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We study a class of impulsive neural networks with mixed time delays and generalized activation functions. The mixed delays
include time-varying transmission delay, bounded time-varying distributed delay, and discrete constant delay in the leakage term.
By using the contractionmapping theorem, we obtain a sufficient condition to guarantee the global existence and uniqueness of the
solution for the addressed neural networks. In addition, a delay-independent sufficient condition for existence of an equilibrium
point and some delay-dependent sufficient conditions for stability are derived, respectively, by using topological degree theory and
Lyapunov-Krasovskii functionalmethod.Thepresented results require neither the boundedness,monotonicity, and differentiability
of the activation functions nor the differentiability (even differential boundedness) of time-varying delays. Moreover, the proposed
stability criteria are given in terms of linearmatrix inequalities (LMI), which can be conveniently checked by theMATLAB toolbox.
Finally, an example is given to show the effectiveness and less conservativeness of the obtained results.

1. Introduction

Aswe know, timedelay in a system is a commonphenomenon
that describes the fact that the future state of the system
depends not only on the present state but also on the past state
and is always unavoidably encountered in many fields such
as automatic control, biological chemistry, physical engineer,
and neural networks [1–5]. Moreover, time delays can affect
the stability of a neural network and create oscillatory and
bad dynamic performance [3–5]. Hence, it is significant and
necessary to take into account the delay effects on dynamics
of neural networks, for example, existence, uniqueness and
stability, and so on. To date, neural network models with two
categories of time delays, namely, discrete and continuously
distributed time delays, have been extensively investigated by
many researchers, using some effective approaches; see [6–
22] and references therein. For instance, in [6], Kharitonov
and Zhabko studied the robust stability of time-delay systems
via Lyapunov-Krasovskii functional approach. Wu et al. [9]
introduced free-weighting matrix approach and investigated
the robust stability problem for time-varying delay systems.
Gu introduced the delay decomposition method in [10].

Recently, a special type of time delay, namely, leakage
delay (or forgetting delay), is identified and investigated
due to its existence in many real systems. In 2007, Gopal-
samy [11] proposed the bidirectional associative memory
neural networks with constant delay in the leakage term
and derived sufficient conditions for existence and stability
of equilibrium. Based on this work, Li and Huang [12]
investigated the stability of general nonlinear systems with
leakage delay, bymodel transformation, contractionmapping
theorem, and degenerate Lyapunov-Krasovskii functional.
However, dynamical analysis of neural networks with time
delay in leakage term has been little considered due to some
theoretical and technical difficulties [23–30]. In fact, time
delay in the stabilizing negative feedback term has a tendency
to destabilize a system [11] and has great impact on the
dynamics of neural networks.

On the other hand, besides delay, impulses are also likely
to exist in neural networks. In implementation of electronic
networks, the state is subject to instantaneous perturbations
and experiences abrupt change at certain moments, which
may be caused by switching phenomenon, frequency change,
or other sudden noises; that is, it does exhibit impulsive
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effects; see [13–21, 31–35]. Therefore, impulsive perturbations
should be taken into account when studying the dynamics of
neural networks. Since the existence of delays and impulses
is frequently a source of instability, bifurcation, and chaos for
dynamical systems, it is significant to study both delay and
impulsive effects on dynamical systems [13–21, 25, 26, 32].
In [25], Li et al. investigated the existence, uniqueness, and
stability problems of recurrent neural networks with discrete
time delay and time delay in the leakage termunder impulsive
perturbations, while being without distributed delay. Since
neural networks usually have a spatial extent, there is a
distribution of propagation delays over a period of time. In
these circumstances the signal propagation is not instan-
taneous and cannot be modelled only with discrete delays
and a more appropriate way is to incorporate continuously
distributed delays in neural network models. To the best of
our knowledge, so far, there has been very little existing work
on impulsive neural networks with time delay in the leakage
term and discrete and time-varying distributed delays via
LMI approach [27].

Motivated by aforementioned discussion, in this paper,
we consider a class of impulsive neural networks with
mixed timedelays and generalized activation functionswhich
could be different from each other. The mixed time delays
include time-varying transmission delay, bounded time-
varying distributed delay, and constant delay in the leakage
term. Firstly, by using the contraction mapping theorem, we
obtain a delay-independent sufficient condition to guarantee
the global existence and uniqueness of the solution for the
addressed neural networks. Secondly, we present a delay-
independent sufficient condition to guarantee the existence
of an equilibrium point by using topological degree theory.
Thirdly, some sufficient conditions which are dependent
on the leakage delay, time-varying transmission delay, and
distributed delay have been derived to guarantee the global
asymptotic stability of the equilibrium point by using a
new Lyapunov-Krasovskii functional and some analysis tech-
nique.Thepresented results require neither the boundedness,
monotonicity, and differentiability of the activation functions
nor the differentiability (even differential boundedness) of
time-varying delays, which are more effective and less con-
servative than other existing literatures [27]. In the absence
of leakage delay, the obtained results are also new ones.
Moreover, the proposed stability criteria are given in terms of
linear matrix inequalities (LMI) [36] and can be conveniently
checked by the LMI toolbox inMATLAB. Finally, an example
is given to show the effectiveness and less conservativeness of
the obtained results.

Notations. Let R (R+) denote the set of (positive) real num-
bers, Z

+
denote the set of positive integers, and R𝑛 denote

the 𝑛-dimensional real spaces equipped with the Euclidean
norm ‖ ⋅ ‖. A > 0 or A < 0 denotes that the matrix A is a
symmetric and positive definite or negative definite matrix.
The notationsA𝑇 andA−1 mean the transpose ofA and the
inverse of a square matrix. 𝜆max(A) or 𝜆min(A) denotes the
maximum eigenvalue or the minimum eigenvalue of matrix
A. 𝐼 denotes the identity matrix with appropriate dimensions
and Λ = {1, 2, . . . , 𝑛}. [⋅]∗ denotes the integer function. For

any interval 𝐽 ⊆ R, set 𝑉 ⊆ R𝑘 (1 ≤ 𝑘 ≤ 𝑛), 𝐶(𝐽, 𝑉) =
{𝜑 : 𝐽 → 𝑉 is continuous}, and 𝑃𝐶1(𝐽, 𝑉) = {𝜑 : 𝐽 →
𝑉 is continuously differentiable everywhere except at finite
number of points 𝑡, at which 𝜑(𝑡+), 𝜑(𝑡−), 𝜑̇(𝑡+), and 𝜑̇(𝑡−)
exist and 𝜑(𝑡+) = 𝜑(𝑡), 𝜑̇(𝑡+) = 𝜑̇(𝑡), where 𝜑̇ denotes
the derivative of 𝜑}. For any 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ R𝑛,

[𝑥]
+

= (|𝑥
1
|, |𝑥
2
|, . . . , |𝑥

𝑛
|)
𝑇 and, for any 𝑄 = (𝑞

𝑖𝑗
)
𝑛×𝑛
∈ Z𝑛×𝑛,

[𝑄]
+

= (|𝑞
𝑖𝑗
|)
𝑛×𝑛

. For any 𝑡 ∈ R+, 𝑥
𝑡
is defined by 𝑥

𝑡
= 𝑥(𝑡+𝑠),

𝑥
𝑡
− = 𝑥(𝑡− + 𝑠), 𝑠 ∈ [−𝜎, 0]. In addition, the notation ⋆ always

denotes the symmetric block in one symmetric matrix.

2. Preliminaries

Consider the following impulsive neural networks model:

𝑥̇ (𝑡) = −𝐷𝑥 (𝑡 − 𝜎) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝑊∫
𝑡

𝑡−𝜌(𝑡)

𝐾 (𝑡 − 𝑠) ℎ (𝑥 (𝑠)) 𝑑𝑠 + 𝐼, 𝑡 > 0, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑥 (𝑡
𝑘
) = 𝑥 (𝑡

𝑘
) − 𝑥 (𝑡

−

𝑘
) = 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
) , 𝑥
𝑡
−

𝑘

) , 𝑘 ∈ Z
+
,

(1)

where 𝑥(𝑡) = (𝑥
1
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇 is the neuron state vector of

the neural network;𝐷 = diag(𝑑
1
, . . . , 𝑑

𝑛
) is a diagonal matrix

with 𝑑
𝑖
> 0, 𝑖 ∈ Λ, Λ = {1, 2, . . . , 𝑛}; 𝐴, 𝐵, and 𝑊 are the

connectionweightmatrix, the delayed weightmatrix, and the
distributively delayed connectionweightmatrix, respectively;
𝐼 is an external input; 𝜎 ≥ 0 is a constant which denotes
the leakage delay; 𝜏(𝑡) is a time-varying transmission delay of
the neural network; 𝜌(𝑡) is a time-varying distributed delay
of the neural network; 𝑓(𝑥(⋅)) = (𝑓

1
(𝑥
1
(⋅)), . . . , 𝑓

𝑛
(𝑥
𝑛
(⋅)))
𝑇,

𝑔(𝑥(⋅)) = (𝑔
1
(𝑥
1
(⋅)), . . . , 𝑔

𝑛
(𝑥
𝑛
(⋅)))
𝑇, and ℎ(𝑥(⋅)) =

(ℎ
1
(𝑥
1
(⋅)), . . . , ℎ

𝑛
(𝑥
𝑛
(⋅)))
𝑇 represent the neuron activation

functions; 𝐾(⋅) = diag(𝑘
1
(⋅), . . . , 𝑘

𝑛
(⋅)) is the delay kernel

function.
Throughout this paper, we make the following assump-

tions.

(H
1
) 𝜏(𝑡) represents the discrete transmission delay with
0 ≤ 𝜏(𝑡) ≤ 𝜏; 𝜌(𝑡) represents the time-varying
distributed delay with 0 ≤ 𝜌(𝑡) ≤ 𝜌, where 𝜏, 𝜌 are
two positive constants.

(H
2
) The delay kernels 𝑘

𝑗
(⋅), 𝑗 ∈ Λ, are some real valued

continuous functions defined on [0, 𝜌] and satisfy

󵄨󵄨󵄨󵄨󵄨
𝑘
𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨
≤ |𝑘 (𝑠)| , ∫

𝜌

0

|𝑘 (𝑠)| 𝑑𝑠 = 𝜅, (2)

where 𝜅 is a positive constant.

(H
3
) The neuron activation functions 𝑓

𝑗
, 𝑔
𝑗
, and ℎ

𝑗
, 𝑗 ∈ Λ,

are continuous on R and satisfy

𝜎
−

𝑗
≤
𝑓
𝑗
(𝑢) − 𝑓

𝑗
(V)

𝑢 − V
≤ 𝜎
+

𝑗
,
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𝛿
−

𝑗
≤
𝑔
𝑗
(𝑢) − 𝑔

𝑗
(V)

𝑢 − V
≤ 𝛿
+

𝑗
,

𝜁
−

𝑗
≤
ℎ
𝑗
(𝑢) − ℎ

𝑗
(V)

𝑢 − V
≤ 𝜁
+

𝑗
,

(3)

for any 𝑢, V ∈ R, 𝑢 ̸= V, 𝑗 ∈ Λ, where 𝜎−
𝑗
, 𝜎+
𝑗
, 𝛿−
𝑗
, 𝛿+
𝑗
,

𝜁
−

𝑗
, and 𝜁+

𝑗
are some real constants and they may be

positive, zero, or negative.
(H
4
) 𝐼
𝑘
(⋅) : R × R𝑛 → R𝑛, 𝑘 ∈ Z

+
, are some continuous

functions.
(H
5
) The impulse times 𝑡

𝑘
satisfy 0 = 𝑡

0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑘
→

∞ and inf
𝑘∈Z
+

{𝑡
𝑘
− 𝑡
𝑘−1
} > 0.

