inequality
problems, optimization problems, saddle point problems,
complementarity problems, and fixed point problems (e.g.,
see [1–3]).

In 1999, Isac et al. [4] raised the open problem: if 𝐾 is
a nonempty closed subset in a locally convex semireflexive
topological vector space, under what conditions does prob-
lem (1) have a solution? Since then, some authors begin to
study the problem. In 2000, Li [5] gave the answer by using
the concept of extremal subsets. In [6], Chadli et al. derived
some results by using a fixed point theorem due to Ansari and
Yao [7] and Fan lemma [8]. In [9], Zhang also answered the

problemby using the concept of (𝑎, 𝑏)-convexity, a fixed point
theorem and Fan lemma. The results mentioned above and
others in [10–12] are shown in the topological vector space.
Therefore, there is a problem: when does problem (1) have
a solution in the nonlinear framework of manifolds? On the
other hand, as far as we know, there is not a paper in which
the essential stability of the set of equilibrium points of the
equilibrium problem with lower and upper bounds is given
either in topological vector space or on manifolds.

The purpose of this paper is to develop the equilibrium
problem with lower and upper bounds in the nonlinear
framework of Hadamard manifolds, to study the existence
of equilibrium points, and the essential stability of the set
of equilibrium points of the equilibrium problem with lower
and upper bounds on Hadamard manifolds. Our results
extend the corresponding theorems due to Isac et al. [4],
Colao et al. [13], and Zhang [9].

2. Preliminaries

In this sectionwe recall some notations, definitions, and basic
properties used throughout the paper, which can be found in
[14] or [15].

Definition 1. A Hadamard manifold𝑀 is a complete simply
connected Riemannian manifold of nonpositive sectional
curvature.
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Throughout this paper, let 𝑀 be an 𝑚-dimensional
Hadamard manifold, let 𝑥 be any given point in 𝑀, and let
𝑇
𝑥

𝑀 denote the tangent space at 𝑥 to𝑀. We denote by ⟨⋅, ⋅⟩
the scalar product on 𝑇

𝑥

𝑀 with the associated norm ‖ ⋅ ‖. Let
𝑑 : 𝑀 ×𝑀 → 𝑅 be the distance function; then by the Hopf-
Rinow theorem (see [15]), (𝑀, 𝑑) is a complete metric space.

Definition 2. The exponential mapping exp
𝑥

: 𝑇
𝑥

𝑀 → 𝑀

at 𝑥 is defined by exp
𝑥

V = 𝛾V(1, 𝑥) for each V ∈ 𝑇
𝑥

𝑀, where
𝛾V(⋅, 𝑥) = 𝛾(⋅) is the geodesic starting at 𝑥 with velocity V (i.e.,
𝛾(0) = 𝑥 and 𝛾󸀠(0) = V).

Easily, we know that (i) exp
𝑥

𝑡V = 𝛾V(𝑡, 𝑥) for each real
number 𝑡; (ii) the exponential mapping and its inverse are
continuous on Hadamardmanifolds; (iii) for any 𝑜, 𝑝, 𝑞 ∈ 𝑀,
the minimal geodesic joining 𝑝 to 𝑞 is exp

𝑝

𝑡exp−1
𝑝

𝑞 (𝑡 ∈

[0, 1]), and exp
𝑜

(𝑡
1

exp−1
𝑜

𝑝 + 𝑡
2

exp−1
𝑜

𝑞) is also the minimal
geodesic for any 𝑡

1

, 𝑡
2

∈ [0, 1] with 𝑡
1

+ 𝑡
2

= 1.

Definition 3. A subset 𝑆 ⊂ 𝑀 is said to be geodesic convex if
for any two points 𝑥 and 𝑦 in 𝑆 the geodesic joining 𝑥 to 𝑦 is
contained in 𝑆; that is, if 𝛾 : [𝑎, 𝑏] → 𝑀 is a geodesic such
that 𝑥 = 𝛾(𝑎) and 𝑦 = 𝛾(𝑏), then 𝛾((1 − 𝑡)𝑎 + 𝑡𝑏) ∈ 𝑆 for all
𝑡 ∈ [0, 1].

Definition 4. Let 𝑜 be any given point in 𝑀. The geodesic
convex hull for a set 𝑆 ⊂ 𝑀, denoted by 𝐺𝐶𝑜𝑆, is defined
as follows:

𝐺𝐶𝑜𝑆 = {exp
𝑜

(

𝑛

∑

𝑖=1

𝜆
𝑖

exp−1
𝑜

𝑥
𝑖

) | ∀𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑛

∈ 𝑆,

𝜆
1

, . . . , 𝜆
𝑛

∈ [0, 1] ,

𝑛

∑

𝑖=1

𝜆
𝑖

= 1} .

