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This paper is concerned with the impulsive synchronization problem of chaotic delayed neural networks. By employing Lyapunov
stability theorem, impulsive control theory and linear matrix inequality (LMI) technique, several new sufficient conditions ensuring
the asymptotically synchronization for coupled chaotic delayed neural networks are derived. Based on these new sufficient
conditions, an impulsive controller is designed. Moreover, the stable impulsive interval of synchronized neural networks is
objectively estimated by combining the MATLAB LMI toolbox and one of the two given equations. Two examples with numerical
simulations are given to illustrate the effectiveness of the proposed method.

1. Introduction

During implementation of artificial neural networks, time
delay is a very familiar phenomenon due to the finite
switching speed of neurons and amplifiers. The existence
of time delay possesses an important source in what cause
instability and even chaotic behavior in some type of delayed
neural networks (DNNs) if the parameters and time delays
are appropriately chosen (see [1-6]). These kinds of chaotic
neural networks have been successfully applied in chemical
biology [7], combinatorial optimization [8], associative mem-
ory [9], biological simulation [10], and so on. Especially, the
synchronization problem of chaotic delayed neural networks
has been extensively studied over the past few decades
due to its potential applications in many areas, such as
secure communications [11-13], image encryption [14], image
processing [15], and harmonic oscillation generation [16].
Hence, it is of great theoretical and practical significance
to investigate synchronization problem of chaotic delayed
neural networks.

A wide variety of schemes have been proposed for the
synchronization of chaotic systems, for example, adaptive
control [17], slide mode control [18], coupling control [19],
feedback control [20], and impulsive control [21-25]. It is
worth noting that impulsive control is characterized by the

abrupt changes in the system dynamics at certain instants,
which is an advantage in reducing the amount of information
transmission and improving the security and robustness
against disturbances especially in telecommunication net-
work and power grid, orbital transfer of satellite. In addition,
impulsive control allows the stabilization and synchroniza-
tion of chaotic systems using only small control impulses.
Thus, it has been widely used to synchronize chaotic neural
networks (see [21, 23, 24]). In [21], Zhao and Zhang obtained
some new criteria for the impulsive exponential antisynchro-
nization of two chaotic delayed neural networks by establish-
ing an integral delay inequality via the inequality method. Li
etal. [23] investigated the synchronization scheme of coupled
neural networks with time delays by utilizing the stability
theory for impulsive functional differential equations. Zhang
and Sun [24] studied the robust synchronization model of
coupled delayed neural networks under general impulsive
control. However, all above results do not efficiently utilize
the so-called sector nonlinearity property of the activation
functions of the neural networks, which leads to some
conservatism of the results.

Motivated by the above discussions, the impulsive syn-
chronization problem for chaotic delayed neural networks
has not been fully investigated yet, which is still open and
remains challenging. The aim of this paper is to study
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the synchronization of chaotic neural networks with time-
varying delay. Some novel sufficient conditions which guar-
antee the coupled chaotic delayed neural networks can be
asymptotically synchronized are derived based on Lyapunov
stability theorem, impulsive control theory, and linear matrix
inequality (LMI) technique. Moreover, the stable impulsive
interval of synchronized neural networks is objectively esti-
mated by combining the MATLAB LMI toolbox and one of
the two given equations.

The organization of this paper is as follows. In Section 2,
the impulsive synchronization problem is described and
some necessary definitions and lemmas are given. Some
new synchronization criteria are obtained in Section 3. In
Section 4, two illustrative examples are given to show the
effectiveness of the proposed method. Finally, conclusions are
given in Section 5.

Notations. Let R denote the set of real numbers, let R* denote
the set of positive real numbers, and let R"” and R™" denote
the n dimensional Euclidean space and the set of all n x
m real matrices, respectively. N denotes the set of positive
integers. |z|| is the Euclidean norm of the vector z. For any
matrix P € R™”, P > 0 denotes that P is a symmetric
and positive definite matrix. If P, P, are symmetric matrices,
then P, < P, means that P, — P, is a negative semidefinite
matrix. A,,(P), Ay, (P) denote the minimum and maximum
eigenvalue of matrix P, respectively. P’ and P™' mean the
transpose of P and the inverse of a square matrix P. I denotes
the identity matrix with appropriate dimensions. S, = {x €
R” | Ixll < p}, F = {y € C(R",R") | w(t) is strictly
increasing and y(0) = 0}, " = {y € F | y(t) < ¢ for
t>04L2={yeCR"R")|w(0) =0y >0, fort > 0},
PC = {y : [-1,0] — R", w(t) is continuous everywhere
except at the finite number of points 7, where y('), w(f )

exist and w(f') = y(f)}. The notation % always denotes the
symmetric block in one symmetric matrix.