We will consider model (1) with the initial condition

𝑥 (𝑠) = 𝜑 (𝑠) , 𝑠 ∈ [−𝜂, 0] , (4)

where 𝜂 = max{𝜎, 𝜏, 𝜌}, 𝜑(⋅) = (𝜑
1
, . . . , 𝜑

𝑛
)
𝑇

∈ 𝑃𝐶
1
([−𝜂, 0]),

R𝑛, whose norm is defined by

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

𝜂
= max{ max

−𝜂≤𝜃≤0

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝜑
2

𝑖
(𝜃)
󵄨󵄨󵄨󵄨󵄨
, max
−𝜏≤𝜃≤0

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝜑̇
2

𝑖
(𝜃)
󵄨󵄨󵄨󵄨󵄨
} . (5)

Definition 1 (see [37]). Assume that Ω ∈ R𝑛 is a bounded
and open set and F(𝑢) : Ω → R𝑛 is a continuous and
differentiable function. If 𝑝∈F(𝜕Ω) and 𝐽F(𝑢) ̸= 0 for any
𝑢 ∈ F−1(𝑝), where 𝜕Ω denotes the boundary of Ω and
𝐽F denotes the Jacobian determinant relative to F, then the
topological degree relative toΩ and 𝑝 is defined by

deg (F, Ω, 𝑝) =
{

{

{

∑

𝑢∈F−1(𝑝)

sgn 𝐽F (𝑢) , F−1 (𝑝) ̸= 0,

0, F−1 (𝑝) = 0.

(6)

Remark 2. Generally speaking, the topological degree of
F(𝑢) relative to Ω and 𝑝 can be regarded as the algebraic
number of solutions of F(𝑢) = 𝑝 in Ω if F(𝜕Ω) ̸= 0. For
instance, deg(F, Ω, 0) = ±1 implies that F(𝑢) = 0 has at
least one solution inΩ.

Lemma 3 (see [38]). Given any real matrix𝑀 = 𝑀𝑇 > 0 of
appropriate dimension and a vector function 𝜔(⋅) : [𝑎, 𝑏] →
R𝑛, such that the integrations concerned are well defined, then

[∫
𝑏

𝑎

𝜔(𝑠)𝑑𝑠]

𝑇

𝑀[∫
𝑏

𝑎

𝜔 (𝑠) 𝑑𝑠]

≤ (𝑏 − 𝑎) ∫
𝑏

𝑎

𝜔
𝑇

(𝑠)𝑀𝜔 (𝑠) 𝑑𝑠.

(7)

Lemma 4 (see [12]). Given any real matrices Σ
1
, Σ
2
, Σ
3
of

appropriate dimensions and a scalar 𝜖 > 0 such that 0 < Σ
3
=

Σ𝑇
3
, then the following inequality holds:

Σ
𝑇

1
Σ
2
+ Σ
𝑇

2
Σ
1
≤ 𝜖Σ
𝑇

1
Σ
3
Σ
1
+ 𝜖
−1

Σ
𝑇

2
Σ
−1

3
Σ
2
. (8)

Lemma 5 (see [27]). Supposing that ℧, ℧
𝑖𝑗
≥ 0 (𝑖, 𝑗 = 1, 2)

are symmetric matrices of appropriate dimensions, 𝛼 ∈ [0, 1]
and 𝛽 ∈ [0, 1], then℧ + [(1 − 𝛼)℧

11
+ 𝛼℧
12
] + [(1 − 𝛽)℧

21
+

𝛽℧
22
] < 0 holds if the following four inequalities ℧ + ℧

11
+

℧
21
< 0,℧+℧

11
+℧
22
< 0,℧+℧

12
+℧
21
< 0, and℧+℧

12
+

℧
22
< 0 hold simultaneously.

For presentation convenience, in the following, we denote

Σ
1
= diag (𝜎−

1
𝜎
+

1
, . . . , 𝜎

−

𝑛
𝜎
+

𝑛
) ,

Σ
2
= diag(

𝜎−
1
+ 𝜎+
1

2
, . . . ,

𝜎
−

𝑛
+ 𝜎+
𝑛

2
) ,

Σ
3
= diag (𝛿−

1
𝛿
+

1
, . . . , 𝛿

−

𝑛
𝛿
+

𝑛
) ,

Σ
4
= diag(

𝛿−
1
+ 𝛿+
1

2
, . . . ,

𝛿
−

𝑛
+ 𝛿+
𝑛

2
) ,

Σ
5
= diag (𝜁−

1
𝜁
+

1
, . . . , 𝜁

−

𝑛
𝜁
+

𝑛
) ,

Σ
6
= diag(

𝜁−
1
+ 𝜁+
1

2
, . . . ,

𝜁
−

𝑛
+ 𝜁+
𝑛

2
) .

(9)

3. Global Existence and Uniqueness of
Solution

In this section, by using the contraction mapping theorem,
we give a delay-independent sufficient condition to guarantee
the global existence anduniqueness of the solution formodels
(1) and (4).

Theorem 6. Assume that the assumptions (𝐻
1
)–(𝐻
5
) hold;

then the solution 𝑥 = 𝑥(𝑡, 0, 𝜑) of models (1) and (4) exists
uniquely on [−𝜂,∞).

Proof. Transform the global existence and uniqueness of
solution of the models (1) and (4) into a fixed point problem.
Let ‖ ⋅ ‖∗ be the norm in 𝐶([0, 𝑡

1
],R𝑛) defined by

‖𝑢‖
∗

≐ max
𝑡∈[0,𝑡

1

]
{𝑒
−𝜆𝑡

⋅ max
𝑠∈[0,𝑡]

{‖𝑢 (𝑠)‖}} , 𝑢 ∈ 𝐶 ([0, 𝑡
1
] ,R
𝑛

) ,

(10)

where

𝜆 = √

𝑛

∑
𝑗=1

𝑑2
𝑗
+ 𝜎 ⋅ √

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

𝑎2
𝑖𝑗
+ 𝛿 ⋅ √

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

𝑏2
𝑖𝑗

+ 𝜁 ⋅ 𝜅 ⋅ √

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

𝑤2
𝑖𝑗
+ 1,

(11)

𝜎 = max
𝑗∈Λ

{
󵄨󵄨󵄨󵄨󵄨
𝜎
−

𝑗

󵄨󵄨󵄨󵄨󵄨
,
󵄨󵄨󵄨󵄨󵄨
𝜎
+

𝑗

󵄨󵄨󵄨󵄨󵄨
} , 𝛿 = max

𝑗∈Λ

{
󵄨󵄨󵄨󵄨󵄨
𝛿
−

𝑗

󵄨󵄨󵄨󵄨󵄨
,
󵄨󵄨󵄨󵄨󵄨
𝛿
+

𝑗

󵄨󵄨󵄨󵄨󵄨
} ,

𝜁 = max
𝑗∈Λ

{
󵄨󵄨󵄨󵄨󵄨
𝜁
−

𝑗

󵄨󵄨󵄨󵄨󵄨
,
󵄨󵄨󵄨󵄨󵄨
𝜁
+

𝑗

󵄨󵄨󵄨󵄨󵄨
} .

(12)

Then it is easy to see that 𝐶([0, 𝑡
1
],R𝑛) is a Banach space

endowed with the norm ‖ ⋅ ‖∗. Let 𝑢 ∈ 𝐶([0, 𝑡
1
],R𝑛) and
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consider the operator L
1
: 𝐶([0, 𝑡

1
],R𝑛) → 𝐶([0, 𝑡

1
],R𝑛)

defined by

(L
1
𝑢) (𝑡)

= 𝜑 (0) + ∫
𝑡

0

{ − 𝐷𝑢 (𝑠 − 𝜎) + 𝐴𝑓 (𝑢 (𝑠))

+ 𝐵𝑔 (𝑢 (𝑠 − 𝜏 (𝑠)))

+ 𝑊∫
𝜌(𝑡)

0

𝐾 (𝜃) ℎ (𝑢 (𝑠 − 𝜃)) 𝑑𝜃 +𝐼}𝑑𝑠,

(13)

where 𝑢(𝑠) = 𝜑(𝑠), 𝑠 ∈ [−𝜂, 0].
First we show that L

1
is a contraction on 𝐶([0, 𝑡

1
],R𝑛).

Let 𝑢, V ∈ 𝐶([0, 𝑡
1
],R𝑛); we have

󵄩󵄩󵄩󵄩(L1𝑢) (𝑡) − (L1V) (𝑡)
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
−∫
𝑡

0

𝐷 [𝑢 (𝑠 − 𝜎) − V (𝑠 − 𝜎)] 𝑑𝑠

+ ∫
𝑡

0

𝐴 [𝑓 (𝑢 (𝑠)) − 𝑓 (V (𝑠))] 𝑑𝑠

+ ∫
𝑡

0

𝐵 [𝑓 (𝑢 (𝑠 − 𝜏 (𝑠))) − 𝑓 (V (𝑠 − 𝜏 (𝑠)))] 𝑑𝑠

+∫
𝑡

0

𝑊∫
𝜌(𝑡)

0

𝐾 (𝜃) [ℎ (𝑢 (𝑠 − 𝜃)) − ℎ (V (𝑠 − 𝜃))] 𝑑𝜃 𝑑𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ ∫
𝑡

0

‖𝐷 [𝑢 (𝑠 − 𝜎) − V (𝑠 − 𝜎)]‖ 𝑑𝑠

+ ∫
𝑡

0

󵄩󵄩󵄩󵄩𝐴 [𝑓 (𝑢 (𝑠)) − 𝑓 (V (𝑠))]
󵄩󵄩󵄩󵄩 𝑑𝑠

+ ∫
𝑡

0

󵄩󵄩󵄩󵄩𝐵 [𝑓 (𝑢 (𝑠 − 𝜏 (𝑠))) − 𝑓 (V (𝑠 − 𝜏 (𝑠)))]
󵄩󵄩󵄩󵄩 𝑑𝑠

+ ∫
𝑡

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑊∫
𝜌(𝑡)

0

𝐾 (𝜃) [ℎ (𝑢 (𝑠 − 𝜃)) − ℎ (V (𝑠 − 𝜃))] 𝑑𝜃
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑑𝑠

≤ √

𝑛

∑
𝑗=1

𝑑2
𝑗
∫
𝑡

0

‖𝑢 (𝑠 − 𝜎) − V (𝑠 − 𝜎)‖ 𝑑𝑠

+ 𝜎 ⋅ √

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

𝑎2
𝑖𝑗
∫
𝑡

0

‖𝑢 (𝑠) − V (𝑠)‖ 𝑑𝑠

+ 𝛿 ⋅ √

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

𝑏2
𝑖𝑗
∫
𝑡

0

‖𝑢 (𝑠 − 𝜏 (𝑠)) − V (𝑠 − 𝜏 (𝑠))‖ 𝑑𝑠

+ ∫
𝑡

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑊∫
𝜌(𝑡)

0

𝐾 (𝜃) [ℎ (𝑢 (𝑠 − 𝜃)) − ℎ (V (𝑠 − 𝜃))] 𝑑𝜃
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑑𝑠.