(3)

Remark 5. If 𝑆 ⊂ 𝑀 is a geodesic convex subset, then
𝐺𝐶𝑜{𝑥

1

, 𝑥
2

, . . . , 𝑥
𝑛

} ⊂ 𝑆 for any 𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑛

∈ 𝑆.

Definition 6 (see [16]). Let 𝐺 : 𝑆 → 2
𝑀. One says that

𝐺 is a KKM mapping on Hadamard manifolds if, for any
𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑛

∈ 𝑆, one has

𝐺𝐶𝑜 {𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑛

} ⊂

𝑛

⋃

𝑖=1

𝐺 (𝑥
𝑖

) . (4)

Lemma 7 (see [13, 16]). Let 𝐾 be a nonempty closed geodesic
convex subset of 𝑀 and 𝐺 : 𝐾 → 2

𝑀 a closed-valued KKM
mapping on a Hadamard manifold. If there exists at least one
𝑥
0

∈ 𝐾 such that 𝐺(𝑥
0

) is compact in 2𝑀, then

⋂

𝑥∈𝐾

𝐺 (𝑥) ̸= 0. (5)

3. Existence of Equilibrium Point

In this section, we show the existence of equilibrium point
of the equilibrium problem with lower and upper bounds by
using KKM theorem on Hadamard manifolds.

Theorem 8. Let 𝑆 be a nonempty bounded closed and geodesic
convex subset of Hadamard manifolds 𝑀. If the function 𝑓 :

𝑆 × 𝑆 → 𝑅 satisfies the following conditions:

(i) for each 𝑦 ∈ 𝑆, the set {𝑥 ∈ 𝑆 | 𝑎 ≤ 𝑓(𝑥, 𝑦) ≤ 𝑏} is
closed in𝑀,

(ii) for any finite set {𝑦
1

, . . . , 𝑦
𝑛

} ⊂ 𝑆, 𝐺𝐶𝑜{𝑦
1

, . . . , 𝑦
𝑛

} ⊂

⋃
𝑛

𝑖=1

{𝑥 ∈ 𝑆 | 𝑎 ≤ 𝑓(𝑥, 𝑦
𝑖

) ≤ 𝑏},
(iii) there exists 𝑦

0

∈ 𝑆, such that {𝑥 ∈ 𝑆 | 𝑎 ≤ 𝑓(𝑥, 𝑦
0

) ≤ 𝑏}

is a compact subset of𝑀,

then the equilibrium point of the problem (1) exists. That is,
there exists 𝑥 ∈ 𝑆, such that

𝑎 ≤ 𝑓 (𝑥, 𝑦) ≤ 𝑏 ∀𝑦 ∈ 𝑆. (6)

Proof. Let the set-valued mapping 𝐺 : 𝑆 → 2
𝑆 be defined

by 𝐺(𝑦) = {𝑥 ∈ 𝑆 | 𝑎 ≤ 𝑓(𝑥, 𝑦) ≤ 𝑏}. Then 𝐺 is a KKM
mapping. In fact, it follows from Condition (ii) that, for any
finite set {𝑦

1

, . . . , 𝑦
𝑛

} ⊂ 𝑆 and any 𝑦
0

∈ 𝐺𝐶𝑜{𝑦
1

, . . . , 𝑦
𝑛

}, there
exists some 𝑖 ∈ {1, 2, . . . , 𝑛} such that 𝑎 ≤ 𝑓(𝑦

0

, 𝑦
𝑖

) ≤ 𝑏; that
is, 𝑦
0

∈ 𝐺(𝑦
𝑖

) for some 𝑖. Hence we have 𝑦
0

∈ ⋃
𝑛

𝑖=1

𝐺(𝑦
𝑖

) and
𝐶𝑜{𝑦
1

, . . . , 𝑦
𝑛

} ⊂ ⋃
𝑛

𝑖=1

𝐺(𝑦
𝑖

).
By Condition (i), for each 𝑦 ∈ 𝑆, 𝐺(𝑦) is closed in𝑀. By

Condition (iii) and the completeness of𝑀, there exists 𝑦
0

∈ 𝑆

such that 𝐺(𝑦
0

) = {𝑥 ∈ 𝑆 | 𝑎 ≤ 𝑓(𝑥, 𝑦
0

) ≤ 𝑏} is compact.
By Lemma 7, we have ⋂

𝑦∈𝑆

𝐺(𝑦) ̸= 0; that is, for any 𝑦 ∈ 𝑆,
there exist 𝑥 ∈ 𝐺(𝑦). Therefore there exists 𝑥 ∈ 𝑆 such that
𝑎 ≤ 𝑓(𝑥, 𝑦) ≤ 𝑏 for all 𝑦 ∈ 𝑆. The proof is completed.