2. Problem Description and Preliminaries

The chaotic neural networks with variable delay can be
described by

x(t)=-Ax(@t)+Bf (x())+Cf (x(t—7 (@) +], t>0,
x(s)=¢(s), se[-1,0],

€]

where x(t) = (x,(¢), x,(t), ..., xn(t))T is the neuron state vec-

tor; A is a positive diagonal matrix; B = (b;) € R™" and C =
(6;) € R™" are the connection weight matrix and the delayed
connection weight matrix, respectively; J is the constant input
vectors F(x()) = (f,G,(Ds (62 (Ds s () is the
nonlinear neuron activation function which describes the
behavior in which the neurons respond to each other; the
time delay 7(t) is bounded as 0 < 7(f) < 7, and the initial
value condition ¢(-) € PC([-7,0],R") is a piecewise right
continuous function.

Throughout this paper we assume that f(-) satisfies
assumption (H1).
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(H1) (see [26]) Each function f; is continuous, and there
exist scalars I; and I such that

< 2OS0O ) @)
1 a— b 1
for any a,b € R, a#b, where l;' and I; can be positive,
negative, or zero.
Based on assumption (HI), we set
Ly =diag(l{ +I,5 +1,....I0 +1),
o B (3)
L,= diag(lfll,l;’lz,...,l;ln).

Remark 1. Inusual Lipschitz condition, it is assumed that [, =
—I. Clearly, the condition (H1) is quite general and includes
the usual Lipschitz conditions as a special case.

To investigate the impulsive synchronization of chaotic
neural networks and consider system (1) as the drive system,
the corresponding response system is given by

y(t)=-Ay &)+ Bf (y () +Cf (yt =7 () +J,

s € [-1,0],

t>0,

y(s)=9¢(s),
(4)

where y(t) = (y,(t), yz(t),...,yn(t))T is the neuron state
vector of the response system, the initial value condition
() € PC([-1,0],R") is a piecewise right continuous
function.

At discrete time f,, the state variables of the drive system
are transmitted to the response system as the control input
such that the state vectors of the response system are suddenly
changed at these instants. Therefore, the impulsive controlled
response system can be written as

() =-Ay()+Bf (y ) +Cf (y(t =7 (1)) + ],

t>t, =0, t#t,
Ay (t) =y () -y (6) = Wi (v () - x (t)), (5
t=t, keN,
y(s)=¢(s), sel[-1,0],

where Ay(t,) denotes the state jumping at impulsive time
instant t = f, y(t{), y(t;) and x(t;), x(t;) are the right-
hand and left-hand limits of the functions y(t) and x(t) at
ti» respectively. Moreover, y(t;) = y(t), x(t) = x(t).
Suppose that the discrete time sequence {t } satisfies 0 < t; <
t, <--- andlim _, t, = 00. W is the impulsive matrix.
Let e(t) = y(t) — x(t) be the synchronization error, and
then we can obtain the error system between (1) and (5):

é(t) = —Ae(t) + Bh(e(t)) + Ch(e(t - T(1)),
t>t, =0,
Ae(ty) = e(ty) —e(ty) = Wee () s
e(s)=@(s)—¢(s), se[-7,0],

where h(e()) = f(e(-) + x(-)) = f(x()).

t#t,
(6)
t= tk’ k € N,
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The following definitions and lemmas which are useful in
deriving synchronization criteria are used in the paper.

In general, the impulsive functional differential equation
can be described by

x(t)=f(t,x,), t=0, t#ty,
x(t) =Je(x(t)), t=ti, keN, 7)
x(t) =x, te[-1,0],

where f : [0,00) x PC — R" ensures that (7) has a zero
solution. Ji(x) : S, — R" foreach k € N*. For any ¢ >
0, x, € PCisdefined by x,(s) = x(t+s), —7 < s < 0. Assume
that there exists a p; > 0 (p; < p) such that x € S(p,) implies
Ji(x) € S, forall k € N.