(14)

In view of (𝐻
2
), we get

∫
𝑡

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑊∫
𝜌(𝑡)

0

𝐾 (𝜃) [ℎ (𝑢 (𝑠 − 𝜃)) − ℎ (V (𝑠 − 𝜃))] 𝑑𝜃
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑑𝑠

≤ 𝜁 ⋅ √

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

𝑤2
𝑖𝑗
∫
𝑡

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝜌(𝑡)

0

𝐾 (𝜃) [𝑢 (𝑠 − 𝜃) − V (𝑠 − 𝜃)] 𝑑𝜃
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑑𝑠

≤ 𝜁 ⋅ √

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

𝑤2
𝑖𝑗
∫
𝑡

0

∫
𝜌(𝑡)

0

‖𝐾 (𝜃) [𝑢 (𝑠 − 𝜃) − V (𝑠 − 𝜃)]‖ 𝑑𝜃 𝑑𝑠

≤ 𝜁 ⋅ √

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

𝑤2
𝑖𝑗
∫
𝑡

0

∫
𝜌(𝑡)

0

|𝑘 (𝜃)| ‖𝑢 (𝑠 − 𝜃) − V (𝑠 − 𝜃)‖ 𝑑𝜃 𝑑𝑠

≤ 𝜁 ⋅ √

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

𝑤2
𝑖𝑗
∫
𝑡

0

∫
𝜌(𝑡)

0

|𝑘 (𝜃)| 𝑑𝜃max
𝑟∈[0,𝑠]

‖𝑢 (𝑟) − V (𝑟)‖ 𝑑𝑠

≤ 𝜁 ⋅ 𝜅 ⋅ √

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

𝑤2
𝑖𝑗
∫
𝑡

0

max
𝑟∈[0,𝑠]

‖𝑢 (𝑟) − V (𝑟)‖ 𝑑𝑠.

(15)

Substituting the above inequality to (14), we obtain

󵄩󵄩󵄩󵄩(L1𝑢) (𝑡) − (L1V) (𝑡)
󵄩󵄩󵄩󵄩

≤ √

𝑛

∑
𝑗=1

𝑑2
𝑗
∫
𝑡

0

max
𝑟∈[0,𝑠]

‖𝑢 (𝑟) − V (𝑟)‖ 𝑑𝑠

+ 𝜎 ⋅ √

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

𝑎2
𝑖𝑗
∫
𝑡

0

max
𝑟∈[0,𝑠]

‖𝑢 (𝑟) − V (𝑟)‖ 𝑑𝑠

+ 𝛿 ⋅ √

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

𝑏2
𝑖𝑗
∫
𝑡

0

max
𝑟∈[0,𝑠]

‖𝑢 (𝑟) − V (𝑟)‖ 𝑑𝑠

+ 𝜁 ⋅ 𝜅 ⋅ √

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

𝑤2
𝑖𝑗
∫
𝑡

0

max
𝑟∈[0,𝑠]

‖𝑢 (𝑟) − V (𝑟)‖ 𝑑𝑠

= (𝜆 − 1) ∫
𝑡

0

max
𝑟∈[0,𝑠]

‖𝑢 (𝑟) − V (𝑟)‖ 𝑑𝑠

= (𝜆 − 1) ∫
𝑡

0

𝑒
𝜆𝑠

𝑒
−𝜆𝑠max
𝑟∈[0,𝑠]

‖𝑢 (𝑟) − V (𝑟)‖ 𝑑𝑠

≤ (𝜆 − 1) ∫
𝑡

0

𝑒
𝜆𝑑𝑠 max
𝑠∈[0,𝑡

1

]

{𝑒
−𝜆𝑠max
𝑟∈[0,𝑠]

‖𝑢 (𝑟) − V (𝑟)‖} 𝑑𝑠

= (𝜆 − 1) ∫
𝑡

0

𝑒
𝜆𝑠

𝑑𝑠‖𝑢 − V‖∗

≤
𝜆 − 1

𝜆
𝑒
𝜆𝑡

‖𝑢 − V‖∗.

(16)
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Since 𝑒𝜆𝑡 is increasing in 𝑡,

max
𝑠∈[0,𝑡]

{
󵄩󵄩󵄩󵄩(L1𝑢) (𝑠) − (L1V) (𝑠)

󵄩󵄩󵄩󵄩} ≤
𝜆 − 1

𝜆
𝑒
𝜆𝑡

‖𝑢 − V‖∗.

(17)

Then

𝑒−𝜆𝑡max
𝑠∈[0,𝑡]

{
󵄩󵄩󵄩󵄩(L1𝑢) (𝑠) − (L1V) (𝑠)

󵄩󵄩󵄩󵄩} ≤
𝜆 − 1

𝜆
‖𝑢 − V‖∗.

(18)

Note the definition of ‖ ⋅ ‖∗; we have

󵄩󵄩󵄩󵄩L1𝑢 −L1V
󵄩󵄩󵄩󵄩
∗

≤
𝜆 − 1

𝜆
‖𝑢 − V‖∗. (19)

ThusL
1
is a contraction on𝐶([0, 𝑡

1
],R𝑛), and it has a unique

fixed point 𝑢∗
1
∈ 𝐶([0, 𝑡

1
],R𝑛). Thus we get the fact that

𝑢
∗

1
(𝑡
1
) exists finitely. It implies that 𝑢∗

1
(𝑡
1
) + 𝐽
1
(𝑢
∗

1
(𝑡
1
), 𝑢
∗

1 𝑡
1

)

also exists finitely, since assumption (𝐻
4
) holds. Then we

replace 𝑢∗
1
(𝑡
1
) with 𝑢∗

1
(𝑡
1
) + 𝐼
1
(𝑢∗
1
(𝑡
1
), 𝑢∗
1 𝑡
1

) and define 𝜂
1
=

𝑢∗
1
(𝑡
1
) + 𝐼
1
(𝑢∗
1
(𝑡
1
), 𝑢∗
1 𝑡
1

) for later use.
Next we show thatL

2
is a contraction on 𝐶([𝑡

1
, 𝑡
2
],R𝑛).

For 𝑢 ∈ 𝐶([𝑡
1
, 𝑡
2
],R𝑛), let

‖𝑢‖
∗

≐ max
𝑡∈[𝑡
1

,𝑡
2

]

{𝑒
−𝜆(𝑡−𝑡

1

)

⋅ max
𝑠∈[𝑡
1

,𝑡]

{‖𝑢 (𝑠)‖}} , (20)

where 𝜆 is defined in (11). Let 𝑢 ∈ 𝐶([𝑡
1
, 𝑡
2
],R𝑛) and consider

the operator L
2
: 𝐶([𝑡

1
, 𝑡
2
],R𝑛) → 𝐶([𝑡

1
, 𝑡
2
],R𝑛) defined

by

(L
2
𝑢) (𝑡)

= 𝜂
1
+ ∫
𝑡

𝑡
1

{ − 𝐷𝑢 (𝑠 − 𝜎) + 𝐴𝑓 (𝑢 (𝑠))

+ 𝐵𝑔 (𝑢 (𝑠 − 𝜏 (𝑠)))

+𝑊∫
𝜌(𝑡)

0

𝐾 (𝜃) ℎ (𝑢 (𝑠 − 𝜃)) 𝑑𝜃 + 𝐼}𝑑𝑠,

(21)

where 𝜂
1
= 𝑢∗
1
(𝑡
1
) + 𝐼
1
(𝑢∗
1
(𝑡
1
)) and

𝑢 (𝑠) = {
𝜑 (𝑠) , 𝑠 ∈ [−𝜂, 0] ,

𝑢∗
1
(𝑠) , 𝑠 ∈ [0, 𝑡

1
) .

(22)

By virtue of the definition ofL
2
, similar to the proof of (19),

we get, for 𝑢, V ∈ 𝐶([𝑡
1
, 𝑡
2
],R𝑛),

󵄩󵄩󵄩󵄩L2𝑢 −L2V
󵄩󵄩󵄩󵄩
∗

≤
𝜆 − 1

𝜆
‖𝑢 − V‖∗. (23)

Thus L
2
is a contraction on 𝐶([𝑡

1
, 𝑡
2
],R𝑛), and it has a

unique fixed point 𝑢∗
2
∈ 𝐶([𝑡

1
, 𝑡
2
],R𝑛). Moreover, we

know that 𝑢∗
2
(𝑡
2
) exists finitely, which implies that 𝑢∗

2
(𝑡
2
) +

𝐼
2
(𝑢∗
2
(𝑡
2
), 𝑢∗
2 𝑡
2

) exists finitely in view of assumption (𝐻
4
).

Then we replace 𝑢∗
2
(𝑡
2
) with 𝑢∗

2
(𝑡
2
) + 𝐼
2
(𝑢∗
2
(𝑡
2
), 𝑢∗
2 𝑡
2

) and
define 𝜂

2
= 𝑢∗
2
(𝑡
2
) + 𝐼
2
(𝑢∗
2
(𝑡
2
), 𝑢∗
2 𝑡
2

) for later use.

Finally we show that L
𝑛+1

is a contraction on
𝐶([𝑡
𝑛
, 𝑡
𝑛+1
],R𝑛). For 𝑢 ∈ 𝐶([𝑡

𝑛
, 𝑡
𝑛+1
],R𝑛), let

‖𝑢‖
∗

≐ max
𝑡∈[𝑡
𝑛

,𝑡
𝑛+1

]

{𝑒
−𝜆(𝑡−𝑡

𝑛

)

⋅ max
𝑠∈[𝑡
𝑛

,𝑡]

{‖𝑢 (𝑠)‖}} , (24)

where 𝜆 is defined in (11). Let 𝑢 ∈ 𝐶([𝑡
𝑛
, 𝑡
𝑛+1
],R𝑛);

then we can similarly consider the operator L
𝑛+1

:

𝐶([𝑡
𝑛
, 𝑡
𝑛+1
],R𝑛) → 𝐶([𝑡

𝑛
, 𝑡
𝑛+1
],R𝑛) defined by

(L
𝑛+1
𝑢) (𝑡)

= 𝜂
𝑛
+ ∫
𝑡

𝑡
𝑛

{ − 𝐷𝑢 (𝑠 − 𝜎) + 𝐴𝑓 (𝑢 (𝑠))

+ 𝐵𝑔 (𝑢 (𝑠 − 𝜏 (𝑠)))

+ 𝑊∫
𝜌(𝑡)

0

𝐾 (𝜃) ℎ (𝑢 (𝑠 − 𝜃)) 𝑑𝜃 + 𝐼}𝑑𝑠,

(25)

where 𝜂
𝑛
= 𝑢
∗

𝑛
(𝑡
𝑛
) + 𝐼
𝑛
(𝑢
∗

𝑛
(𝑡
𝑛
)) and

𝑢 (𝑠) =

{{{{{{{

{{{{{{{

{

𝜑 (𝑠) , 𝑠 ∈ [−𝜂, 0] ,

𝑢
∗

1
(𝑠) , 𝑠 ∈ [0, 𝑡

1
) ,

𝑢∗
2
(𝑠) , 𝑠 ∈ [𝑡

1
, 𝑡
2
) ,

...
𝑢∗
𝑛
(𝑠) , 𝑠 ∈ [𝑡

𝑛−1
, 𝑡
𝑛
) .