Example 9. If for any 𝑥 ∈ 𝑆, the mapping 𝑔 : 𝑆 × 𝑆 → 𝑅 sat-
isfies that the set {𝑦 ∈ 𝑆 | 𝑔(𝑥, 𝑦) < 0} is geodesic convex and
𝑔(𝑥, 𝑥) = 0, then 𝑓(𝑥, 𝑦) = 𝑒−𝑔(𝑥,𝑦) satisfies Condition (ii).

In fact, if not, then for any finite set {𝑦
1

, . . . , 𝑦
𝑛

} ⊂ 𝑆,
there exists 𝑥 ∈ 𝐺𝐶𝑜{𝑦

1

, . . . , 𝑦
𝑛

} such that 𝑥 ∉ ⋃
𝑛

𝑖=1

{𝑥 ∈ 𝑆 |

𝑔(𝑥, 𝑦
𝑖

) ≥ 0}; that is, 𝑔(𝑥, 𝑦
𝑖

) < 0 (for all 𝑖 ∈ {1, 2, . . . , 𝑛}).
This implies that for any 𝑖 ∈ {1, 2, . . . , 𝑛}, 𝑦

𝑖

∈ {𝑦 ∈ 𝑆 |

𝑔(𝑥, 𝑦) < 0}. By the geodesic convexity of {𝑦 ∈ 𝑆 | 𝑔(𝑥, 𝑦) <

0}, we have 𝑥 ∈ 𝐺𝐶𝑜{𝑦
1

, . . . , 𝑦
𝑛

} ⊂ {𝑦 ∈ 𝑆 | 𝑔(𝑥, 𝑦) < 0},
which contradicts to 𝑔(𝑥, 𝑥) = 0. Therefore, for any subset
{𝑦
1

, . . . , 𝑦
𝑛

} ⊂ 𝑆, 𝐺𝐶𝑜{𝑦
1

, . . . , 𝑦
𝑛

} ⊂ ⋃
𝑛

𝑖=1

{𝑥 ∈ 𝑆 | 𝑔(𝑥, 𝑦
𝑖

) ≥

0} ⊂ ⋃
𝑛

𝑖=1

{𝑥 ∈ 𝑆 | 0 ≤ 𝑓(𝑥, 𝑦
𝑖

) ≤ 1}.

Theorem10. Let 𝑆 be a nonempty bounded closed and geodesic
convex subset of Hadamard manifolds 𝑀. If the function 𝑓 :

𝑆 × 𝑆 → 𝑅 satisfies the following conditions:

(i) for each 𝑦 ∈ 𝑆, the set {𝑥 ∈ 𝑆 | 𝑎 ≤ 𝑓(𝑥, 𝑦) ≤ 𝑏} is
closed in𝑀,

(ii) for any finite set {𝑦
1

, . . . , 𝑦
𝑛

} ⊂ 𝑆, 𝐺𝐶𝑜{𝑦
1

, . . . , 𝑦
𝑛

} ⊂

⋃
𝑛

𝑖=1

{𝑥 ∈ 𝑆 | 𝑎 ≤ 𝑓(𝑥, 𝑦
𝑖

) ≤ 𝑏},
(iii) there exists a compact subset 𝐿 ⊂ 𝑀 and a point 𝑦

0

∈

𝐿 ∩ 𝑆, such that 𝑓(𝑥, 𝑦
0

) < 𝑎 or 𝑓(𝑥, 𝑦
0

) > 𝑏 for all
𝑥 ∈ 𝑆 \ 𝐿,

then the equilibrium point of problem (1) exists.

Proof. Let the set-valued mapping 𝐺 : 𝑆 → 2
𝑆 be defined

by 𝐺(𝑦) = {𝑥 ∈ 𝑆 | 𝑎 ≤ 𝑓(𝑥, 𝑦) ≤ 𝑏}. Then by Condition
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(iii) there exists a point 𝑦
0

∈ 𝑆 such that 𝐺(𝑦
0

) ⊂ 𝐿. So
it follows for Condition (i) and the completeness of 𝑀 that
𝐺(𝑦
0

) is compact. By Theorem 8, we have that there exists
𝑥 ∈ 𝑆 such that 𝑎 ≤ 𝑓(𝑥, 𝑦) ≤ 𝑏 for all 𝑦 ∈ 𝑆. This completes
the proof.

