Hindawi Publishing Corporation
Abstract and Applied Analysis

Volume 2014, Article ID 315290, 10 pages
http://dx.doi.org/10.1155/2014/315290

Research Article

A Divide-and-Conquer Approach for Solving Fuzzy
Max-Archimedean /-Norm Relational Equations

Jun-Lin Lin, Hung-Chjh Chuan, and Laksamee Khomnotai

Department of Information Management and Innovation Center for Big Data and Digital Convergence, Yuan Ze University,
Taoyuan 32003, Taiwan

Correspondence should be addressed to Jun-Lin Lin; jun@saturn.yzu.edu.tw
Received 2 January 2014; Accepted 22 April 2014; Published 11 May 2014
Academic Editor: Juan Carlos Cortés

Copyright © 2014 Jun-Lin Lin et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A system of fuzzy relational equations with the max-Archimedean f-norm composition was considered. The relevant literature
indicated that this problem can be reduced to the problem of finding all the irredundant coverings of a binary matrix. A divide-
and-conquer approach is proposed to solve this problem and, subsequently, to solve the original problem. This approach was
used to analyze the binary matrix and then decompose the matrix into several submatrices such that the irredundant coverings
of the original matrix could be constructed using the irredundant coverings of each of these submatrices. This step was performed
recursively for each of these submatrices to obtain the irredundant coverings. Finally, once all the irredundant coverings of the
original matrix were found, they were easily converted into the minimal solutions of the fuzzy relational equations. Experiments
on binary matrices, with the number of irredundant coverings ranging from 24 to 9680, were also performed. The results indicated
that, for test matrices that could initially be partitioned into more than one submatrix, this approach reduced the execution time by
more than three orders of magnitude. For the other test matrices, this approach was still useful because certain submatrices could
be partitioned into more than one submatrix.

1. Introduction where X = (x;),y, is the matrix of unknowns, A = (a;),,,x, is

the matrix of coefficients, B = (b;),,, is the right-hand side of
the system, and the symb “o” represents a max-Archimedean
t-norm composition.

Di Nola et al. [3] indicated that, given a continuous ¢-

norm for t in system (1) and assuming the existence of solu-

Solving a system of fuzzy relational equations is a subject of
great scientific interest [1, 2]. This work considers a system of
fuzzy relational equations of the form

max {t (xy,ay1),t (X @51) s+ oo £ (X Gt)} = by tions, the solution set of system (1) can be fully determined

by the greatest solution and a finite number of minimal

max {t (x1,a15) £ (X3, 855) 55t (%> Apip)} = by) leution%, It is well-known that the greatest solution can be

. easily computed, but finding all minimal solutions is difficult.

Liand Fang [4] demonstrated that the systems of max-t-norm

max {t (x1,a,,) (X3, G3) - - -5t (X, Ay)} = By equations can be divided into two categories, depending on

the function ¢ in the system. When ¢ is continuous and

where a;;, bj, x; € [0,1] for eachi, 1 <i < mandforeach j, Archimedean, the minimal solutions correspond one-to-one

1 < j < nandt represents a continuous Archimedean t-norm
function. System (1) can be succinctly written in the following
equivalent matrix form:

XoA=B, @)

to the irredundant coverings of a set covering problem. When
t is continuous and non-Archimedean, the minimal solutions
correspond to a subset of constrained irredundant coverings
of a set covering problem. Li and Fang [5] discussed the
necessary and sufficient conditions for solving max-t-norm

http://dx.doi.org/10.1155/2014/315290

equations. A survey of similar and other related works is
described in [5].

This work focuses on system (1), with ¢ representing a
continuous Archimedean t-norm function. Although solving
such a system is equivalent to solving a set covering problem,
set covering problems are classified as NP-hard problems
[5, 6]. Therefore, solving a system of max-Archimedean ¢-
norm equations is NP-hard. Wu and Guu [7] demonstrated
that the number of minimal solutions of such a system can
grow exponentially as the numbers of variables and equations
(i.e.,mandnin system (1)) increase. Therefore, solving system
(1) that has hundreds or thousands of minimal solutions is not
uncommon and can be a challenge.

The concept of partitioning involves grouping related
variables and equations and separating unrelated variables
and equations. A variable x; and the jth equation (ie.,
max{t(xl,alj), ... ,t(xm,amj) = b;}) in system (1) are related
if the value of x; can affect whetljler the jth equation holds.
Furthermore, two variables (or two equations or one variable
and one equation) in system (1) are related if they are
related to a common variable or equation. In system (1) with
numerous variables and equations (i.e., 7 and # are high), it
is likely that not all variables and equations are related to one
another. Consequently, system (1) may be partitioned into
several subsystems, each containing only the related variables
and equations. Thus, the original problem is decomposed into
several subproblems. Because solving system (1) is an NP-
hard problem [5, 6], solving several smaller subproblems is
considerably faster than solving the original problem directly.
Therefore, partitioning can expedite the process of solving
system (1). Notably, even if all variables and equations of
system (1) are related, partitioning can still be applied to the
subsets of all the variables and equations. For example, many
approaches involve reducing system (1) by fixing the value of a
certain variable x; (Rule 5 in Section 5 provides an example).
Subsequently, the remaining variables and equations can be
partitioned into more than one group such that each group
contains only the related variables and equations. The concept
of partitioning is discussed further in Section 4.