(26)

Then repeating the argumentwithL
𝑛+1

replacingL
1
, similar

to the proof of (19), we see that, for 𝑢, V ∈ 𝐶([𝑡
𝑛
, 𝑡
𝑛+1
],R𝑛),

󵄩󵄩󵄩󵄩L𝑛+1𝑢 −L𝑛+1V
󵄩󵄩󵄩󵄩
∗

≤
𝜆 − 1

𝜆
‖𝑢 − V‖∗. (27)

Thus L
𝑛+1

is a contraction on 𝐶([𝑡
𝑛
, 𝑡
𝑛+1
],R𝑛), and it has a

unique fixed point 𝑢∗
𝑛+1
∈ 𝐶([𝑡

𝑛
, 𝑡
𝑛+1
],R𝑛).

Continuing in this manner, we construct

𝑢
∗

(𝑡) =

{{{{{{{{{{{

{{{{{{{{{{{

{

𝜑 (𝑡) , 𝑡 ∈ [−𝜂, 0] ,

𝑢
∗

1
(𝑡) , 𝑡 ∈ [0, 𝑡

1
) ,

𝑢∗
2
(𝑡) , 𝑡 ∈ [𝑡

1
, 𝑡
2
) ,

...
𝑢∗
𝑛+1
(𝑡) , 𝑡 ∈ [𝑡

𝑛
, 𝑡
𝑛+1
) ,

...

(28)

Then 𝑢∗(𝑡) is the global solution ofmodels (1) and (4). If V∗(𝑡)
is another solution of models (1) and (4), then it is easy to
check from the above argument that 𝑢∗(𝑡) = V∗(𝑡). Hence,
the solution 𝑢∗(𝑡) = 𝑢∗(𝑡, 0, 𝜑) of models (1) and (4) exists
uniquely on [−𝜂,∞). This completes the proof.

4. Existence of an Equilibrium Point

In previous sections, we have showed the global existence
and uniqueness of solution for models (1) and (4). In this
section, without requiring the boundedness, differentiability,
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or monotonicity of the activation functions, we establish a
delay-independent sufficient condition for the existence of
an equilibrium point of model (1). As usual, we denote an
equilibrium point of the model (1) by the constant vector
𝑥
∗ ∈ R𝑛, where 𝑥∗ satisfies

−𝐷𝑥
∗

+ 𝐴𝑓 (𝑥
∗

) + 𝐵𝑔 (𝑥
∗

) + 𝑊Kℎ (𝑥
∗

) + 𝐼 = 0,

𝐼
𝑘
(𝑥
∗

, 𝑥
∗

) = 0, 𝑘 ∈ Z
+
,

(29)

where K = K(𝑡) = ∫
𝜌(𝑡)

0
𝐾(𝑠) 𝑑𝑠. In this paper, it is assumed

that the impulsive function 𝐼
𝑘
satisfies 𝐼

𝑘
(𝑥∗, 𝑥∗) = 0 for

𝑘 ∈ Z
+
. Hence, to prove the existence of solution of (29),

it suffices to show that the following has a solution:

𝑥
∗

− 𝐷
−1

𝐴𝑓 (𝑥
∗

) − 𝐷
−1

𝐵𝑔 (𝑥
∗

)

− 𝐷
−1

𝑊Kℎ (𝑥
∗

) − 𝐷
−1

𝐼 = 0,

(30)

in view of𝐷 > 0.

Theorem 7. Assume that the assumption (𝐻
3
) holds. Then

model (1) has at least one equilibrium point if, for any 𝑡 > 0,
𝐷 − [𝐴]

+

Σ − [𝐵]
+

Δ − [𝑊K]
+

Θ is an 𝑀-matrix, where Σ =
diag(𝜎

1
, . . . , 𝜎

𝑛
), 𝜎
𝑗
= max{|𝜎−

𝑗
|, |𝜎+
𝑗
|}, Δ = diag(𝛿

1
, . . . , 𝛿

𝑛
),

𝛿
𝑗
= max{|𝛿−

𝑗
|, |𝛿+
𝑗
|}, and Θ = diag(𝜁

1
, . . . , 𝜁

𝑛
), 𝜁
𝑗
=

max{|𝜁−
𝑗
|, |𝜁+
𝑗
|}.

Proof . From (30), we note that it suffices to prove that the
following has at least one solution:

𝑝 (𝑥) = 𝑥 −𝑊
1
𝑓 (𝑥) −𝑊

2
𝑔 (𝑥) − 𝑊

3
ℎ (𝑥) − 𝐽

󸀠

= 0, (31)

where𝑊
1
= 𝐷−1𝐴,𝑊

2
= 𝐷−1𝐵,𝑊

3
= 𝐷−1𝑊K, 𝐽󸀠 = 𝐷−1𝐽.

In order to use topological degree theory, we consider the
following homotopic mapping:

𝑃 (𝑥, 𝜆) = 𝜆𝑝 (𝑥) + (1 − 𝜆) 𝑥, 𝜆 ∈ [0, 1] . (32)

Note that𝐷−[𝐴]+Σ−[𝐵]+Δ−[𝑊K]
+

Θ is an𝑀-matrix; it can
be deduced that 𝐼 − [𝑊

1
]
+

Σ− [𝑊
2
]
+

Δ− [𝑊
3
]
+

Θ is also an𝑀-
matrix.This implies that (𝐼−[𝑊

1
]
+

Σ−[𝑊
2
]
+

Δ−[𝑊
3
]
+

Θ)
−1

≥

0 and there exists a positive vector 𝑋
0
∈ R𝑛 such that (𝐼 −

[𝑊
1
]
+

Σ − [𝑊
2
]
+

Δ − [𝑊
3
]
+

Θ)𝑋
0
> 0. It then follows that

[𝑃 (𝑥, 𝜆)]
+

= [𝜆𝑝 (𝑥) + (1 − 𝜆) 𝑥]
+

= [𝑥 − 𝜆𝑊
1
𝑓 (𝑥) − 𝜆𝑊

2
𝑔 (𝑥) − 𝜆𝑊

3
ℎ (𝑥) − 𝜆𝐽

󸀠

]
+

≥ [𝑥]
+

− 𝜆[𝑊
1
𝑓 (𝑥)]

+

− 𝜆[𝑊
2
𝑔 (𝑥)]

+

−𝜆[𝑊
3
ℎ (𝑥)]

+

− 𝜆 [𝐽
󸀠

]
+

≥ [𝑥]
+

− 𝜆[𝑊
1
]
+

[𝑓 (𝑥)]
+

− 𝜆[𝑊
2
]
+

[𝑔 (𝑥)]
+

− 𝜆[𝑊
3
]
+

[ℎ (𝑥)]
+

− 𝜆[𝐽
󸀠

]
+

≥ [𝑥]
+

− 𝜆[𝑊
1
]
+

Σ[𝑥]
+

− 𝜆[𝑊
2
]
+

Δ[𝑥]
+

− 𝜆[𝑊
3
]
+

Θ[𝑥]
+

− 𝜆[𝐽
󸀠

]
+

≥ (1 − 𝜆) [𝑥]
+

+ 𝜆 (𝐼 − [𝑊
1
]
+

Σ − [𝑊
2
]
+

Δ − [𝑊
3
]
+

Θ)

⋅ {[𝑥]
+

− (𝐼 − [𝑊
1
]
+

Σ − [𝑊
2
]
+

Δ − [𝑊
3
]
+

Θ)
−1

[𝐽
󸀠

]
+

} .

(33)

Let

Ω = {𝑥 | [𝑥]
+

≤ (𝐼 − [𝑊
1
]
+

Σ − [𝑊
2
]
+

Δ

−[𝑊
3
]
+

Θ)
−1

[𝐽
󸀠

]
+

+ 𝑋
0
} .

(34)

It is obvious that set Ω is not empty and, for any 𝑥 ∈ 𝜕Ω, we
have

[𝑃 (𝑥, 𝜆)]
+

≥ (1 − 𝜆) [𝑥]
+

+ 𝜆 (𝐼 − [𝑊
1
]
+

Σ − [𝑊
2
]
+

Δ − [𝑊
3
]
+

Θ)𝑋
0

> 0, 𝜆 ∈ [0, 1] ,

(35)

which implies that 𝑃(𝑥, 𝜆) ̸= 0 for all 𝑥 ∈ 𝜕Ω and 𝜆 ∈ [0, 1].
By topological degree invariance theory, we obtain

deg (𝑝 (𝑥) , Ω, 0) = deg (𝑃 (𝑥, 𝜆) , Ω, 0)

= deg (𝑃 (𝑥, 0) , Ω, 0) = 1.
(36)

Therefore, from Remark 2, we know that 𝑝(𝑥) = 0 has at least
one solution in Ω. This completes the proof.

5. Global Asymptotic Stability

It should be noted that Theorem 7 can guarantee the exis-
tence of an equilibrium point but not the uniqueness. In
this section, we will derive some sufficient conditions to
guarantee not only the global asymptotic stability but also
the uniqueness of the equilibriumpoint. For this purpose, the
impulsive function 𝐼

𝑘
which is viewed as a perturbation of the

equilibrium point 𝑥∗ of models (1) and (4) without impulses
is defined by

𝑥 (𝑡
𝑘
) − 𝑥 (𝑡

−

𝑘
)

= 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
) , 𝑥
𝑡
−

𝑘

)

= −𝐽
𝑘
{𝑥 (𝑡
−

𝑘
) − 𝑥
∗

− 𝐷∫
𝑡
𝑘

𝑡
𝑘

−𝜎

(𝑥 (𝑢) − 𝑥
∗

) 𝑑𝑢} , 𝑘 ∈ Z
+
,

(37)

where 𝐽
𝑘
, 𝑘 ∈ Z

+
are some 𝑛 × 𝑛 real matrices. It is clear that

𝐼
𝑘
(𝑥∗, 𝑥∗) = 0, 𝑘 ∈ Z

+
. Such type of impulses describes
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the fact that the encountered instantaneous perturbations
depend on not only the state of neurons at impulse times
𝑡
𝑘
but also the state of neurons in its recent history, which

reflectsmore realistic dynamics.The similar nonlinear impul-
sive perturbations, which include linear impulsive perturba-
tions and nonimpulsive perturbations as their special cases,
have also been investigated by some researchers recently [17–
21, 39].