Theorem 11. Let 𝑆 be a nonempty compact and geodesic con-
vex subset of Hadamard manifolds𝑀. If the function 𝑓 : 𝑆 ×

𝑆 → 𝑅 satisfies the following conditions:

(i) for each 𝑦 ∈ 𝑆, 𝑓 is continuous with respect to 𝑥 in𝑀,
(ii) for any finite set {𝑦

1

, . . . , 𝑦
𝑛

} ⊂ 𝑆, 𝐺𝐶𝑜{𝑦
1

, . . . , 𝑦
𝑛

} ⊂

⋃
𝑛

𝑖=1

{𝑥 ∈ 𝑆 | 𝑎 ≤ 𝑓(𝑥, 𝑦
𝑖

) ≤ 𝑏},

then there exists 𝑥 ∈ 𝑆, such that 𝑎 ≤ 𝑓(𝑥, 𝑦) ≤ 𝑏 for all 𝑦 ∈ 𝑆.

Proof. From the continuity of 𝑓, it follows that Condition (i)
of Theorem 8 holds. By Theorem 8, we have that there exists
𝑥 ∈ 𝑆 such that 𝑎 ≤ 𝑓(𝑥, 𝑦) ≤ 𝑏 for all 𝑦 ∈ 𝑆. This completes
the proof.

Remark 12. Theorem 8 extendsTheorem 3.1 due to Zhang [9]
from the topological vector space to Hadamard manifolds.

Next, we show some applications of our results as the
following.

Corollary 13. Let 𝑆 be a nonempty compact and geodesic con-
vex subset of Hadamard manifolds𝑀, 𝑎 = inf

𝑥∈𝑆

𝑓(𝑥, 𝑥), and
𝑏 = sup

𝑥∈𝑆

𝑓(𝑥, 𝑥). If the function 𝑓 : 𝑆 × 𝑆 → 𝑅 satisfies the
following conditions:

(i) for each 𝑦 ∈ 𝑆, 𝑓 is continuous with respect to 𝑥 in𝑀,
(ii) for any finite set {𝑦

1

, . . . , 𝑦
𝑛

} ⊂ 𝑆, 𝐺𝐶𝑜{𝑦
1

, . . . , 𝑦
𝑛

} ⊂

⋃
𝑛

𝑖=1

{𝑥 ∈ 𝑆 | 𝑎 ≤ 𝑓(𝑥, 𝑦
𝑖

) ≤ 𝑏},

then there exists 𝑥 ∈ 𝑆, such that

inf
𝑥∈𝑆

𝑓 (𝑥, 𝑥) ≤ 𝑓 (𝑥, 𝑦) ≤ sup
𝑥∈𝑆

𝑓 (𝑥, 𝑥) , ∀𝑦 ∈ 𝑆. (7)

Corollary 14. Let 𝑆 be a nonempty bounded closed and
geodesic convex subset of Hadamard manifolds 𝑀. If the
mapping 𝐹 : 𝑆 × 𝑆 → 𝑅 satisfies the following conditions:

(i) for any 𝑥 ∈ 𝑆, 𝐹(𝑥, 𝑥) = 0,
(ii) for each 𝑦 ∈ 𝑆, the set {𝑥 ∈ 𝑆 | 𝐹(𝑥, 𝑦) ≥ 0} is closed in

𝑀,
(iii) for any 𝑥 ∈ 𝑆, the set {𝑦 ∈ 𝑆 | 𝐹(𝑥, 𝑦) < 0} is geodesic

convex,
(iv) there exists a compact subset 𝐿 ⊂ 𝑀 and a point 𝑦

0

∈

𝐿 ∩ 𝑆, such that 𝐹(𝑥, 𝑦
0

) < 0 for all 𝑥 ∈ 𝑆 \ 𝐿,

then the equilibrium point of the problem (2) exists.

Proof. Define a mapping 𝑓 : 𝑆 × 𝑆 → 𝑅 by 𝑓(𝑥, 𝑦) = 𝑒−𝐹(𝑥,𝑦),
and then

{𝑥 ∈ 𝑆 | 𝐹 (𝑥, 𝑦) ≥ 0} = {𝑥 ∈ 𝑆 | 0 < 𝑓 (𝑥, 𝑦) ≤ 1} . (8)