Based on the concept of partitioning, the first objective
of this study was to develop a divide-and-conquer approach
for finding all of the minimal solutions of system (1). In this
approach, system (1) is first transformed into a binary binding
matrix. We propose an algorithm, called PA, in which the
concept of partitioning is applied to decompose the binary
binding matrix into several submatrices, the irredundant
coverings of each submatrix are constructed recursively, and,
finally, they are used to form the irredundant coverings of the
binary binding matrix. Once all of the irredundant coverings
of the binary binding matrix are found, they can be easily
converted into the minimal solutions of system (1).

Numerous studies on solving system (1) have been con-
ducted [7-9], but few have provided a performance study of
the methods used for solving system (1) in which hundreds
or thousands of minimal solutions are involved. Wu and Guu
[7] used their method to solve test problems for which the
number of minimal solutions ranged from 6 to 100, and the
results indicated (Figure 1) that all test problems can be solved
in less than 300 ms by using an ordinary PC. However, test

Abstract and Applied Analysis

300 T T T T T T T T T

250 | o .
200 | i

150 B

Time

100 + -

50 | 00 i
[

O ?O @ 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 8 90 100

Number of minimal solutions

FIGURE 1: Number of minimal solutions versus execution time (in
ms) reported in [7].

problems solved by using such a scale do not fully reflect the
difficulty of solving system (1). One problem that hinders the
process of performing tests on a large scale is that generating
test cases in which system (1) has a high number of minimal
solutions is complex.

To bypass the need to generate complex system (1) test
cases, large binary matrices can be generated because any
system (1) case can be reduced to a binary matrix, called a
binary binding matrix, and the problem of solving system (1)
can be reduced to the problem of finding all of the irredun-
dant coverings of the binary binding matrix. According to
Lin [8], both the reduction process and the conversion of an
irredundant covering to a minimal solution can be conducted
in polynomial time and, therefore, finding all irredundant
coverings is the core process executed in solving system (1). In
other words, the time required to find all of the irredundant
coverings of the binary binding matrix accounts for most
of the time required to solve system (1). This is especially
true for complex system (1) cases because the time used
for both the reduction of system (1) and the conversion of
irredundant coverings to minimal solutions is insubstantial
compared with the time used for finding all irredundant
coverings. Therefore, the time required to find all irredundant
coverings when adopting the proposed approach can be
used to represent the performance of this approach. The
second objective of this study was to develop an algorithm
for generating binary matrices with various characteristics
on a considerably large scale to enable the evaluation of the
performance of various approaches in finding all irredundant
coverings on the test matrices that are difficult to solve.

To evaluate the impact of partitioning on the execution
time, the proposed algorithm (PA) was compared with
another approach (denoted as the non-PA) proposed by
Markovskii [6] for finding all irredundant coverings. The
only difference between the PA and non-PA is that the PA
contains an additional step for incorporating the concept of
partitioning. Several test matrices were generated for this
performance study. For test matrices that can be initially
partitioned into more than one submatrix, the PA reduces
the execution time required by the non-PA by more than
three orders of magnitude. Even for test matrices that can-
not be initially partitioned into more than one submatrix,

Abstract and Applied Analysis

the PA still offers more favorable performance than does
the non-PA. This is attributed to the partitioning of the
submatrices of the binary binding matrix.

The rest of this paper is organized as follows. In Section 2,
the preliminaries of Archimedean f-norm are given. In
Section 3, the procedure for constructing the binary binding
matrix and minimal solutions is presented. In Section 4, the
concept of partitioning is discussed and an algorithm for
finding all irredundant coverings is proposed in Section 5.
In Section 6, the procedure for generating test matrices is
described and the performance results are presented. Finally,
conclusion is given in Section 7.

2. Preliminaries

This section describes the basic concepts of ¢-norm,
Archimedean t-norm, and the greatest solution and minimal
solutions of fuzzy relational equations. Please refer also to
[3-5,9,10].

A triangular norm (t-norm for short) is a binary function
mapping from [0, 1]* to [0,1] that satisfies the following
conditions:

(1) t(a, b) = t(b, a) (commutativity),
(2) t(a, t(b,¢)) = t(t(a, b), c) (associativity),
(3) t(a,b) < t(a,c), if b < ¢ (monotonicity),

(4) t(a,0) = 0 and t(a,1) = a, for any a = [0,1]
(boundary condition).

A well-known fact is that t(a,b) < min{a, b} for any ¢-
norm. The commonly seen “min” and “product” are both a
t-norm function.

Let X(A,B) = {X € [0,1]" | X o A = B} denote
the set of all solution vectors of (2), . = {1,2,...,m}, let
7 = {1,2,...,n} be two index sets, and let X' = (xil)lxm
and X? = (xl.z)lxm, for all i € .7, be two vectors. For any
X', X* € X(A, B), the relation X' < X? holds if and only if
x!l < xi2 foralli € 7. A solution X € X(A, B) is called the

1

greatest solution if X < X for all X € X(A, B). Conversely, a
solution X € X(A, B) is a minimal solution if VX € X(A, B),
where X < X implies that X = X. As described in Section 1,
with a continuous t-norm for ¢ in system (1), the solution
set X(A, B) can be completely determined by the greatest
solution and a finite number of minimal solutions. This study
assumes that f-norms are continuous.