Let 𝑦(𝑡) = 𝑥(𝑡) − 𝑥∗; then we rewrite the models (1) and
(4) as follows:

̇𝑦 (𝑡) = − 𝐷𝑦 (𝑡 − 𝜎) + 𝐴𝑓 (𝑦 (𝑡)) + 𝐵𝑔 (𝑦 (𝑡 − 𝜏 (𝑡)))

+ 𝑊∫
𝑡

𝑡−𝜌(𝑡)

𝐾 (𝑡 − 𝑠) ℎ̂ (𝑦 (𝑠)) 𝑑𝑠,

𝑡 > 0, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑦 (𝑡
𝑘
) = 𝑦 (𝑡

𝑘
) − 𝑦 (𝑡

−

𝑘
)

= −𝐽
𝑘
{𝑦 (𝑡
−

𝑘
) − 𝐷∫

𝑡
𝑘

𝑡
𝑘

−𝜎

𝑦 (𝑢) 𝑑𝑢} , 𝑘 ∈ Z
+
,

𝑦 (𝑠) = 𝜑 (𝑠) − 𝑥
∗

, 𝑠 ∈ [−𝜂, 0] ,

(38)

where𝑓(𝑦(⋅)) = 𝑓(𝑦(⋅)+𝑥∗)−𝑓(𝑥∗), 𝑔(𝑦(⋅)) = 𝑔(𝑦(⋅)+𝑥∗)−
𝑔(𝑥∗) and ℎ̂(𝑦(⋅)) = ℎ(𝑦(⋅) + 𝑥∗) − ℎ(𝑥∗). For convenience
in our discussion, in the following, we replace 𝑓 with 𝑓,
replace 𝑔 with 𝑔, and replace ℎ̂ with ℎ. Then using a simple
transformation,model (38) has an equivalent form as follows:

𝑑

𝑑𝑡
[𝑦 (𝑡) − 𝐷∫

𝑡

𝑡−𝜎

𝑦 (𝑢) 𝑑𝑢]

= −𝐷𝑦 (𝑡) + 𝐴𝑓 (𝑦 (𝑡)) + 𝐵𝑔 (𝑦 (𝑡 − 𝜏 (𝑡)))

+ 𝑊∫
𝑡

𝑡−𝜌(𝑡)

𝐾 (𝑡 − 𝑠) ℎ (𝑦 (𝑠)) 𝑑𝑠, 𝑡 > 0, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑦 (𝑡
𝑘
) = 𝑦 (𝑡

𝑘
) − 𝑦 (𝑡

−

𝑘
)

= −𝐽
𝑘
{𝑦 (𝑡
−

𝑘
) − 𝐷∫

𝑡
𝑘

𝑡
𝑘

−𝜎

𝑦 (𝑢) 𝑑𝑢} , 𝑘 ∈ Z
+
,

𝑦 (𝑠) = 𝜑 (𝑠) − 𝑥
∗

, 𝑠 ∈ [−𝜂, 0] .

(39)

Theorem 8. Under the conditions inTheorem 7, model (1) has
a unique equilibrium point which is globally asymptotically
stable if there exist a constant 𝛾 > 0, an 𝑛 × 𝑛 inverse matrix
𝑄
1
, six 𝑛 × 𝑛 matrices 𝑃 > 0, 𝑄

2
> 0, 𝑄

3
> 0, 𝑍 > 0, 𝑇

11
> 0,

and 𝑇
22
> 0, three 𝑛 × 𝑛 diagonal matrices 𝑈

1
> 0, 𝑈

2
> 0,

and 𝑈
3
> 0, and real matrices 𝑇

12
, 𝑋
𝑙
(𝑙 = 1, . . . , 6) with

appropriate dimension such that

[
𝑇
11
𝑇
12

⋆ 𝑇
22

] > 0, (40)

[
𝑃 (𝐼 − 𝐽

𝑘
)
𝑇

𝑃

⋆ 𝑃
] ≥ 0, 𝑘 ∈ Z

+
, (41)

[
Ξ 𝜒
𝑗

⋆ −𝑍
] < 0, 𝑗 = 1, 2, (42)

where

Ξ =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Π
11
−𝑄
1
𝛾𝑇𝑇
12
−𝑄
1
𝐷 𝑋

1
𝐷𝑃𝐷 Π

17
Π
18
𝑈
3
Σ
6
Π
1,10

⋆ Π
22

0 −𝛾𝑄
1
𝐷 𝑋

2
0 𝛾𝑄

1
𝐴 𝛾𝑄

1
𝐵 0 Π

2,10

⋆ ⋆ Π
33

0 0 0 0 𝑈
2
Σ
4

0 0

⋆ ⋆ ⋆ −𝑄
3

0 0 0 0 0 0

⋆ ⋆ ⋆ ⋆ Π
55

0 0 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −𝑄
2
−𝐷𝑃𝐴 −𝐷𝑃𝐵 0 −𝐷𝑃𝑊

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝑈
1

0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝑈
2

0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Π
99

0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Π
10,10

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝜒
1
= col {𝑋

1
, 𝑋
2
, 𝑂, 𝑂,𝑋

3
, 𝑂, 𝑂, 𝑂, 𝑂, 𝑂} ,

𝜒
2
= col {𝑋

4
, 𝑋
5
, 𝑂, 𝑂, 𝑂, 𝑂, 𝑂, 𝑂, 𝑂,𝑋

6
} ,

(43)

with

Π
11
= −𝑃𝐷 − 𝐷𝑃 + 𝜎

2

𝑄
2
+ 𝑄
3
− 𝑈
1
Σ
1
− 𝑈
3
Σ
5
,

Π
17
= 𝑃𝐴 + 𝑄

1
𝐴 + 𝑈

1
Σ
2
,

Π
18
= 𝑃𝐵 + 𝑄

1
𝐵,

Π
1,10
= 𝑃𝑊 + 𝑄

1
𝑊+𝑋

4
,

Π
22
= −𝛾𝑄

1
− 𝛾𝑄
𝑇

1
+ 𝛾
2

𝜏𝑇
22
,

Π
2,10
= 𝛾𝑄
1
𝑊+𝑋

5
,

Π
33
= 𝜏𝑇
11
− 𝛾𝑇
𝑇

12
− 𝛾𝑇
12
− 𝑈
2
Σ
3
,

Π
55
= 𝑋
3
+ 𝑋
𝑇

3
,

Π
99
= 𝜌
2

𝐾 (0)𝑍𝐾 (0) − 𝑈
3
,

Π
10,10
= 𝑋
6
+ 𝑋
𝑇

6
.

(44)
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Proof . Consider the following Lyapunov-Krasovskii func-
tional as

𝑉 (𝑡, 𝑦 (𝑡)) = 𝑉
1
(𝑡, 𝑦 (𝑡)) + 𝑉

2
(𝑡, 𝑦 (𝑡)) + 𝑉

3
(𝑡, 𝑦 (𝑡))

+ 𝑉
4
(𝑡, 𝑦 (𝑡)) + 𝑉

5
(𝑡, 𝑦 (𝑡)) ,

(45)

where

𝑉
1
(𝑡, 𝑦 (𝑡)) = [𝑦(𝑡) − 𝐷∫

𝑡

𝑡−𝜎

𝑦 (𝑢) 𝑑𝑢]

𝑇

× 𝑃[𝑦 (𝑡) − 𝐷∫
𝑡

𝑡−𝜎

𝑦 (𝑢) 𝑑𝑢] ,

𝑉
2
(𝑡, 𝑦 (𝑡)) = 𝜎∫

𝑡

𝑡−𝜎

∫
𝑡

𝑠

𝑦
𝑇

(𝑢)𝑄
2
𝑦 (𝑢) 𝑑𝑢 𝑑𝑠

+ ∫
𝑡

𝑡−𝜎

𝑦
𝑇

(𝑠) 𝑄
3
𝑦 (𝑠) 𝑑𝑠,

𝑉
3
(𝑡, 𝑦 (𝑡)) = ∫

𝑡

0

∫
𝑢

𝑢−𝜏(𝑢)

(
𝑦 (𝑢 − 𝜏 (𝑢))

𝛾 ̇𝑦 (𝑠)
)

𝑇

(
𝑇
11
𝑇
12

⋆ 𝑇
22

)

× (
𝑦 (𝑢 − 𝜏 (𝑢))

𝛾 ̇𝑦 (𝑠)
) 𝑑𝑠 𝑑𝑢,

𝑉
4
(𝑡, 𝑦 (𝑡)) = 𝛾

2

∫
0

−𝜏

∫
𝑡

𝑡+𝑢

̇𝑦
𝑇

(𝑠) 𝑇
22
̇𝑦 (𝑠) 𝑑𝑠 𝑑𝑢,

𝑉
5
(𝑡, 𝑦 (𝑡)) = 𝜌∫

𝑡

𝑡−𝜌

∫
𝑡

𝑢

ℎ
𝑇

(𝑦 (𝑠))𝐾 (𝑡 − 𝑠) 𝑍𝐾 (𝑡 − 𝑠)

× ℎ (𝑦 (𝑠)) 𝑑𝑠 𝑑𝑢.

(46)

Calculating the upper right derivative of𝑉 along the trajecto-
ries ofmodel (39) at the continuous interval [𝑡

𝑘−1
, 𝑡
𝑘
), 𝑘 ∈ Z

+
,

we obtain

𝐷
+

𝑉
1
= 2[𝑦 (𝑡) − 𝐷∫

𝑡

𝑡−𝜎

𝑦 (𝑢) 𝑑𝑢]

𝑇

× 𝑃[ − 𝐷𝑦 (𝑡) + 𝐴𝑓 (𝑦 (𝑡)) + 𝐵𝑔 (𝑦 (𝑡 − 𝜏 (𝑡)))

+𝑊∫
𝑡

𝑡−𝜌(𝑡)

𝐾 (𝑡 − 𝑠) ℎ (𝑦 (𝑠)) 𝑑𝑠]

= −2𝑦
𝑇

(𝑡) 𝑃𝐷𝑦 (𝑡) + 2𝑦
𝑇

(𝑡) 𝑃𝐴𝑓 (𝑦 (𝑡))

+ 2𝑦
𝑇

(𝑡) 𝑃𝐵𝑔 (𝑦 (𝑡 − 𝜏 (𝑡)))

+ 2𝑦
𝑇

(𝑡) 𝑃𝑊∫
𝑡

𝑡−𝜌(𝑡)

𝐾 (𝑡 − 𝑠) ℎ (𝑦 (𝑠)) 𝑑𝑠

+ 2𝑦
𝑇

(𝑡) 𝐷𝑃𝐷∫
𝑡

𝑡−𝜎

𝑦 (𝑢) 𝑑𝑢

− 2[∫
𝑡

𝑡−𝜎

𝑦 (𝑢) 𝑑𝑢]

𝑇

𝐷𝑃𝐴𝑓 (𝑦 (𝑡))

− 2[∫
𝑡

𝑡−𝜎

𝑦 (𝑢) 𝑑𝑢]

𝑇

𝐷𝑃𝐵𝑔 (𝑦 (𝑡 − 𝜏 (𝑡)))

− 2[∫
𝑡

𝑡−𝜎

𝑦 (𝑢) 𝑑𝑢]

𝑇

𝐷𝑃𝑊∫
𝑡

𝑡−𝜌(𝑡)

𝐾 (𝑡 − 𝑠) ℎ (𝑦 (𝑠)) 𝑑𝑠.