By Condition (ii), we have that the {𝑥 ∈ 𝑆 | 0 ≤ 𝑓(𝑥, 𝑦) ≤ 1}

is closed. It follows from conditions (i), (iii) and Example 9

that 𝑓 satisfies that for any finite set {𝑦
1

, . . . , 𝑦
𝑛

} ⊂ 𝑆,
𝐺𝐶𝑜{𝑦

1

, . . . , 𝑦
𝑛

} ⊂ ⋃
𝑛

𝑖=1

{𝑥 ∈ 𝑆 | 0 ≤ 𝑓(𝑥, 𝑦
𝑖

) ≤ 1}. Addi-
tionally, byCondition (iv) there exists a point𝑦

0

∈ 𝑆 forwhich
{𝑥 ∈ 𝑆 | 𝐹(𝑥, 𝑦

0

) ≥ 0} ⊂ 𝐿. So it follows from Condition (ii)
and the completeness of 𝑀 that {𝑥 ∈ 𝑆 | 0 ≤ 𝑓(𝑥, 𝑦) ≤ 1}

is compact. By Theorem 8, we have that, for all 𝑦 ∈ 𝑆, there
exists 𝑥 ∈ 𝑆 such that 0 ≤ 𝑓(𝑥, 𝑦) ≤ 1; that is, there exists
𝑥 ∈ 𝑆 such that 𝐹(𝑥, 𝑦) ≥ 0. This completes the proof.

Remark 15. When themapping𝑥 → 𝐹(𝑥, 𝑦) is upper contin-
uous for all 𝑦 ∈ 𝑆, Condition (i) holds in Corollary 14. If 𝑆 is
a compact subset of𝑀, then Condition (iv) can be omitted.
Therefore, Theorem 3.2 shown in [13] is improved.

4. Essential Stability

In this section, we consider the essential stability of the set
of equilibrium points of the equilibrium problem with lower
and upper bounds on Hadamard manifolds. We can see the
systemic study about the essential stability in the topological
vector space in [17].

Let 𝑆 be a nonempty compact and geodesic convex subset
of Hadamard manifold 𝑀, and Ψ denotes the set of the
function 𝑓 : 𝑆 × 𝑆 → 𝑅, which is continuous with respect to
𝑥 and satisfies 𝐺𝐶𝑜{𝑦

1

, . . . , 𝑦
𝑛

} ⊂ ⋃
𝑛

𝑖=1

{𝑥 ∈ 𝑆 | 𝑎 ≤ 𝑓(𝑥, 𝑦
𝑖

) ≤

𝑏} for any finite set {𝑦
1

, . . . , 𝑦
𝑛

} ⊂ 𝑆.
For any𝑓 ∈ Ψ, it follows fromTheorem 8 that there exists

𝑥 ∈ 𝑆 such that for all 𝑦 ∈ 𝑆, 𝑎 ≤ 𝑓(𝑥, 𝑦) ≤ 𝑏, where 𝑥 ∈

𝑆 is said to be equilibrium points of the equilibrium prob-
lem with lower and upper bounds. Let 𝐸(𝑓) denote the set of
equilibrium points 𝑥; then

𝐸 (𝑓) =

{

{

{

𝑥 ∈ 𝑆 | 𝑥 ∈ ⋂

𝑦∈𝑆

{𝑥 | 𝑎 ≤ 𝑓 (𝑥, 𝑦) ≤ 𝑏}

}

}

}

. (9)

So a mapping 𝐸 : Ψ → 𝐾(𝑆) is well defined, where 𝐾(𝑆) is
the set of all nonempty compact subsets of 𝑆. For any𝑓, 𝑔 ∈ Ψ,
we can define a distance as follows:

𝜌 (𝑓, 𝑔) = sup
(𝑥,𝑦)∈𝑆×𝑆

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑦) − 𝑔 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨 . (10)

Clearly, (Ψ, 𝜌) is a metric space.

Definition 16. For each 𝑓 ∈ Ψ, let 𝑒(𝑓) be a nonempty closed
subset of 𝐸(𝑓).

(i) 𝑥 ∈ 𝐸(𝑓) is called an essential point of 𝐸(𝑓) if, for any
open neighborhood 𝑁(𝑥) of 𝑥 in 𝑆, there is a 𝛿 > 0

such that for any 𝑓󸀠 ∈ Ψ with 𝜌(𝑓, 𝑓󸀠) < 𝛿, 𝑁(𝑥) ∩
𝐸(𝑓
󸀠

) ̸= 0. If all 𝑥 ∈ 𝐸(𝑓) is essential, then 𝑓 is said to
be essential.