The greatest solution of system (1) with a t-norm for t can
be computed explicitly using the “ — ,” operator defined as

a—b =sup{x € [0,1] | t (x,a) < b}, (3)

where t(x, a) is a t-norm and b € [0, 1]. If the solution set of

system (1) is not empty, then the greatest solution X = (X;);c 5
can be calculated as follows:

X; = r}g}l (aij—>tbj) for each i € .7. (4)

Mostert and Shields [11] subdivided continuous t-

norms into three categories, namely, the “min” operation,

Archimedean f-norms, and ordinal sums of a family of
properly defined Archimedean ¢-norms. The Archimedean
t-norm t is a t-norm with t(a,a) < a for all 0 <
a < 1 [3]. Notably, the well-known “min” operation is
not an Archimedean ¢t-norm. Wu and Guu [7] collected six
Archimedean ¢t-norm functions as follows:

(1) Algebraic product: t(a, b) = ab;
(2) Lukasiewicz t-norm: t(a,b) = max{0,a + b — 1};
(3) Einstein product: t(a,b) = ab/(1 + (1 — a)(1 - b));

(4) Hamacher product: t(a, b) = ab/(A+(1-1)(a+b—ab)),
where 0 < A < 00;

(5) Yu operation: t(a, b) = max{0, (1 +A)(a+b—1)—Aab},
where -1 < A < 003

(6) Weber operation: t(a, b) = max{0, (a+b+Aab—1)/(1+
A)}, where =1 € A < o0.

Simple formula for calculating the greatest solution of
system (1) that uses any of these six Archimedean t-norm
functions for t is also available in Wu and Guu [7].

3. Reduction of Fuzzy Relational Equations to
Covering Problem

This section describes the procedure to reduce the problem
of finding all minimal solutions of system (1) to the problem
of finding all irredundant coverings of the binary binding
matrix of system (1). The description follows the results of
Lin [8]. Subsequently, in Section 4, we apply the concept of
partitioning to the binary binding matrix to expedite finding
all irredundant coverings.

Let M = (m;;) 1x);) denote a matrix withi € I, j € J and
m;; € {0, 1, 2}, where I and J denote the index sets for the rows
and the columns of M, respectively. Notably, both I and J are
a set of positive integers. Let I j(M) ={iell m;; # 0} denote
an index set for each j €] and let J;(M) = {j € J | m;; #0}
denote an index set for each i € I. A set C C I is a covering
of M if ;e Ji(M) = J. A covering C is irredundant if each
proper subset of C is not a covering of M. The term ®(M)
denotes the set of all irredundant coverings of M.

Example 1. Consider the matrix M below, where the index
sets I and] are indicated on the left and on the top of the
matrix, respectively. The set of all irredundant coverings of
Mis ®(M) = {{1,2},{1,3},{2,3}} :

1234
1 1102
M=2 [0112 (5)
3 101 2
4 0002
The binding matrix of system (1) is denoted by # =

(1}),xn and is given by

1 if (X a;) = b #0,

2 if bj =0, (6)
0 if t(x,ay) #b;

m;; =

forie Fandje 7.

According to Expression (6), if bj = 0, then m;; = 2 for
each i € .7; that is, all elements in the jth column of ./ are
2. Such columns are referred to as all-2-columns in a binding
matrix. Let /" denote a binding matrix .# with all of its all-
2-columns removed. It is obvious that if B is not a zero vector,
then " is a binary matrix containing one or more columns
and the set of irredundant coverings of . equals that of ./ *.
The matrix " is referred to as the binary binding matrix of
system (1).

Example 2. Consider the following fuzzy relational equations
with max-Lukasiewicz t-norm composition:

0.8 0.9 02 03
0.1 0.7 0.8 0.1
where A= 07 05 09 0 |’)

09 0.8 0.7 0.9

XoA=B,

B =(0.5,0.6,0.7,0).

The binding matrix . is the same as the matrix M in
Example 1, while the binary binding matrix " is formed by
the first three columns of ..

The mapping vector of an irredundant covering C €

®(M*) is denoted by X = (x°);. ; and is given by

X; _ ;
! X; otherwise.

C:{o ifi ¢ C, ®)

Let X(A, B) denote the set of all minimal solutions of
system (1). Lin [8] proved that if B is not a zero vector, then
X(A, B) equals the set of mapping vectors of all irredundant
coverings of ./*; that is, X(A,B) = {(XC | C e o).
If B is a zero vector, namely, b; = 0 for every j € 7, then
it is obvious that X(A, B) = {0}. Therefore, X(A, B) can be
determined with the following procedure.

(1) If Bis a zero vector, then X(A, B) = {0} and stop.

(2) Calculate the greatest solution X using Expression
(4).

(3) If X ¢ X(A, B), then X(A, B) = 0 and stop.

(4) Calculate the binding matrix . using Expression (6).

(5) Let ™ be obtained from . with all of its all-2-
columns removed.

(6) Construct ®(") by searching all irredundant cov-
erings of /*.

(7) X(A,B) = {X® | C € ®(M")}, where each XC is
calculated using Expression (8).

Example 3. Consider the fuzzy relational equations in
Example 2. Since B is not a zero vector, Step (1) is skipped.
Step (2) obtains the greatest solution X = (0.7,0.9,0.8,0.1),
and Step (3) then finds that X oA = B holds (ie.,
X € X(A,B)). Step (4) obtains the binding matrix ./,
which is the same as the matrix M in Examplel. Step
(5) obtains the binary binding matrix .#*, which is the
same as ./ but without its fourth column. Step (6) yields

Abstract and Applied Analysis

OZ*) = {{1,2},{1,3},{2,3}}. Finally, Step (7) yields
X(A, B) = {(0.7,0.9,0,0), (0.7,0, 0.8, 0), (0, 0.9, 0.8, 0)}..