Definition 2. The function V(t,x) : [t;, 00) X S, — R* is
said to belong to class 7 if
(i) V is continuous in each of sets [t;_;, ;) X Sp> k eN,

an.d for each x € S, lim(t)y)_)(t;)x)V(t, y) = V(t, x)
exists;

(ii) V is locally Lipschitzian in x € S, and for all ¢ >
to, V(£,0) = 0.

Definition 3 (see [27]). For (t,x) € [t,_;, 1) x R”, the right
and upper Dinfi’s derivatives of V € 7 are defined as

D'V (t,x) = hlim sup %l {(VI[t+hx+hf(tx)]-V(x)}.
— 0t

(8)

Lemma 4 (see [28]). Assume that there exist V €

Vo w0, €F, ¢ € K, and H € X such that

@) w; (Ixl) < V(t, x) < w,(llxll) for (£, x) € [t;,00) X S,

(ii) for all x € Sp> 0<p <p, and k € N, V(ty, Ji.(x)) <
y(V(t, x));

(iii) for any solution x(t) of (7), V(t + s, x(t +s)) < 1;/_1
(V(t, x(t))), -t < s < 0 implies that D" (V (¢, x(t))) <
gt)H(V (t, x(t))), where g : [ty,00) — R is locally
integrable, y™ " is the inverse function of y;

(iv) H is nondecreasing and there exist constants A, > A, >
0 and A > 0 such that forallk € Nand yu > 0, A, <

te—tir < Ay and [ (ds/H(s) - jfkk_ g(o)ds > A;
then the zero solution of (7) is uniformly asymptotically stable.

Lemma 5 (see [29]). For any symmetric and positive definite
matrix P € R™", the following inequality holds:
A, (P)x"x<x"Px<)Ay(P)x'x, VYxeR". (9)

Lemma 6 (see [30]). If X,Y are real matrices with appropriate
dimensions, then there exists a number € > 0 such that

1
XY +7 X <eXTX+-YTY. (10)
&

3
3. Main Results
In this section, we use the Lyapunov-like function
Vite(®)=e (t)Pe(t) ()

to derive the asymptotically stability conditions of the zero
solution of the error system (6), which implies that the drive
system (1) and the response system (5) can be asymptotically
synchronized.

Theorem 7. Assume that assumption (H1) holds. If there exist
three n x n symmetric and positive definite matrices P, Q;, Q,,
seven constants 0 < d < 1, 0,,0,,05,0, > 0,0 < 05,0, < 2
such that the following inequalities hold:

r<o, Q,-06;P<0, Q,-dP <0,
(12)
Ind + 6gsup {t, —t,_;} <0, keN,
where
Q, PB PC
I=|« -6 o0 |, 0.P <Q,, 0,P > Q,,
* *x  =0,1
6 Q 20
Q =-ATp-PA+ —L 1T+ _Q -L1,,
! 20, -0 d 2 2-6, °
6 - 20
Q, = 2 L 2L,
27 20,-627" 2-09,7
Q,=I+W)'PI+W,),
(13)

then the systems (1) and (5) are asymptotically synchronized.
Proof. From (11) and Lemma 5, we get

An(P)e’ ()e(t) <V (te(t) <Ay (P)e (te(t). (14)
Let w (le®)l) = A,,(P)e" (De(®), w,(le®)]) = Ap(P)e’ ()

e(t), and then w;, w, € .
Forallee S,,0<p <p, k€N,

V (e (1)) = e (1) Pe (1)
= e’ (5) (T+ W) P (T + W) e (1)
=" (t0) [(1+ W) "P (I + W) - dP] e (t;)
+de’ (1) Pe(ty)
=" (1) (s - dP)e (1) + AV (1, e (t;))

<dv (t,e(t;)). -
15

Let y(s) = ds,and theny € #™.
For any solution of (6), if

V(t+set+s) <y (V(te)), Vsel[-1,0], (16)



that is,

eT(t+s)Pe(t+s)SéeT(t)Pe(t), Vs € [-1,0], (17)

specially, for s = —7(t), we have
el (t—T(t)Pe(t—1(t)) < éeT (t)Pe(t).  (18)