(ii) 𝑒(𝑓) is called an essential set of 𝐸(𝑓) if, for any open
set 𝑈, 𝑒(𝑓) ⊂ 𝑈, there is a 𝛿 > 0 such that for any
𝑓
󸀠

∈ Ψ with 𝜌(𝑓, 𝑓󸀠) < 𝛿, 𝑈 ∩ 𝐸(𝑓
󸀠

) ̸= 0.
(iii) 𝑚(𝑓) is called a minimal essential set of 𝐸(𝑓) if it

is a minimal element of the family of essential sets
ordered by set inclusion.
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Lemma 17. The metric space (Ψ, 𝜌) is complete.

Proof. Let {𝑓
𝑛

∈ Ψ} be any Cauchy sequence; then for any
𝜀 > 0, there is an 𝑛

0

∈ 𝑁 such that for any 𝑛,𝑚 > 𝑛
0

,
𝜌(𝑓
𝑛

, 𝑓
𝑚

) < 𝜀, or, sup
(𝑥,𝑦)∈𝑆×𝑆

|𝑓
𝑛

(𝑥, 𝑦) − 𝑓
𝑚

(𝑥, 𝑦)| < 𝜀, which
implies that for any (𝑥, 𝑦) ∈ 𝑆 × 𝑆, {𝑓

𝑛

(𝑥, 𝑦)} is a Cauchy
sequence in 𝑅. Thus, there is a mapping 𝑓 : 𝑆 × 𝑆 → 𝑅 such
that |𝑓

𝑛

(𝑥, 𝑦) − 𝑓(𝑥, 𝑦)| → 0 for each (𝑥, 𝑦) ∈ 𝑆 × 𝑆. Hence
sup
(𝑥,𝑦)∈𝑆×𝑆

|𝑓
𝑛

(𝑥, 𝑦) − 𝑓(𝑥, 𝑦)| → 0. Then 𝑓
𝑛

→ 𝑓 under
the metric 𝜌.

Next we will prove 𝑓 ∈ Ψ. For any 𝑦 ∈ 𝑆, using
󵄨󵄨󵄨󵄨𝑓 (𝑥𝑛, 𝑦) − 𝑓 (𝑥, 𝑦)

󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑓𝑛 (𝑥𝑛, 𝑦) − 𝑓 (𝑥𝑛, 𝑦)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑓𝑛 (𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑓𝑛 (𝑥𝑛, 𝑦) − 𝑓𝑛 (𝑥, 𝑦)

󵄨󵄨󵄨󵄨 ,

(11)

we can show 𝑓(𝑥, 𝑦) is continuous with respect to 𝑥. For all
finite set {𝑦

1

, . . . , 𝑦
𝑛

} ⊂ 𝑆 and all 𝑦
0

∈ 𝐺𝐶𝑜{𝑦
1

, . . . , 𝑦
𝑛

}, it
follows from the property of 𝑓

𝑛

that there exists some 𝑖 ∈
{1, 2, . . . , 𝑛} such that 𝑎 ≤ 𝑓

𝑛

(𝑦
0

, 𝑦
𝑖

) ≤ 𝑏. Since𝑓
𝑛

→ 𝑓 under
the metric 𝜌, 𝑎 ≤ 𝑓(𝑦

0

, 𝑦
𝑖

) ≤ 𝑏 holds for some 𝑦
𝑖

and any 𝑦
0

.
Then

𝐺𝐶𝑜 {𝑦
1

, . . . , 𝑦
𝑛

} ⊂

𝑛

⋃

𝑖=1

{𝑥 ∈ 𝑆𝑎 ≤ 𝑓 (𝑥, 𝑦
𝑖

) ≤ 𝑏} ; (12)

that is, 𝑓 ∈ Ψ.

Lemma 18. The mapping 𝐸 : Ψ → 𝐾(𝑆) is a usco mapping;
that is, 𝐸 is upper semicontinuous on Ψ and 𝐸(𝑓) is nonempty
compact for all 𝑓 ∈ Ψ.

Proof. Since 𝑆 is compact, we need only to prove the closed-
ness of the graph of 𝐸 (Grap𝐸); that is, for all 𝑓

𝑛

∈ Ψ with
𝑓
𝑛

→ 𝑓 and any 𝑥
𝑛

∈ 𝐸(𝑓
𝑛

) with 𝑥
𝑛

→ 𝑥, 𝑥 ∈ 𝐸(𝑓) should
be proved.