It is obvious that Steps (1)-(5) can be done in O(mn) time.
Li and Fang [4] and Lin [8] proved the bijective (i.e., both
one-to-one and onto) mapping between a minimal solution
and an irredundant covering, and thus Step (7) can be done
in O(m|X (A, B)|) time, where |X(A, B)| is the number of
minimal solutions of (2). Step (6), finding all irredundant
coverings, is the most time-consuming step. Therefore, the
task of finding all minimal solutions of (2) is reduced to the
task of finding all irredundant coverings of a binary matrix,
which is the focus of the next two sections.

4. Partitioning

This section describes the concept of partitioning a binary
matrix into one or more submatrices such that the irredun-
dant coverings of the binary matrix can be derived from
the irredundant coverings of these submatrices. First, the
notation used is defined as follows to facilitate the discussion.

Let M = (myj);; denote a binary matrix with i € I
and j €], where I and] denote the index sets for the rows
and the columns of M, respectively. Here, both I and J are a
set of integers (not necessarily contiguous or starting from 1).
Let M[I¥; J¥] = (mij)|1k|x|jk| denote a submatrix of M, where
ielfc T'and j e J* c J; that is, I and J* are the index sets
for the rows and the columns of M[I*; J¥], respectively.

Example 4. Consider the matrices M, M", and M* below,
where the index sets for the rows and the columns are,
respectively, indicated on the left and on the top of each
matrix. The index sets for the rows of M, M', and M? are
I=1{1,2,3,4},I' = {2,3},and I? = {2,3}, respectively. The
index sets for the columns of M, M!, and M? are | = {1,2,3},
J' = {3},and J* = {1,2, 3}, respectively. Here, M* = M[I';J']
is a submatrix of M formed by rows 2 and 3 and column 3.
Similarly, M? = MIJI*J?] is a submatrix of M formed by
rows 2 and 3 and columns 1, 2, and 3. Notably, M" also equals
M?[I';J'] and thus is a submatrix of M? :

23

B W N =
O = O =

123
M= 2 (01 1).
3 \101
Definition 5. Let M' and M* be two binary matrices. The x

operator is defined by OM") x d(M?) = {C'|JC* | C' €
OM") AC* € D(M?)}.

Given a binary matrix M, then both {#} x D(M) = O(M)
and 0 x ®(M) = @ hold.

In Section 1, we described the concept of partitioning,
which involves grouping the related variables and equations

Abstract and Applied Analysis

of system (1) to reduce the problem size. Because the variables
and equations of system (1), respectively, correspond to
the rows and columns of its binding matrix, we applied the
same concept to the binary binding matrix by grouping the
rows and columns that are related. Given a binary matrix M =
(m;), row i and column j are related if m;; # 0. Furthermore,
two rows (or two columns or one row and one column) are
related if they are related to a common row or column.

The matrix M can be considered a bipartite graph G =
(I,], M), where the index sets I and] represent the two
sets of vertices of G and the matrix M represents the edges
that connect the vertices in I and J. If m;; #0, then an edge
connects the vertex i € I and the vertex j € J. Notably, no
edge connects two vertices both in I or both in J. Therefore,
if two rows (or two columns or one row and one column) are
related, then a path connects the corresponding vertices in
G. Because a graph is connected if every pair of vertices is
connected by a path, a connected subgraph of G represents
a set of related rows and columns in M. Partitioning is used
to find all components (i.e., the maximal connected subgraph)
of G. A connected subgraph of G is maximal if vertices and
edges that could be added to the subgraph and still leave it
connected do not exist in G. Finding all of the components in
a bipartite graph is faster than finding all of the components
in a general graph because the former can stop as soon as one
of the two sets of vertices is fully explored. A formal definition
of partitioning is given as follows.

Definition 6. Given a binary matrix M = (m;;), the
partitioning of M, denoted as W(M), is formed by a set
of submatrices M* = MI[I*,J*] of M, where k € P =
{1,2,...,|¥(M)|} and |¥(M)]| is the number of matrices in
W(M), such that the following conditions are satisfied:

@ UkePIk =Iand UkEP]k =]
(2) K =X nj* =gfor any k', k* € Pbutk’ #£k*,

(3) my; = Oforanyi € ¥ and j € J&', where k', k* € P
but k' #k*.

Example 7. Consider the binary matrix M below. For ease of
exposition, the index sets for the rows and the columns of M
are, respectively, indicated on the left and on the top of the
matrix:

123456738910
1 1010000001
2 0110000001
3 0000011000
4 0000100100

M_S 0001010000 (10)

6 0000100010
7 1110000000
8 000000OO0O1T1O0
9 0001001000

By Definition 6, we have Y(M) = {M!, M?*}, where
M' = MI[{4,6,8},{5,8,9}] and M*> = M[{1,2,3,5,7,9},
{1,2,3,4,6,7,10}] are shown as

5809
4 /110
M’ = 6 <101>’ ()
8 \0 11
12346710
1 1010001
2 0110001
M= 3 0000110 (12)
5 0001100
7 1110000
9 0001010

Theorem 8 states that if a binary matrix can be partitioned
into several submatrices, as described in Definition 6, then
the set of irredundant coverings of the binary matrix can be
constructed by performing the x operation on the sets of
irredundant coverings of these submatrices.

Theorem 8. Given a binary matrix M, if Y(M) =
{M', M?,...,MP}, then (M) = O(M") 1 D(M?) w1 -+ X
O(MP).