(47)

It follows from Lemma 3 that

𝐷
+

𝑉
2

= 𝜎
2

𝑦
𝑇

(𝑡) 𝑄
2
𝑦 (𝑡)

− 𝜎∫
𝑡

𝑡−𝜎

𝑦
𝑇

(𝑢)𝑄
2
𝑦 (𝑢) 𝑑𝑢 + 𝑦

𝑇

(𝑡) 𝑄
3
𝑦 (𝑡)

− 𝑦
𝑇

(𝑡 − 𝜎)𝑄
3
𝑦 (𝑡 − 𝜎)

≤ 𝜎
2

𝑦
𝑇

(𝑡) 𝑄
2
𝑦 (𝑡) − [∫

𝑡

𝑡−𝜎

𝑦 (𝑢) 𝑑𝑢]

𝑇

𝑄
2
[∫
𝑡

𝑡−𝜎

𝑦 (𝑢) 𝑑𝑢]

+ 𝑦
𝑇

(𝑡) 𝑄
3
𝑦 (𝑡) − 𝑦

𝑇

(𝑡 − 𝜎)𝑄
3
𝑦 (𝑡 − 𝜎) ,

𝐷
+

𝑉
3

= ∫
𝑡

𝑡−𝜏(𝑡)

[
𝑦(𝑡 − 𝜏(𝑡))

𝛾 ̇𝑦(𝑠)
]

𝑇

[
𝑇
11
𝑇
12

⋆ 𝑇
22

] [
𝑦 (𝑡 − 𝜏 (𝑡))

𝛾 ̇𝑦 (𝑠)
] 𝑑𝑠

= 𝜏 (𝑡) 𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑇
11
𝑦 (𝑡 − 𝜏 (𝑡))

+ 2𝛾𝑦
𝑇

(𝑡) 𝑇
𝑇

12
𝑦 (𝑡 − 𝜏 (𝑡))

− 2𝛾𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑇
𝑇

12
𝑦 (𝑡 − 𝜏 (𝑡))

+ 𝛾
2

∫
𝑡

𝑡−𝜏(𝑡)

̇𝑦
𝑇

(𝑠) 𝑇
22
̇𝑦 (𝑠) 𝑑𝑠

≤ 𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) [𝜏𝑇
11
− 2𝛾𝑇

𝑇

12
] 𝑦 (𝑡 − 𝜏 (𝑡))

+ 2𝛾𝑦
𝑇

(𝑡) 𝑇
𝑇

12
𝑦 (𝑡 − 𝜏 (𝑡))

+ 𝛾
2

∫
𝑡

𝑡−𝜏

̇𝑦
𝑇

(𝑠) 𝑇
22
̇𝑦 (𝑠) 𝑑𝑠,

𝐷
+

𝑉
4

= 𝛾
2

𝜏 ̇𝑦
𝑇

(𝑡) 𝑇
22
̇𝑦 (𝑡) − 𝛾

2

∫
0

−𝜏

̇𝑦
𝑇

(𝑡 + 𝑢) 𝑇
22
̇𝑦 (𝑡 + 𝑢) 𝑑𝑢

= 𝛾
2

𝜏 ̇𝑦
𝑇

(𝑡) 𝑇
22
̇𝑦 (𝑡) − 𝛾

2

∫
𝑡

𝑡−𝜏

̇𝑦
𝑇

(𝑠) 𝑇
22
̇𝑦 (𝑠) 𝑑𝑠,

𝐷
+

𝑉
5

= 𝜌
2

ℎ
𝑇

(𝑦 (𝑡))𝐾 (0) 𝑍𝐾 (0) ℎ (𝑦 (𝑡))
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− 𝜌∫
𝑡

𝑡−𝜌

ℎ
𝑇

(𝑦 (𝑠))𝐾 (𝑡 − 𝑠) 𝑍𝐾 (𝑡 − 𝑠) ℎ (𝑦 (𝑠)) 𝑑𝑠

= 𝜌
2

ℎ
𝑇

(𝑦 (𝑡))𝐾 (0) 𝑍𝐾 (0) ℎ (𝑦 (𝑡))

− 𝜌 [∫
𝑡−𝜌(𝑡)

𝑡−𝜌

ℎ
𝑇

(𝑦 (𝑠))𝐾 (𝑡 − 𝑠) 𝑍𝐾 (𝑡 − 𝑠) ℎ (𝑦 (𝑠)) 𝑑𝑠

+ ∫
𝑡

𝑡−𝜌(𝑡)

ℎ
𝑇

(𝑦 (𝑠))𝐾 (𝑡 − 𝑠) 𝑍𝐾 (𝑡 − 𝑠) ℎ (𝑦 (𝑠)) 𝑑𝑠]

≤ 𝜌
2

ℎ
𝑇

(𝑦 (𝑡))𝐾 (0) 𝑍𝐾 (0) ℎ (𝑦 (𝑡))

−
𝜌

𝜌 − 𝜌 (𝑡)
(∫
𝑡−𝜌(𝑡)

𝑡−𝜌

𝐾 (𝑡 − 𝑠) ℎ (𝑦 (𝑠)) 𝑑𝑠)

𝑇

× 𝑍(∫
𝑡−𝜌(𝑡)

𝑡−𝜌

𝐾 (𝑡 − 𝑠) ℎ (𝑦 (𝑠)) 𝑑𝑠)

−
𝜌

𝜌 (𝑡)
(∫
𝑡

𝑡−𝜌(𝑡)

𝐾 (𝑡 − 𝑠) ℎ (𝑦 (𝑠)) 𝑑𝑠)

𝑇

× 𝑍(∫
𝑡

𝑡−𝜌(𝑡)

𝐾 (𝑡 − 𝑠) ℎ (𝑦 (𝑠)) 𝑑𝑠) .

(48)
In addition, we note that

0 = 2[𝑦(𝑡) + 𝛾 ̇𝑦(𝑡)]
𝑇

𝑄
1
[− ̇𝑦 (𝑡) + ̇𝑦 (𝑡)]

= 2[𝑦(𝑡) + 𝛾 ̇𝑦(𝑡)]
𝑇

𝑄
1

× [ − ̇𝑦 (𝑡) − 𝐷𝑦 (𝑡 − 𝜎) + 𝐴𝑓 (𝑦 (𝑡))

+ 𝐵𝑔 (𝑦 (𝑡 − 𝜏 (𝑡)))

+𝑊∫
𝑡

𝑡−𝜌(𝑡)

𝐾 (𝑡 − 𝑠) ℎ (𝑦 (𝑠)) 𝑑𝑠]

= −2𝑦
𝑇

(𝑡) 𝑄
1
̇𝑦 (𝑡) − 2𝑦

𝑇

(𝑡) 𝑄
1
𝐶𝑦 (𝑡 − 𝜎)

+ 2𝑦
𝑇

(𝑡) 𝑄
1
𝐴𝑓 (𝑦 (𝑡)) + 2𝑦

𝑇

(𝑡) 𝑄
1
𝐵𝑔 (𝑦 (𝑡 − 𝜏 (𝑡)))

+ 2𝑦
𝑇

(𝑡) 𝑄
1
𝑊∫
𝑡

𝑡−𝜌(𝑡)

𝐾 (𝑡 − 𝑠) ℎ (𝑦 (𝑠)) 𝑑𝑠

− 2𝛾 ̇𝑦
𝑇

(𝑡) 𝑄
1
̇𝑦 (𝑡)

− 2𝛾 ̇𝑦
𝑇

(𝑡) 𝑄
1
𝐶𝑦 (𝑡 − 𝜎) + 2𝛾 ̇𝑦

𝑇

(𝑡) 𝑄
1
𝐴𝑓 (𝑦 (𝑡))

+ 2𝛾 ̇𝑦
𝑇

(𝑡) 𝑄
1
𝐵𝑔 (𝑦 (𝑡 − 𝜏 (𝑡)))

+ 2𝛾 ̇𝑦
𝑇

(𝑡) 𝑄
1
𝑊∫
𝑡

𝑡−𝜌(𝑡)

𝐾 (𝑡 − 𝑠) ℎ (𝑦 (𝑠)) 𝑑𝑠.

(49)
For simplicity, we denote

𝜉
1
(𝑡) = ∫

𝑡

𝑡−𝜌(𝑡)

𝐾 (𝑡 − 𝑠) ℎ (𝑦 (𝑠)) 𝑑𝑠,

𝜉
2
(𝑡) = ∫

𝑡−𝜌(𝑡)

𝑡−𝜌

𝐾 (𝑡 − 𝑠) ℎ (𝑦 (𝑠)) 𝑑𝑠.

(50)

By applying Lemma 4, for any 𝑡 > 0 with 0 ≤ 𝜏(𝑡) ≤ 𝜏, 0 ≤
𝜌(𝑡) ≤ 𝜌, we have

−
𝜌

𝜌 − 𝜌 (𝑡)
𝜉
2
(𝑡)
𝑇

𝑍𝜉
2
(𝑡) −

𝜌

𝜌 (𝑡)
𝜉
1
(𝑡)
𝑇

𝑍𝜉
1
(𝑡)

≤ 2𝜉
𝑇

(𝑡) 𝜒
1
𝜉
2
(𝑡) +

𝜌 − 𝜌 (𝑡)

𝜌
𝜉
𝑇

(𝑡) 𝜒
1
𝑍
−1

𝜒
𝑇

1
𝜉 (𝑡)

+
𝜌 (𝑡)

𝜌
𝜉
𝑇

(𝑡) 𝜒
2
𝑍
−1

𝜒
𝑇

2
𝜉 (𝑡)

+ 2𝜉
𝑇

(𝑡) 𝜒
2
𝜉
1
(𝑡) ,

(51)

where

𝜉 (𝑡) = (𝑦 (𝑡) , ̇𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏 (𝑡)) , 𝑦 (𝑡 − 𝜎) , 𝜉
2
(𝑡) ,

∫
𝑡

𝑡−𝜎

𝑦 (𝑠) 𝑑𝑠, 𝑓 (𝑦 (𝑡)) , 𝑔 (𝑦 (𝑡 − 𝜏 (𝑡))) ,

ℎ (𝑔 (𝑡)) , 𝜉
1
(𝑡) 𝑑𝑠)

𝑇

.

(52)

Moreover, for any 𝑛 × 𝑛 diagonal matrices, 𝑈
1
> 0, 𝑈

2
> 0,

and 𝑈
3
> 0, the following inequality holds by the methods in

[40]:

{[
𝑦(𝑡)

𝑓(𝑦(𝑡))
]

𝑇

[
−𝑈
1
Σ
1
𝑈
1
Σ
2

⋆ −𝑈
1

] [
𝑦 (𝑡)

𝑓 (𝑦 (𝑡))
]

+ [
𝑦 (𝑡 − 𝜏 (𝑡))

𝑔 (𝑦 (𝑡 − 𝜏 (𝑡)))
]

𝑇

[
−𝑈
2
Σ
3
𝑈
2
Σ
4

⋆ −𝑈
2

]

⋅ [
𝑦 (𝑡 − 𝜏 (𝑡))

𝑔 (𝑦 (𝑡 − 𝜏 (𝑡)))
] + [

𝑦 (𝑡)

ℎ (𝑦 (𝑡))
]

𝑇

× [
−𝑈
3
Σ
5
𝑈
3
Σ
6

⋆ −𝑈
3

] [
𝑦 (𝑡)

ℎ (𝑦 (𝑡))
] } ≥ 0.

(53)

Combining (45)–(53), one may deduce that

𝐷
+

𝑉 ≤ 𝜉
𝑇

(𝑡) Ξ (𝑡) 𝜉 (𝑡) , 𝑡 ∈ [𝑡
𝑘−1
, 𝑡
𝑘
) , 𝑘 ∈ Z

+
, (54)

where
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Ξ (𝑡) = Ξ +
𝜌 − 𝜌 (𝑡)

𝜌
𝜒
1
𝑍
−1

𝜒
𝑇

1
+
𝜌 (𝑡)

𝜌
𝜒
2
𝑍
−1

𝜒
𝑇

2
,

Ξ =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Π
11
−𝑄
1
𝛾𝑇𝑇
12
−𝑄
1
𝐷 𝑋

1
𝐷𝑃𝐷 Π

17
Π
18
𝑈
3
Σ
6
Π
1,10

⋆ Π
22

0 −𝛾𝑄
1
𝐷 𝑋

2
0 𝛾𝑄

1
𝐴 𝛾𝑄

1
𝐵 0 Π

2,10

⋆ ⋆ Π
33

0 0 0 0 𝑈
2
Σ
4

0 0

⋆ ⋆ ⋆ −𝑄
3

0 0 0 0 0 0

⋆ ⋆ ⋆ ⋆ Π
55

0 0 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −𝑄
2
−𝐷𝑃𝐴 −𝐷𝑃𝐵 0 −𝐷𝑃𝑊

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝑈
1

0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝑈
2

0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Π
99

0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Π
10,10

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝜉 (𝑡) = (𝑦(𝑡), ̇𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏 (𝑡)) , 𝑦 (𝑡 − 𝜎) , 𝜉
2
(𝑡), ∫
𝑡

𝑡−𝜎

𝑦 (𝑠) 𝑑𝑠, 𝑓 (𝑦 (𝑡)) , 𝑔 (𝑦 (𝑡 − 𝜏 (𝑡))) , ℎ (𝑔 (𝑡)) , 𝜉
1
(𝑡) 𝑑𝑠)

𝑇

.