For any 𝑛, 𝑥
𝑛

∈ 𝐸(𝑓
𝑛

) implies that 𝑥
𝑛

∈ ⋂
𝑦∈𝑆

{𝑥 ∈ 𝑆 | 𝑎 ≤

𝑓
𝑛

(𝑥, 𝑦) ≤ 𝑏}. Hence, for all 𝑦 ∈ 𝑆, by the continuity of 𝑓
𝑛

,
we have that {𝑥 ∈ 𝑆 | 𝑎 ≤ 𝑓

𝑛

(𝑥, 𝑦) ≤ 𝑏} is closed, and so 𝑥 ∈

⋂
𝑦∈𝑆

{𝑥 ∈ 𝑆𝑎 ≤ 𝑓
𝑛

(𝑥, 𝑦) ≤ 𝑏}; that is, 𝑎 ≤ 𝑓
𝑛

(𝑥, 𝑦) ≤ 𝑏 holds
for all 𝑦 ∈ 𝑆. It follows from 𝑓

𝑛

→ 𝑓 that 𝑎 ≤ 𝑓(𝑥, 𝑦) ≤ 𝑏

holds for all 𝑦 ∈ 𝑆. Therefore, 𝑥 ∈ 𝐸(𝑓). This completes the
proof.

Theorem 19. For each 𝑓 ∈ Ψ, one has that

(i) there exists a dense residual subset 𝐺 ofΨ such that for
each 𝑓 ∈ 𝐺, 𝑓 is essential,

(ii) there exists at least one connected minimal essential
subset of 𝐸(𝑓).

Proof. (i) By Lemmas 17 and 18, we have that the metric
space (Ψ, 𝜌) is complete and the mapping 𝐸 : Ψ → 𝐾(𝑆)

is usco. Hence, it follows from Fort theorem (see [18]) that
there is a dense residual subset 𝐺 of Ψ, such that 𝐸 is
lower semicontinuous in 𝐺. From the definition of lower

semicontinuous mapping and Definition 16 (i), it follows that
𝑓 is essential for each 𝑓 ∈ 𝐺.

(ii) Let Θ denote the family of all essential subsets of
𝐸(𝑓) ordered by set inclusion; then Θ ̸= 0. In fact, the upper
semicontinuity of 𝐸 implies that, for each open set Λ with
𝐸(𝑓) ⊂ Λ, there exists 𝛿 > 0 such that for any 𝑓󸀠 ∈ Ψ with
𝜌(𝑓, 𝑓

󸀠

) < 𝛿, 𝐸(𝑓󸀠) ⊂ Λ. Hence 𝐸(𝑓) is an essential set of
itself.

From the compactness of 𝑆, it follows that the intersection
of every decreasing chain of elements in Θ is also in Θ and
Θ has a lower bound. Therefore, by Zorns lemma, Θ has a
minimal element 𝑚(𝑓), which is a minimal essential set of
𝐸(𝑓).

Suppose that the minimal essential subset 𝑚(𝑓) is not
connected. Then, there exist two nonempty open subsets𝑀

1

and𝑀
2

with𝑚(𝑓) = 𝑀
1

∪𝑀
2

and two disjoint open subsets
𝑉
1

and 𝑉
2

in 𝐸(𝑓) such that 𝑉
1

⊃ 𝑀
1

and 𝑉
2

⊃ 𝑀
2

. From
𝑚(𝑓) ⊂ 𝑉

1

∪ 𝑉
2

, it follows that there is a 𝛿∗ > 0 such that for
any 𝑓󸀠 ∈ Ψ with 𝜌(𝑓, 𝑓󸀠) < 𝛿∗, (𝑉

1

∪ 𝑉
2

) ∩ 𝐸(𝑓
󸀠

) ̸= 0.
Since𝑚(𝑓) is aminimal essential set of𝐸(𝑓), then neither

𝑀
1

nor𝑀
2

is essential. Hence, for 𝛿∗ > 0, there exist 𝑓
1

, 𝑓
2

∈

Ψ with 𝜌(𝑓, 𝑓
1

) < (𝛿
∗

/4) and 𝜌(𝑓, 𝑓
2

) < (𝛿
∗

/4), such that
𝑉
1

∩ 𝐸(𝑓
1

) = 0, 𝑉
2

∩ 𝐸(𝑓
2

) = 0. Thus, 𝜌(𝑓
1

, 𝑓
2

) < (𝛿
∗

/2).
Define a mapping 𝑓

3

: 𝑆 × 𝑆 → 𝑅 as follows:

𝑓
3

(𝑥, 𝑦) = 𝛼 (𝑦) 𝑓
1

(𝑥, 𝑦) + 𝛽 (𝑦) 𝑓
2

(𝑥, 𝑦) , (13)

where 𝛼(𝑦) = 𝑑(𝑦, 𝑉
2

)/(𝑑(𝑦, 𝑉
1

) + 𝑑(𝑦, 𝑉
2

)), 𝛽(𝑦) =

𝑑(𝑦, 𝑉
1

)/(𝑑(𝑦, 𝑉
1

) + 𝑑(𝑦, 𝑉
2

)), and 𝑑(⋅, ⋅) is the metric of 𝑀.
It is easy to show that, for any 𝑦 ∈ 𝑆, 𝛼(𝑦) and 𝛽(𝑦) are
continuous, 𝛼(𝑦) ≥ 0, 𝛽(𝑦) ≥ 0, and 𝛼(𝑦) + 𝛽(𝑦) = 1. By the
continuity of 𝑓

1

and 𝑓
2

, we have that 𝑓
3

is continuous with
respect to 𝑥.