Proof. Let P = {1,2,..., p} and MF = 1%, J*] for each k € P.
By Definition 6, D(M")x®(M?)x: - -xD(MP) € O(M) holds.
Assume to the contrary that there exists C € ®(M) but C ¢
OMYHMO(M?) - - - D(MP). The set C can be decomposed
into p disjoint subsets of C such that C = | J;p C¥, where each
C* ¢ 1*. Since C € d(M), by Condition (3) of Definition 6,
each C* must be a covering of Mk 1t cF ¢ dD(Mk,) for some
k' € P, then there exists a covering Qk, c C* of M¥ . Then,

(C\ K u Qk’) c Cis a covering of M, and consequently
C ¢ O(M), which contradicts C € ®(M). Therefore, D(M) <
OM") x O(M?) - - 1 D(MP). O

The advantage of using partitioning is twofold. First,
partitioning involves decomposing a matrix into several
submatrices with a reduced number of rows and columns, the
irredundant coverings of which can be found more efficiently
than those of the original matrix. Second, if the covering of
submatrices is not minimal, then it is immediately discarded
and is not combined with the coverings of other submatrices
to form new coverings. This substantially reduces the number
of redundant coverings generated. Furthermore, once the
set of irredundant coverings of each submatrix is found,
Theorem 8 can be applied to obtain the set of irredundant
coverings of the original matrix without generating any
redundant coverings of the original matrix. Because an
irredundant covering of the binary binding matrix of system
(1) corresponds to a minimal solution, only minimal solutions
are generated. The disadvantage of using partitioning is that
if the partitioning of the binary binding matrix contains only
one component (ie., the matrix), then benefits cannot be
obtained from partitioning, and the time used to perform

Abstract and Applied Analysis

Algorithm PA(M)

Output: ®(M)
(1) If Jis asingleton {j} then
() return {{i}i e I, M)};
(3) If J =0 then
(4) return {0};

(6) return 0;

(8) let M':= M[I\{i};] \ J,(M)]
(9) return {{i}} x PA(M');

(15) Let M" := M[I\ {i}; J,(M)];

(17) Return ({{i} x A)J @ (M™);

Input: a binary matrix M = (mij)\IIXIII withi € Iand j € J.

(5) If 3j € J such that Ij(M)z(a then

(7) If there exists a singleton I j(M) = {i} for some j € J then

(10) 1f ¥(M)={M"',M?,...,M*?}and p > 1 then

(11) return PA(M") x PA(M?) x---x PA(MP);

(12) Let row i be the row with the most 1s in M;

(13) Let M™ :=M[I\ {i}; J]and M™ :=M[I\ {i}; J \ J;,(M)];
(14) Let ®(M") := PA(M™) and ®(M”*) := PA(M™);

(16) Let A :={C € ® (M) Cis not a covering of M*};

/] singleton removal

/I partitioning

/1 forced binding

ArLcoriTHM I: Algorithm for finding all irredundant coverings.

partitioning is wasted. The impact of partitioning on perfor-
mance is discussed further in Section 6.

5. The Divide-and-Conquer Algorithm

We propose a divide-and-conquer algorithm for constructing
the set of irredundant coverings of a binary matrix M. The
algorithm follows a set of rules specified by Lin [8] either to
obtain the irredundant coverings directly or to decompose
a binary matrix into one or more submatrices. Rules 1-3
consider some trivial cases of M whose irredundant coverings
can be directly derived and are adopted as the termination
condition in the proposed algorithm.

Rule 1. If] is a singleton {j}, then ®(M) = {{i} | i € Ij(M)}.
Rule 2. 1f] = 0, then ®(M) = {0}.

Rule 3. If there exists a column j €] such that I j(M) =0,
then ®(M) = 0.

Rule 4 reduces a binary matrix by identifying the indexes
of the rows that are required in all irredundant coverings of
the matrix.

Rule 4 (singleton removal). If there exists a singleton I (M) =
{i} for some j € J,then ®(M) = {{i}}mD(M[I\{i}; T\ J.(M)]).

If none of the above rules are applicable, then the
algorithm calculates the partitioning W(M). Subsequently, if
[¥(M)| > 1, then the irredundant coverings of M can be
derived from the irredundant coverings of those submatrices
in W(M), according to Theorem 8. However, if [V(M)| =
1, then Rule5 [6] is applied to decompose M into three
submatrices.

Rule 5 (forced binding). Let M~ = M[I\{i}; J\J;(M)], M" =
MII\{i}; J,(M)] and M = M[I \ {i}; J] for somei € I. Then,
O(M) = ({{i}} x (@(M™) \ (M™))) J D(M™).

Algorithm 1 shows the proposed algorithm (denoted as
PA). Notably, this algorithm does not find any covering that is
redundant. If a matrix can be partitioned into more than one
submatrix, then lines 10 and 11 of the algorithm are applied to
expedite the process of executing the algorithm by using the
concept of partitioning. When lines 10 and 11 are excluded,
the resulting algorithm, denoted as non-PA, is identical to the
algorithm proposed by Markovskii [6] or Lin [8]. The PA is
demonstrated in the following examples.

Example 9. Consider the matrix M in Example 4. Select row
1 to apply forced binding (lines 12-17 of PA) and obtain three
matrixes M, M*, and M*, as shown in

3 12

2 /1 .2 /01
3<1> M‘3<10>
4 \0 4 \0 0

123
« 2 /011
M= 3 <1 0 l> ’
4 000
Lines 1-2 of PA yield ®(M~) = {{2},{3}}, and subse-
quently lines 15-16 yield A = ®(M ™). By lines 7-9 and then

lines 1-2 of PA, we have ®(M™) = {{2, 3}}. Finally, ®(.#) =
{1 @A) U d(M™) = {{1,2},{1,3}, {2, 3}}.