(55)

From Lemma 5 we obtain that Ξ(𝑡) < 0 if the following
inequalities hold simultaneously:

Ξ + 𝜒
1
𝑍
−1

𝜒
𝑇

1
< 0, Ξ + 𝜒

2
𝑍
−1

𝜒
𝑇

2
< 0. (56)

Based on the well-known Schur complements [36], we get the
fact that (56) is equivalent to (42). Therefore, Ξ(𝑡) < 0, 𝑡 ∈
[𝑡
𝑘−1
, 𝑡
𝑘
), 𝑘 ∈ Z

+
.

For arbitrary 𝑡 > 0, without loss of generality, we set 𝑡 ∈
[𝑡
𝑛−1
, 𝑡
𝑛
), for some 𝑛 ∈ Z

+
.Then integrating inequality (54) at

each interval [𝑡
𝑘−1
, 𝑡
𝑘
), 1 ≤ 𝑘 ≤ 𝑛 − 1, and [𝑡

𝑛−1
, 𝑡), we derive

𝑉 (𝑡
−

1
) ≤ 𝑉 (0) + ∫

𝑡
1

0

𝜉
𝑇

(𝑢) Ξ (𝑡) 𝜉 (𝑢) 𝑑𝑢,

𝑉 (𝑡
−

2
) ≤ 𝑉 (𝑡

1
) + ∫
𝑡
2

𝑡
1

𝜉
𝑇

(𝑢) Ξ (𝑡) 𝜉 (𝑢) 𝑑𝑢,

...

𝑉 (𝑡
−

𝑛−1
) ≤ 𝑉 (𝑡

𝑛−2
) + ∫
𝑡
𝑛−1

𝑡
𝑛−2

𝜉
𝑇

(𝑢) Ξ (𝑡) 𝜉 (𝑢) 𝑑𝑢,

𝑉 (𝑡) ≤ 𝑉 (𝑡
𝑛−1
) + ∫
𝑡

𝑡
𝑛−1

𝜉
𝑇

(𝑢) Ξ (𝑡) 𝜉 (𝑢) 𝑑𝑢,

(57)

which implies that

𝑉 (𝑡) ≤ 𝑉 (0) + ∫
𝑡

0

𝜉
𝑇

(𝑢) Ξ (𝑡) 𝜉 (𝑢) 𝑑𝑢

+ ∑
0<𝑡
𝑘

≤𝑡

[𝑉 (𝑡
𝑘
) − 𝑉 (𝑡

−

𝑘
)] , 𝑡 ≥ 0.

(58)

Now, in order to analyze (58), we consider the change of 𝑉 at
impulse times 𝑡

𝑘
, 𝑘 ∈ Z

+
.

Firstly, it follows from (41) that

[
𝑃 (𝐼 − 𝐽

𝑘
) 𝑃

⋆ 𝑃
] ≥ 0

⇐⇒ [
𝐼 −(𝐼 − 𝐽

𝑘
)
𝑇

0 𝐼
] [
𝑃 (𝐼 − 𝐽

𝑘
) 𝑃

⋆ 𝑃
] [

𝐼 0

− (𝐼 − 𝐽
𝑘
) 𝐼
] ≥ 0

⇐⇒ [
𝑃 − (𝐼 − 𝐽

𝑘
)
𝑇

𝑃 (𝐼 − 𝐽
𝑘
) 0

⋆ 𝑃
] ≥ 0

⇐⇒ 𝑃 − (𝐼 − 𝐽
𝑘
)
𝑇

𝑃 (𝐼 − 𝐽
𝑘
) > 0.

(59)

Secondly, from model (39), it can be obtained that

𝑦 (𝑡
𝑘
) − 𝐷∫

𝑡
𝑘

𝑡
𝑘

−𝜎

𝑦 (𝑢) 𝑑𝑢

= 𝑦 (𝑡
−

𝑘
) − 𝐽
𝑘
[𝑦 (𝑡
−

𝑘
) − 𝐷∫

𝑡
𝑘

𝑡
𝑘

−𝜎

𝑦 (𝑢) 𝑑𝑢]

− 𝐷∫
𝑡
𝑘

𝑡
𝑘

−𝜎

𝑦 (𝑢) 𝑑𝑢

= (𝐼 − 𝐽
𝑘
) [𝑦 (𝑡

−

𝑘
) − 𝐷∫

𝑡
𝑘

𝑡
𝑘

−𝜎

𝑦 (𝑢) 𝑑𝑢] ,

(60)

which together with (59) yields

𝑉
1
(𝑡
𝑘
) = [𝑦(𝑡

𝑘
) − 𝐷∫

𝑡
𝑘

𝑡
𝑘

−𝜎

𝑦 (𝑢) 𝑑𝑢]

𝑇

× 𝑃[𝑦 (𝑡
𝑘
) − 𝐷∫

𝑡
𝑘

𝑡
𝑘

−𝜎

𝑦 (𝑢) 𝑑𝑢]

= [𝑦(𝑡
−

𝑘
) − 𝐷∫

𝑡
𝑘

𝑡
𝑘

−𝜎

𝑦 (𝑢) 𝑑𝑢]

𝑇

(𝐼 − 𝐽
𝑘
)
𝑇

𝑃 (𝐼 − 𝐽
𝑘
)

× [𝑦 (𝑡
−

𝑘
) − 𝐷∫

𝑡
𝑘

𝑡
𝑘

−𝜎

𝑦 (𝑢) 𝑑𝑢]
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≤ [𝑦 (𝑡
−

𝑘
) − 𝐷∫

𝑡
𝑘

𝑡
𝑘

−𝜎

𝑦 (𝑢) 𝑑𝑢]

𝑇

× 𝑃[𝑦 (𝑡
−

𝑘
) − 𝐷∫

𝑡
𝑘

𝑡
𝑘

−𝜎

𝑦 (𝑢) 𝑑𝑢]

= 𝑉
1
(𝑡
−

𝑘
) .

(61)

Thus, we can deduce that

𝑉 (𝑡
𝑘
) ≤ 𝑉 (𝑡−

𝑘
) , 𝑘 ∈ Z

+
. (62)

Substituting the above inequality to (58), it yields

𝑉 (𝑡) − ∫
𝑡

0

𝜉
𝑇

(𝑢) Ξ (𝑡) 𝜉 (𝑢) 𝑑𝑢 ≤ 𝑉 (0) , 𝑡 ≥ 0. (63)

Applying Lemma 3 and (63), we have
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐷∫
𝑡

𝑡−𝜎

𝑦 (𝑢) 𝑑𝑢
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= [𝐷∫
𝑡

𝑡−𝜎

𝑦 (𝑢) 𝑑𝑢]

𝑇

[𝐷∫
𝑡

𝑡−𝜎

𝑦 (𝑢) 𝑑𝑢]

≤ 𝜆max (𝐷
2

) [∫
𝑡

𝑡−𝜎

𝑦 (𝑠) 𝑑𝑠]

𝑇

[∫
𝑡

𝑡−𝜎

𝑦 (𝑠) 𝑑𝑠]

≤
𝜆max (𝐷

2)

𝜆min (𝑄3)
[∫
𝑡

𝑡−𝜎

𝑦(𝑠)𝑑𝑠]

𝑇

𝑄
3
[∫
𝑡

𝑡−𝜎

𝑦 (𝑠) 𝑑𝑠]

≤ 𝜎
𝜆max (𝐷

2)

𝜆min (𝑄3)
∫
𝑡

𝑡−𝜎

𝑦
𝑇

(𝑠) 𝑄
3
𝑦 (𝑠) 𝑑𝑠

≤ 𝜎
𝜆max (𝐷

2)

𝜆min (𝑄3)
𝑉
2
(𝑡) ≤ 𝜎

𝜆max (𝐷
2)

𝜆min (𝑄3)
𝑉 (𝑡)

≤ 𝜎
𝜆max (𝐷

2)

𝜆min (𝑄3)
𝑉 (0) , 𝑡 ≥ 0.

(64)

Similarly,
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑦(𝑢) − 𝐷∫

𝑡

𝑡−𝜎

𝑦 (𝑢) 𝑑𝑢
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= [𝑦(𝑢) − 𝐷∫
𝑡

𝑡−𝜎

𝑦 (𝑢) 𝑑𝑢]

𝑇

[𝑦 (𝑢) − 𝐷∫
𝑡

𝑡−𝜎

𝑦 (𝑢) 𝑑𝑢]

≤
𝑉
1
(𝑡)

𝜆min (𝑃)
≤
𝑉 (𝑡)

𝜆min (𝑃)
≤
𝑉 (0)

𝜆min (𝑃)
, 𝑡 ≥ 0.

(65)

Hence, it can be obtained that

󵄩󵄩󵄩󵄩𝑦 (𝑡)
󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐷∫
𝑡

𝑡−𝜎

𝑦 (𝑢) 𝑑𝑢
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑦 (𝑢) − 𝐷∫

𝑡

𝑡−𝜎

𝑦 (𝑢) 𝑑𝑢
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ √𝜎
𝜆max (𝐷

2)

𝜆min (𝑄3)
𝑉 (0) + √

𝑉 (0)

𝜆min (𝑃)
< ∞, 𝑡 ≥ 0,

(66)

where

𝑉 (0) = [𝑦(0) − 𝐷∫
0

−𝜎

𝑦(𝑢)𝑑𝑢]

𝑇

𝑃[𝑦 (0) − 𝐷∫
0

−𝜎

𝑦 (𝑢) 𝑑𝑢]

+ 𝜎∫
0

−𝜎

∫
0

𝑠

𝑦
𝑇

(𝑢)𝑄
2
𝑦 (𝑢) 𝑑𝑢 𝑑𝑠

+ ∫
0

−𝜎

𝑦
𝑇

(𝑠) 𝑄
3
𝑦 (𝑠) 𝑑𝑠

+ 𝛾
2

∫
0

−𝜏

∫
0

𝑢

̇𝑦
𝑇

(𝑠) 𝑇
22
̇𝑦 (𝑠) 𝑑𝑠 𝑑𝑢

+ 𝜌∫
0

−𝜌

∫
0

𝑢

ℎ
𝑇

(𝑦 (𝑠))𝐾 (−𝑠) 𝑍𝐾 (−𝑠) ℎ (𝑦 (𝑠)) 𝑑𝑠 𝑑𝑢

≤ {2𝜆max (𝑃) (1 + 𝜎
2max
𝑖∈Λ

𝑑
𝑖
) +
1

2
𝜎
3

𝜆max (𝑄2)

+ 𝜎𝜆max (𝑄3) +
1

2
𝛾
2

𝜏
2

𝜆max (𝑇22)

+
1

2
𝜌
3

𝜆max (𝑍)}
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

𝜂
< ∞.