Fort € [t;_;,t), k € N, therightand upper Dini’s derivatives
of V (¢, e(t)) along the trajectory of system (6) are obtained as
follows:

D'V (t,e(t))
=e' (t)(-ATP-PA)e(t)
+(e" (t) PBh(e(t)) + h" (e(t)) B'Pe (1))

+(e" () PCh(e(t—T(t) +h (e(t—T (1)) C Pe(t)).
(19)

It follows from Lemma 6 that

el (t) PBh (e (1)) + h" (e () B' Pe (t)

! (20)
< e—eT (t) PBB" Pe (t) + 0,h" (e () h (e (1)),
1

el () PCh(e(t-1(t) +h (e(t—1(t)C Pe(t)

ei (t) PCCTPe () + 0,h" (e (t — T (1)) h (e (t - T (£))).

(21)

By assumption (H1), it is easy to see that
0< ) (e, (t) -y (e, (1)) (h; (e (1) — T e; (1))
i=1

=e ()L h(e(®) —h (e h(e(®) —e" (t)Lye(t),

(22)
< Z (e, (t =1 (1) —h; (e; (t — T (1))
i=1

x (h; (e, (t =T (1) — I e; (t =T (1))

= T (-t (B) Lk (et —T(1) (3)
W et h(et-T®)

—e' (t-1(t) Lye(t—T(1).
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Combining (20) and (22) together yields

el (t)PBh(e (1)) + h™ (e (t)) B'Pe (1)

ei (t) PBB Pe (t)

0, (e" (O Lih(e®) - (D Lre(t))  (24)
(t)( IPBB P-0,L )e(t)
+60,e" ()L h(e(t)).
From (21) and (23), we get

el (t)PCh(e(t -1 (t)) +h! (e(t —1(£) C Pe(t)

ei (t) PCCT Pe (1)

+6,(e" (t-T(®) Lyh(e(t -1 (1)
—" (t—=T () Le(t—T (1)) (25)
=e (t)< PCC P)e(t)
2
—e' (t—1(1) (6,L,)e(t — T (1))
+0,e" (t—T@®)Lih(e(t-1(1))).
Note that
e’ ()L h(e(t)

- 2_(1933 ()L LTe(t) + %hT (e(®)h(e(t)

1 r
< 35, (t)L,Lie(t)

+ % (eT (t)L,h(e(t) —e" (t)L,e (t)),
el (t-T(®)Lih(e(t-1(t)

(26)

<2—e (t- T(t))LLe(t T(t))

+ %hT (et—t () h(e(t-1())
0,
< (e (t—T (1) Lih(e(t -1 (1)
— (-t Lyet -7 (1))

1
+ 2—046T (t-7(t)L,Lie(t—1(t)).
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From (26), we can, namely, obtain

e ) Lih(e(t) <e’ (t) <;L j.

2 ~1+1 0 e(t)
26, - 62 2-6,"

(27)

e (t-t () Lih(e(t -1 (1))

< eT(t—‘r(t))(;L I’

0,
- ——L t—1(t)).
294_ei 1+~1 2_64 2>e( T())

(28)

Introducing (24), (25), (27), and (28) to (19), from condition
of Theorem 7 and Schur complement [31], we obtain

D'V (t,e(t))

1 pppTp

<el (t) (—ATP —PA+
6,

+ Lpecp- 01L2> e(t)
6,

6, 6,0
+e(t)(26 GLILT 2193L>e(t)

62 T 6204
—2 L - L
20,-027"1 2.9,

+eT(t—T(t))<
xe(t—1(t))
—e' (t—7 () (6,L,) e(t —T (1))

1 1
=el (b) ( ~-ATP-PA+ G—PBBTP + G—PCCTP
1

2

L S )e(t)

20, — 62 2-6,

6, 260,
+e(t—r(t))<29 6)LILT 76 )e(t—r(t))
SeT(t)<—ATP—PA+9iPBBTP

1

1 6, r 26,
+ Gzpcc P+ 2, QZL L 2_93L2)e(t)
+e’ (t—1(t)(0sP)e(t -1 (1))

1
<e' (1) ( ~ATP-PA+ Q—PBBTP
1

L pectp L,L}
"8, 20, —62
260 9
—2_}9 L2+<§—06>P>e(t)
3
+04e” () Pe(t)