M =

(13)

Example 10. Consider the matrix M in Example 7. Since
¥(M) = {M"', M*}, by Theorem 8, D(M) = O(M") x D(M?).

Abstract and Applied Analysis

To compute ®(M'), we select row 4 of M to apply forced
binding (lines 12-17 of PA) and obtain three matrixes M =
M"Y, and M (shown below) such that ®(M') = ({{4}} »
(@(M'7)\ ©(M™))) [d(M™):

9 58

M= 6 (1
8 \1
589

MY = 6 (10 1).
8 \011

By lines 1-2 of PA, ®(M'") = {{6},{8}}. By lines 7-9
and then lines 1-2 of PA, ®(M") = {{6, 8}}. Consequently,
O(M') = {{4,6}, {4,8}, {6, 8}}.

To compute ®(M?), we select row 1 of M* to apply
forced binding and obtain three matrixes M*~, M**, and
M?* (shown below) such that ®(M?) = ({{1}} x (®(M*) \
O(M>))) | ®(M>). Thus,

2467

2 1000

- 3 0011
M= = 0110 |’

7 1000

9 0101

13 10

2 011

3 000

M2+:5 000 (15)

7 110

9 000
12346710
2 0110001
w3 0000110
M= = 0001100
7 1110000
9 0001010

Then, M*~ can be further partitioned into M> and M*
(shown below), and consequently oM*) = oM’ x
O(MH):

5 467
M3=2<1> M4=g<(l)}(1)>. (16)
7 \1
9 \101

By lines 1-2 of PA, O(M?) = {2}, {7}). Calculating oMY
is similar to calculating ®(M 1), and thus we have ®(M*) =
{{3,5},{3,9},{5,9}}. Consequently, O(M*) = {21 {7} w
{{3,55{3,9L {591 = {{2,3,51,{2,3,9},{2,5,9},{3,5,7},
{3,7,9},{5,7,9}}.

M?* can be further partitioned into M> and M® (shown
below), and consequently ®(M*) = ®(M’) x O(M°®). By
lines 7-9 and then lines 1-2 of PA, ®(M°) = {{2, 7}}. Similar

to (M), ®(M®) = {{3,5},{3,9}, {5,9}}. Thus, D(M>*) =
{12,3,5,71,12,3,7,9},{2,5,7,9}}:

467
12310 01 1

M= 2 (0111 M= 3)
7 \1110 > (110
9 \101

Therefore, ®(M*) = {{1,2,3,5},{1,2,3,9},11,2,5,9},
{1,3,5,7}, {1,3,7,9}, {1,5,7,9}, 12,3,5,7}, {2,3,7,9},
{2,5,7,9}}. Since both ®(M") and ®(M?) are found, ®(M)
can be derived from ®(M") x O(M?).

6. Performance Study

This performance study focused on evaluating the impact
of applying the concept of partitioning. This was achieved
by comparing the performance of the PA with that of the
non-PA, because the algorithms differed only in whether the
concept of partitioning was used. As discussed in Section 3,
finding all of the irredundant coverings of the binary binding
matrix " is the most time-consuming step in solving
system (1). Therefore, we measured only the time required to
derive (") from " to evaluate the speed at which system
(1) can be solved using a given approach.

6.1. Test Matrices. We used binary binding matrices rather
than system (1) for this performance study. This offered three
advantages. First, a binary binding matrix is a binary matrix
only and is independent of any specific Archimedean ¢t-norm
function. Second, using binary binding matrices prevents
the imprecision caused by floating point truncation from
occurring when solving system (1). Third, generating a large
binary matrix is easier than generating system (1) with a high
number of equations and variables.

Algorithm 2 shows the procedure for generating the test
matrices. This procedure involves four parameters, m, n,
d, and p, and generates an m x n binary matrix M with
density d such that W(M) contains p submatrices of M
with approximately the same number of rows and columns.
The density of M is defined as the number of nonzero
elements in M divided by m x n. In this procedure, an
irredundant covering is first injected into the matrix to avoid
®O(M) = 0 (lines 5-9). Then, the elements in the regions of
M that correspond to these p submatrices are repeatedly and
randomly chosen to assume the value of 1 until the number
of elements with a value of 1 reaches [m * n * d] (lines 11-15).

In this study, test matrices were generated with m = n =
24, p ranging from 1 to 8 and d ranging from 2/m to 1/ p with
an increment of 1/m. Notably, if d = 1/m, then the matrix
had at most one irredundant covering. Therefore, only test
matrices with a density of no less than 2/m were generated
in this study. In addition, when the partitioning of a matrix
contains p submatrices of equal size, the density of the matrix
could not be greater than 1/p and, thus, the greatest density
was set to 1/p.

Because this procedure is random, it does not always gen-
erate a binary matrix with numerous irredundant coverings.
This is especially true when m and # are low or d is near zero

Abstract and Applied Analysis

Output: M = (m,)mxuI wherei e I ={1,...
(1) Let P:={L,2,...,pk

,mland jeJ =

(4) Initialize m;; to O foralli € I'and j € J;

(6) For each j € J* do

(7) Randomly select i from I¥, and set m;; =1
(8) End of for each

(9) End of for

(10) Letl:=[m+n=*d]-mn;

(11) While ! > 0 do

(14) let m;;:=1landl:=1-1;
(15) End of while
(16) Return M;

Input: m,n,d and p. Note: 1/m < d < 1/pand p < nare requlred

(2) Randomly divide I into p disjoint subsets I', I%,..., I” such that | ., I* = I, and HIE| - 'IRH < lforanykk € P;

(3) Randomly divide] into p disjoint subsets J', J%, ..., J* such that | J,.p J¥ =7, and “]%l - |];H < 1for any k.k e P;

(5) For k =1to p do // inject an irredundant covering to avoid ®(M) = 0.