(67)

So the solution 𝑦(𝑡) of models (1) and (4) is uniformly
bounded on [0,∞). Thus, considering the continuity of
activation function 𝑓 (i.e., (𝐻

3
)), it can be deduced from

system (38) that there exists some constant𝑀 > 0 such that
‖ ̇𝑦(𝑡)‖ ≤ 𝑀, 𝑡 ∈ [𝑡

𝑘−1
, 𝑡
𝑘
), 𝑘 ∈ Z

+
. It implies that, | ̇𝑦

𝑖
(𝑡)| ≤ 𝑀,

𝑡 ∈ [𝑡
𝑘−1
, 𝑡
𝑘
), 𝑘 ∈ Z

+
, and 𝑖 ∈ Λ, where ̇𝑦 denotes the right

hand derivative of 𝑦 at impulsive times.
Finally, we can prove that ‖𝑦(𝑡)‖ → 0 as 𝑡 → ∞, which

is similar to the corresponding proof in the literature [25].
Here we omit it. Therefore, the zero solution of (38) or (39)
is globally asymptotically stable, which implies that models
(1) and (4) have a unique equilibrium point which is globally
asymptotically stable. This completes the proof.

When there is no leakage delay, that is, 𝜎 = 0, models (1)
and (4) become

𝑥̇ (𝑡) = −𝐷𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝑊∫
𝑡

𝑡−𝜌(𝑡)

𝐾 (𝑡 − 𝑠) ℎ (𝑥 (𝑠)) 𝑑𝑠 + 𝐼,

𝑡 > 0, 𝑡 ̸= 𝑡
𝑘
, Δ𝑥 (𝑡

𝑘
)

= 𝑥 (𝑡
𝑘
) − 𝑥 (𝑡

−

𝑘
)

= −𝐼
𝑘
(𝑥 (𝑡
−

𝑘
) − 𝑥
∗

) , 𝑘 ∈ Z
+
, 𝑥 (𝑠)

= 𝜑 (𝑠) , 𝑠 ∈ [−𝜂, 0] .

(68)

For model (68), we have the following result by Theorem 8.

Corollary 9. Under the conditions in Theorem 7, model (68)
has a unique equilibrium point which is globally asymptotically
stable if there exist a constant 𝛾 > 0, an 𝑛 × 𝑛 inverse matrix
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𝑄
1
, four 𝑛 × 𝑛 matrices 𝑃 > 0, 𝑍 > 0, 𝑇

11
> 0, and 𝑇

22
> 0,

three 𝑛 × 𝑛 diagonal matrices 𝑈
1
> 0, 𝑈

2
> 0, and 𝑈

3
> 0, and

real matrices𝑇
12
,𝑋
𝑙
(𝑙 = 1, . . . , 6)with appropriate dimension

such that

[
𝑇
11
𝑇
12

⋆ 𝑇
22

] > 0,

[
𝑃 (𝐼 − 𝐽

𝑘
)
𝑇

𝑃

⋆ 𝑃
] ≥ 0, 𝑘 ∈ Z

+
,

[
Ξ 𝜒
𝑗

⋆ −𝑍
] < 0, 𝑗 = 1, 2,

(69)

where

Ξ =

[
[
[
[
[
[
[
[
[
[
[

[

Π
11
−𝑄
1
𝛾𝑇𝑇
12
𝑋
1
Π
15

Π
16
𝑈
3
Σ
6
Π
18

⋆ Π
22

0 𝑋
2
𝛾𝑄
1
𝐴 𝛾𝑄

1
𝐵 0 Π

28

⋆ ⋆ Π
33

0 0 𝑈
2
Σ
4
0 0

⋆ ⋆ ⋆ Π
44

0 0 0 0

⋆ ⋆ ⋆ ⋆ −𝑈
1

0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −𝑈
2

0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Π
77

0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Π
88

]
]
]
]
]
]
]
]
]
]
]

]

,

𝜒
1
= col {𝑋

1
, 𝑋
2
, 𝑂,𝑋

3
, 𝑂, 𝑂, 𝑂, 𝑂} ,

𝜒
2
= col {𝑋

4
, 𝑋
5
, 𝑂, 𝑂, 𝑂, 𝑂, 𝑂,𝑋

6
} ,

(70)

with

Π
11
= −PD − DP − 𝑈

1
Σ
1
− 𝑈
3
Σ
5
,

Π
15
= PA + 𝑄

1
𝐴 + 𝑈

1
Σ
2
,

Π
16
= PB + 𝑄

1
𝐵,

Π
18
= PW + 𝑄

1
𝑊+𝑋

4
,

Π
22
= −𝛾𝑄

1
− 𝛾𝑄
𝑇

1
+ 𝛾
2

𝜏𝑇
22
,

Π
28
= 𝛾𝑄
1
𝑊+𝑋

5
,

Π
33
= 𝜏𝑇
11
− 𝛾𝑇
𝑇

12
− 𝛾𝑇
12
− 𝑈
2
Σ
3
,

Π
44
= 𝑋
3
+ 𝑋
𝑇

3
,

Π
77
= 𝜌
2

𝐾 (0)ZK (0) − 𝑈
3
,

Π
88
= 𝑋
6
+ 𝑋
𝑇

6
.

(71)

Remark 10. In [25], Li et al. have investigated a class of
recurrent neural networks with discrete time-varying delay
and constant delay in the leakage term under impulsive per-
turbations. However, the bounded time-varying distributed
delays were not taken into account in network models. In
fact, neural networks usually have a spatial extent due to the
presence of a multitude of parallel pathways with a variety
of axon sizes and lengths, and hence there is a distribution
of propagation delays over a period of time. Thus, the time-
varying distributed delays should be taken into account
to reflect more realistic dynamics. The models studied in

the present paper have wider range of applications. In the
future, we will further investigate the relevant models with
such mixed time delays by other current approaches, such
as constructing Lyapunov-Krasovskii functional with triple
integral terms and introducing free-weighting matrices.

Remark 11. In [27], Wang et al. have dealt with the global
asymptotic stability of neural networks with mixed time
delays under impulsive perturbations. But there is a derivative
restriction of transmission delay ̇𝜏(𝑡) ≤ 𝑐 < 1, which is a
conservative condition. In our results, based on a superior
Lyapunov-Krasovskii functional, the criteria do not require
the differentiability even differential boundedness of time-
varying transmission delay 𝜏(𝑡). In addition, we have consid-
ered the basic properties, such as existence and uniqueness of
solutions and equilibrium. So our results are less conservative
and may be applied effectively in a wider range.

Remark 12. Recently, more researchers have begun to take
into account the effect of time-varying leakage delay, which
has essential difference from constant leakage delay, on
dynamics of models. We would like to think that it may lead
to more technical difficulties. How to improve the dynamics,
especially the stability properties of neural networks with
(time-varying) leakage delay, may be an interesting problem
and requires further research.

6. Illustrative Example

In this section, an example is given to demonstrate the
effectiveness of our results.

Example 1. Consider the following recurrent neural networks
model:

𝑥̇ (𝑡) = −𝐷𝑥 (𝑡 − 𝜎) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝑊∫
𝑡

𝑡−𝜌(𝑡)

𝐾 (𝑡 − 𝑠) ℎ (𝑥 (𝑠)) 𝑑𝑠 + 𝐼,

𝑡 > 0, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑥 (𝑡
𝑘
) = 𝑥 (𝑡

𝑘
) − 𝑥 (𝑡

−

𝑘
) = 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
) , 𝑥
𝑡
−

𝑘

) , 𝑘 ∈ Z
+
,

(72)

where 𝑓 = 𝑔 = ℎ = |𝑠|, 𝜎 = 0.08, 𝜏(𝑡) = 0.09 − 0.01[sin 𝑡]∗,
𝜌(𝑡) = 0.08 − 0.02[sin 𝑡]∗, 𝐾(𝑠) = 𝑒−𝑠, 𝐼 = (0, 0)𝑇, 𝑡

𝑘
= 0.1𝑘,

and 𝐼
𝑘
= diag(0.5, 0.5), 𝑘 ∈ Z

+
, and parameter matrices

𝐷,𝐴, 𝐵, and𝑊 are given as follows:

𝐷 = [
9 0

0 8
] , 𝐴 = [

1.5 −0.3

−0.1 0.2
] ,

𝐵 = [
−0.6 0.4

1.7 −1.8
] , 𝑊 = [

0.2 0.3

−0.5 0.15
] .

(73)

In this case, we know that 𝜎−
𝑗
= 𝛿−
𝑗
= 𝜁−
𝑗
= −1, 𝜎+

𝑗
= 𝛿+
𝑗
=

𝜁+
𝑗
= 1, 𝜎 = 0.08, 𝜏 = 0.1, and 𝜌 = 0.1. Let 𝛾 = 2.6; via Matlab
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LMI toolbox, the feasible solution for the LMIs inTheorem 8
is derived as follows:

𝑃 = [
0.0017 0

0 0.0026
] , 𝑄

1
= [
0.0030 0.0001

0.0001 0.0037
] ,

𝑄
2
= [
0.8011 0.0002

0.0002 0.8061
] , 𝑄

3
= [
0.5982 0.0009

0.0009 0.6026
] ,

𝑍 = [
0.8887 0

0 0.8887
] , 𝑈

1
= [
1.0046 0

0 1.0046
] ,

𝑈
2
= [
0.8793 0

0 0.8793
] , 𝑈

3
= [
1.0117 0

0 1.0117
] ,

𝑇
11
= [
1.3262 −0.0001

−0.0001 1.3260
] , 𝑇

12
= [
0.0388 0

0 0.0387
] ,

𝑇
22
= [
0.0096 0.0002

0.0002 0.0113
] ,

𝑋
1
= 10
−3

× [
0.0534 0.0807

−0.1311 0.0400
] ,

𝑋
2
= 10
−3

× [
0.1117 0.1773

−0.3554 0.1106
] ,

𝑋
3
= [
−0.3176 0

0 −0.3176
] , 𝑋

4
= [
−0.0004 −0.0007

0.0012 −0.0004
] ,

𝑋
5
= [
−0.0014 −0.0022

0.0044 −0.0014
] ,

𝑋
6
= [
−0.3177 0

0 −0.3177
] .

(74)

Hence, from Theorem 8, the unique equilibrium point 𝑥∗ =
(0, 0)
𝑇 of system (72) is globally asymptotically stable.

7. Conclusion

In this paper, we have investigated a class of impulsive neural
networks with mixed time delays and generalized activa-
tion functions. Firstly, by using the contraction mapping
theorem, we have given a sufficient condition to guarantee
the global existence and uniqueness of the solution for
the addressed neural networks. Then, a delay-independent
sufficient condition for existence of the equilibriumpoint and
some delay-dependent sufficient conditions for stability have
been derived, respectively, by using topological degree theory
and suitable Lyapunov-Krasovskii functional. The obtained
results require neither the boundedness, monotonicity, and
differentiability of the activation functions nor the differen-
tiability of time-varying delay. Finally, an example has been
given to show the effectiveness and less conservativeness of
the obtained results. In the future, we will do some further
research on impulsive neural network models with leakage
time-varying delay and continuously distributed delay.
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