5
<e’ (1) ( _ATP—pA+ L pBBTP + L pCCTP
6, 0,
0, r 20, Q,
—t _r.1"- L+ - t
g gy Tg ety e
+64e” () Pe(t)
<6,V (e(t).
(29)
Let g(s) = 1 and H(s) = 0¢s. Then
o ds th # ds
- (s)ds=J — — (e — 1
L(M) H(s) tk—lg du Ocs (k k 1)
Ind
~ T, (te = ter)
> _Ind sup {tx — ty_q} > 0.
O6
(30)

From Lemma 4, the zero solution of system (6) is asymptoti-
cally stable. Thus, system (1) and system (5) are synchronized.
The proof of Theorem 7 is completed. O

Remark 8. The stable impulsive interval is associated with the
impulsive matrix W and the choice of parameter ;. In order
to reduce the man-made misleading during the prediction of
stable impulsive interval, here only fix parameter 05,0, and
the impulsive matrix Wy, and then let 0;P < Q,,0,P > Q,.
Firstly, P, Q;, Q, can be obtained by Theorem 7 via MATLAB
LMI toolbox. Finally, 05,0, can be calculated by following
algebraic equations:

o, = < det(Q;)
>\ det(P)’

|det(Qy) 3
66_\jdet(P)’ Gy

or linear matrix inequalities:

0;P < Q, 0,P > Q,. (32)
In [22, 25], the parameters 3, and r which are corresponding
to parameter 0, had been selected subjectively, which may
cause result to lack fidelity. In addition, parameters 65, 0, are
selectable variables which can increase the flexibility of the
possible outcomes. Therefore, our results is more objective in
some situations.

From the control point of view, in order to obtain
the synchronization between the drive system (1) and the
controlled response system (5), we design (¢, W), k € Nas
the impulsive controller [32]. Let W), = bI in Theorem 7, the
following corollary holds.

Corollary 9. Assume that assumption (H1) holds. If there exist
three n x n symmetric and positive definite matrices P, Q}, Q,,
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FIGURE 1: Time response of state variables and the phase plots of the drive system and response system in Example 12 without impulsive

control.

seven constants =2 < b < 0 (b# - 1), 0,,0,,05,0, > 0,0 <
05,0, < 2 such that the following inequalities hold:

I'<o,
2In|1+b
sup {tk — tk*l} < —L, ke N,
Os
where
Q) PB PC 0 0 0
* -0, 0 0 0 0
r=|* * -0,I1 0 0 0
* * * Q,-0:P 0 0
* % * * 0;P - Q, 0
* * * * * Q, - 6,P

(33)

Q= —ATP—PA+LL1LT+&
20, — 62 (1+b)?
26,
-0, - L,,
< 2-0,°
0 r 20
Q,=—2_L L' - 21,
2= 50,2 1T 2, (34)

then the systems (1) and (5) are asymptotically synchronized.

In particular, when I; = I/ < 0 in (H1), the following
corollary holds.

Corollary 10. Consider system (6) satisfying assumption (H1)

with I =

—I7 < 0. If there exist three n X n symmet-

ric and positive definite matrices P,Q;,Q,, seven constants
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FIGURE 2: Time response of state variables, the synchronization errors, and the phase plots of the drive system and response system in
Example 12 under the impulsive controller (0.06k, —1.31).

2<b<0(b# -1),0,0,050 > 0,0 < 05,0, < 2 such Q' = aATp_par Ao 20
that the following inequalities hold: ! (1+b)* 2 2-6, " (36)
36
r<o, 20
Qy=-—"21,,
2In|1 + b (35) 2-6,
sup {ty —tp} < ——F+—, keN,
Os
Witere then the systems (1) and (5) are asymptotically synchronized.
Q! PB PC 0 0 0
* -0, 0 0 0 0 Remark 11. The sufficient conditions in Theorem 7 and
r=|* * -0,1 0 0 0 Corollaries 9 and 10 are all independent of the delay parame-
I * Q) - 0P 0 0 ’ ter but rely on the maximum impulsive interval sup{t, —t,_;}
* % * * 0P - Q, 0 and the impulsive matrix W, which plays a fundamental role
* % * * * Q, - 6,P when the size of the delay is unknown.
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FIGURE 3: Chaotic attractor of Ikeda-type neural network in Example 14 and the synchronization error of the drive system and response

system in Example 14.