(12) Randomly select i and j from I and J, respectively;
(13) Ifie Ik,j € J* for some k € P, and m;; =0 then

..,n}

ALGORITHM 2: Procedure for generating test matrices.

or one. Therefore, for each setting of d and p, this procedure
was repeated five times to generate five test matrices. For
example, when p = 1, we varied d from 2/24 to 1/1 with an
increment of 1/24 and consequently generated 115 (= 23 x 5)
test matrices. In general, given a fixed p value, (24/p — 1) x5
test matrices were generated in this study. That is, 55, 35, 25,
15, and 10 test matrices were generated for p = 2, 3, 4, 6, and
8, respectively. For clarity, Figure 2 shows only the number
of irredundant coverings of the test matrices with the lowest
or the highest number of irredundant coverings among the
respective five test matrices with the same p and d values.
Among all the test matrices generated, the matrix with the
highest number of irredundant coverings (|J®(M)| = 9680)
was generated using d = 6/24 and p = 3.

To understand how d affects the number of irredundant
coverings, we performed a preliminary check on the number
of irredundant coverings for the test matrices with p =
Specifically, we first grouped the generated matrices with
p = 1 by their densities. Then, for every two groups with
their difference in density being 1/24, a Mann-Whitney U
test was performed to compare the difference of the number
of irredundant coverings between both groups. The results
show that when both groups’ densities are less than or equal
to 5/24, the number of irredundant coverings is smaller in
the group with smaller density; when both groups’ densities
are greater than or equal to 8/24, the number of irredundant
coverings is larger in the group with smaller density; when
both groups’ densities are between 5/24 and 8/24, there is no
significant difference between the two groups in the number
of irredundant coverings. Thus, although we did not include
test matrices with density less than 2/24 in this study, the
generated test matrices have covered a wide range of density
to provide meaningful analysis.

6.2. Performance Results. The performance study was con-
ducted on a desktop PC with Pentium D (3.0 GHz) processor

x10°
10 T T m T T T T T T T T
9 -
X
8+ x 4
7+ -
— 6L * + i
s, °<><> _
Sal %e8, .
S 4L |
@
5| @ 06904 |
2-*%@DDE++ 08©© -
1 X XX i
0@ e 98000000,
R TR T TR
24 24 24 24 24 24 24 24 24 24 24 24
d
O p=1 X p=4
+ p=2 N P=6
0op=3 x p=8
FIGURE 2: Density d versus the number of irredundant coverings
|D(M)].

and 1 gigabyte main memory, running Windows XP. To
evaluate the impact of using partitioning, each test matrix was
subjected to two tests, a test in which the PA was used and a
test in which the non-PA was used. The results are shown in

Figures 3-5.
First, consider the group of test matrices with p = 1.
Because p = 1, the 115 test matrices in this group were

generated without intentionally making them capable of
being partitioned into more than one submatrix. Prior to
comparing the execution times of the PA and non-PA on
this group of test matrices, we used the Kolmogorov-Smirnov
test to check the normality of the execution time, and the
results show that the assumption of normality failed for both
the PA and non-PA. Because the assumption of normality

Abstract and Applied Analysis

x10°

180 T T T T T

160 - g}-

140 | ? .

9

120 F -
°§ 100 QQ ﬁ .
B osof O &9 .

71000

2000 3000 4000 5000 6000
[D(M)]
) Non-PA
+ PA

FIGURE 3: |®(M)]| versus execution time (in ms) when p = 1.

of distribution was questionable, the Wilcoxon signed-rank
test was used as a substitute for a paired ¢-test to compare
the difference between the execution time of the PA and
non-PA. The results were in the expected direction and were
significant (z = —7.741 and p < 0.05). Thus, it is statistically
significant to say that the execution time of the PA is smaller
than that of the non-PA with this group of test matrices.
This may be due to the fact that, although the test matrices
in this group could not be partitioned into more than one
submatrix (i.e., |[¥(M)| = 1), several of the submatrices could
and, therefore, the concept of partitioning was still helpful.
Figure 3 shows that the execution times of the PA and non-PA
exhibited a similar pattern: both were linearly proportional
to the square of the number of irredundant coverings of the
test matrix. The correlation coefficient between the execution
time and the square of the number of irredundant coverings
was 0.99502 for the PA and 0.990939 for the non-PA.

For test matrices in which p > 1, Figures 4 and 5
reveal that the PA outperformed the non-PA by more than
three orders of magnitude. Figure 4 shows that the execution
time of the non-PA was still linearly proportional to the
square of the number of irredundant coverings and was not
affected by the value of p. Figure 5 shows that, for any test
matrix in which p > 1, the PA required less than 120 ms
to determine ®(M). If a test matrix can be partitioned into
more than one submatrix (i.e., |¥(M)| > 1), then the PA
first identifies the irredundant coverings of these submatrices.
Because the number of irredundant coverings of the test
matrix is the product of the number of irredundant coverings
of these submatrices, finding the irredundant coverings of
these submatrices is much faster than finding those of the
test matrix. Consequently, the time required by the PA to find
all the irredundant coverings can be reduced substantially.
We also used the Wilcoxon signed-rank test to compare the
execution times of the PA and non-PA on each group of
test matrices with the same number of partitions. The results
were all in the expected direction and were significant (z =
-6.452, -5.16, —4.372, —3.408, and —2.803 for the groups of

x10°
350 T T T T T T T T T

300 - O .
250 —

200 | . .