For any finite set {𝑦
1

, . . . , 𝑦
𝑛

} ⊂ 𝑆 and all 𝑦
0

∈

𝐺𝐶𝑜{𝑦
1

, . . . , 𝑦
𝑛

}, it follows from the property of 𝑓
𝑗

(𝑗 =

1, 2) that there exists some 𝑖 ∈ {1, 2, . . . , 𝑛} such that 𝑎 ≤

𝑓
𝑗

(𝑦
0

, 𝑦
𝑖

) ≤ 𝑏 (𝑗 = 1, 2), and then 𝑎 ≤ 𝑓
3

(𝑦
0

, 𝑦
𝑖

) ≤ 𝑏. There-
fore, 𝑓

3

∈ Ψ.
Since

𝜌 (𝑓
3

, 𝑓) ≤ 𝜌 (𝑓
3

, 𝑓
1

) + 𝜌 (𝑓
1

, 𝑓)

≤ 𝜌 (𝑓
1

, 𝑓) + 𝜌 (𝑓
1

, 𝑓
2

) ≤ 𝛿
∗

,

(14)

we have (𝑉
1

∪𝑉
2

)∩𝐸(𝑓
3

) ̸= 0.When𝑉
1

∩𝐸(𝑓
3

) ̸= 0, let 𝑦 ∈ 𝑉
1

∩

𝐸(𝑓
3

); then 𝛼(𝑦) = 1, 𝛽(𝑦) = 0, 𝑓
3

= 𝑓
1

, and 𝑉
1

∩ 𝐸(𝑓
1

) ̸= 0,
which contradicts the fact 𝑉

1

∩ 𝐸(𝑓
1

) = 0. Similarly, we can
show that𝑉

2

∩𝐸(𝑓
3

) ̸= 0 results in a contradiction.Therefore,
𝑚(𝑓) is connected. The proof is completed.

In the sequel, by using the above results, we consider the
essential stability of the set of equilibrium points of problem
(2) on Hadamard manifolds.

Let Ψ󸀠 denote the set of the function 𝐹 : 𝑆 × 𝑆 → 𝑅,
which is continuous and satisfies that {𝑥 ∈ 𝑆 | 𝐹(𝑥, 𝑦) < 0} is
geodesic convex and 𝐹(𝑥, 𝑥) = 0 for any 𝑥 ∈ 𝑆.

For any 𝐹 ∈ Ψ
󸀠, it follows from Remark 15 and

Corollary 14 that there exists 𝑥 ∈ 𝑆 such that for all 𝑦 ∈ 𝑆,
𝐹(𝑥, 𝑦) ≥ 0, where 𝑥 ∈ 𝑆 is said to be equilibrium points of
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problem (2). Let 𝐸󸀠(𝐹) denote the set of equilibrium points 𝑥;
then

𝐸
󸀠

(𝐹) =

{

{

{

𝑥 ∈ 𝑆 | 𝑥 ∈ ⋂

𝑦∈𝑆

{𝑥 | 𝐹 (𝑥, 𝑦) ≥ 0}

}

}

}

=

{

{

{

𝑥 ∈ 𝑆 | 𝑥 ∈ ⋂

𝑦∈𝑆

{𝑥 | 0 ≤ 𝑒
−𝐹(𝑥,𝑦)

≤ 1}

}

}

}

.

(15)

So a mapping 𝐸󸀠 : Ψ󸀠 → 𝐾(𝑆) is well defined.
Let 𝑓(𝑥, 𝑦) = 𝑒

−𝐹(𝑥,𝑦), 𝑎 = 0, and 𝑏 = 1; by Theorem 19,
we have the following results.

Corollary 20. For each 𝐹 ∈ Ψ
󸀠, one has that

(i) there exists a dense residual subset 𝐺󸀠 of Ψ󸀠 such that
for each 𝐹 ∈ 𝐺

󸀠, 𝐹 is essential,
(ii) there exists at least one connected minimal essential

subset of 𝐸󸀠(𝐹).
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