Time

150 | 0

100 - +<>5r§ e

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
|D(M)|

6
8

x p
AN

0o+ <
A~ Bias Biav)
I
W N

FIGURE 4: |®(M)| versus execution time (in ms) of non-PA when

p>1

120 T T T T T T T T T
®
100 -
0
80F O 0Be 00 T
é 60 | R B
H
AN
w0l © & 0 g i
AROOL B+ E O A + +
20 (RSB HHKE #0 X XX I OO)
0 ID 1 1 b 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
|D(M)]
O p=2 X p=6
+ p=3 A p=38
Op=4

FIGURE 5: |®(M)]| versus execution time (in ms) of PA when p > 1.

test matrices with 2, 3, 4, 6, and 8 partitions, respectively, and
all p < 0.05).

7. Conclusion

In a system of fuzzy relational equations with numerous
variables and equations, several variables and equations are
likely to be unrelated, and when such a situation occurs,
partitioning can be used to facilitate substantial reduction
of the time required to determine all the minimal solutions.
Therefore, considering partitioning when solving fuzzy rela-
tional equations is crucial.

Partitioning is not useful when all of the rows and
columns of a binary binding matrix M are related, and after
applying forced binding (Rule 5 in Section 5) to derive two
submatrices M™ and M, all of the rows and columns of both
submatrices are still related. Intuitively, this situation occurs

10

as the density of M approaches one (i.e., d is near 1 and
p = 1, as shown in Figure 2). In this situation, the problem
contains considerably fewer irredundant coverings, as shown
in Figure 2, and, thus, can be solved efficiently with or without
considering partitioning.

In addition to max-Archimedean #-norm fuzzy relational
equations, numerous types of fuzzy relational equations have
been demonstrated to be equivalent to the set covering
problem [12]. The partitioning concept and the divide-and-
conquer approach discussed in this paper can also be applied
to these fuzzy relational equations with little modification.

Instead of generating test matrices (as in Algorithm 2),
Hu and Fang [13] proposed procedures for generating test
problems with various characteristics for use in max-t-norm
fuzzy relational equations, with ¢ being the min, product,
or the Lukasiewicz t-norm. Because both the product and
Lukasiewicz t-norm are Archimedean t-norms, test problems
generated by conducting the related procedures can be used
in future studies to evaluate the performance of the proposed
method further.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This research is supported by the National Science Council
under Grants 99-2221-E-155-048-MY3 and 102-2221-E-155-
034-MY3.

References

(1] B. De Baets, “Analytical solution methods for fuzzy relational
equations,” in Fundamentals of Fuzzy Sets, vol. 7, pp. 291-340,
Kluwer Academic, Boston, Mass, USA, 2000.

[2] K. Peeva and Y. Kyosev, Fuzzy Relational Calculus: Theory,
Applications And Software, vol. 22, World Scientific, Hacken-
sack, NJ, USA, 2004.

[3] A.DiNola, S. Sessa, W. Pedrycz, and E. Sanchez, Fuzzy Relation
Equations and Their Applications to Knowledge Engineering, vol.
3, Kluwer Academic, Dordrecht, The Netherlands, 1989.

[4] P. Liand S.-C. Fang, “On the resolution and optimization of a
system of fuzzy relational equations with sup-T' composition,”
Fuzzy Optimization and Decision Making, vol. 7, no. 2, pp. 169-
214, 2008.

[5] P.Liand S.-C. Fang, “A survey on fuzzy relational equations. I.
Classification and solvability,” Fuzzy Optimization and Decision
Making, vol. 8, no. 2, pp. 179-229, 2009.

[6] A.V.Markovskii, “On the relation between equations with max-
product composition and the covering problem,” Fuzzy Sets and
Systems, vol. 153, no. 2, pp. 261-273, 2005.

[7] Y.-K. Wu and S.-M. Guu, “An efficient procedure for solving
a fuzzy relational equation with max-Archimedean f-norm
composition,” IEEE Transactions on Fuzzy Systems, vol. 16, no.
1, pp. 73-84, 2008.

[8] J.-L. Lin, “On the relation between fuzzy max-Archimedean t-
norm relational equations and the covering problem,” Fuzzy Sets
and Systems, vol. 160, no. 16, pp. 2328-2344, 2009.

Abstract and Applied Analysis

[9] G.B.StamouandS. G. Tzafestas, “Resolution of composite fuzzy
relation equations based on Archimedean triangular norms,”
Fuzzy Sets and Systems, vol. 120, no. 3, pp. 395-407, 2001.

[10] G.]J.Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and
Applications, Prentice Hall PTR, Upper Saddle River, NJ, USA,
1995.

[11] P.S. Mostert and A. L. Shields, “On the structure of semigroups
on a compact manifold with boundary;” Annals of Mathematics,
vol. 65, pp. 117-143, 1957,

[12] J.-L. Lin, Y.-K. Wu, and S.-M. Guu, “On fuzzy relational
equations and the covering problem,” Information Sciences, vol.
181, no. 14, pp. 2951-2963, 2011.

[13] C.-E Hu and S.-C. Fang, “Randomly generating test problems

for fuzzy relational equations,” Fuzzy Optimization and Decision
Making, vol. 11, no. 1, pp. 1-28, 2012.