TaBLE 1: When the impulsive matrix W, is given, sup, {t, — t,_,}, k € N corresponding to different (65, ,) and algorithms.

(W, Algorithms) 05, 6,)

(0.1,0.1) (0.3,0.3) (0.5,0.5) (0.7,0.7) (0.9,0.9)
(W, = -1.11, (31)) 0.0202 0.0288 0.0305 0.0356 0.0369
(W, = -1.11, (32)) 2.8349¢ — 4 1.0980e — 4 5.3202e - 4 7.2925e — 4 8.9236e — 4
(W, = -1.31, (31)) 0.0310 0.0401 0.0490 0.0718 0.0701
(W, = -1.31, (32)) 0.0025 0.0163 0.0200 0.0259 0.0259
(W, = -1.51, (31)) 0.0175 0.0266 0.0335 0.0483 0.0516
(W, = -1.51,(32)) 0.0058 0.0094 0.0122 0.0023 0.0022
(W, = -1.71, (31)) 0.0088 0.0168 0.0213 0.0245 0.0261
(W, = -1.71, (32)) 0.0027 0.0020 9.4549¢ — 04 0.0056 0.0059
(W, = -1.91, (31)) 0.0029 0.0057 0.0074 0.0093 0.0089
(W, = -1.91, (32)) 2.7931e - 04 0.0011 0.0015 0.0019 0.0016

4. Numerical Results

In order to illustrate the feasibility of our above-established
criteria in the preceding sections, we provide two concrete
examples. Throughout the simulations, we use the IMEX
implicit Euler method.

Example 12. Consider a two-dimensional chaotic delayed
neural networks as the drive system (1), where the initial con-

dition ¢(s) = (0.6, 0.4)T, s € [-1,0], f(x) = tanh(x), 7(t) =
1, J = (0,005 then L, = (1,1)", L, = (0,0)7, and the
parameter matrices A, B, C are given as follows:

10 2.0 -0.1
A‘(o 1>’ B‘(—s.o 3 )
-1.5 -0.1
€= <—0.2 —2.5)'
The corresponding response system is designed as (5), where
the initial condition ¢(s) = (1, DT, s € [~1,0]. From [33], we

(37)

know that the system (1) of Example 12 has a chaotic attractor
which can be seen from Figure 1. Figures 1(a)-1(d) show the
time response of state variables and the phase plots of the
drive system and response system in Example 12 without
impulsive control.

By choosing 0; = 0, = 0.7, b = —1.3 and then using
MATLAB LMI toolbox and (31), we can obtain the following
feasible solutions to LMIs and 05, 6, in Corollary 9:

p_ (00339 0.0022 Q.  0:0255 —0.0004
~10.0022 0.0111)° 171 -0.0004 0.0266 )
Q, = (06427 00023
27\-0.0023 0.6488 )
6, = 02070, 6, =00175 6, = 1.3526,
6 = 33.5145.

(38)

Thus, from Corollary 9 we can calculate that the maxi-
mum impulsive interval satisfies sup{t; —t;_,} < 0.0718.
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With the same initial conditions as given above and t; —
tr_; = 0.06, Figures 2(a)-2(d) depict the time response of
state variables, the synchronization errors, and the phase
plots of the drive system and response system in Example 12
under the impulsive controller (0.06k, —1.31).

Remark 13. In Table 1, we list sup, {t, —t;_,} corresponding to
different (0;,0,) and algorithms when the impulsive matrix
W, is given. For each (0;,0,), the (04, sup,{t, — t;_;}) is
obtained by solving the LMIs in Corollary 9 and (31) or (32).
From the results in Table1, we can see that the obtained
maximum stable impulsive interval sup, {t, — t;_;} by using
(31) is better than (32) when the impulsive matrix W is given.
And when 05, 0, are chosen in interval [1, 2), we will have the
same results which are chosen as 2 — 65,2 — 0,.

Example 14. Consider the Ikeda-type neural network [34] as
the drive system (1); when A = 1.0,B = 0,C = 4.0, f(x) =
sin(x), T(t) = 2, the system (1) exhibits chaotic behavior (see
Figure 3(a)). And the initial condition ¢(s) = 0.5, s € [-7,0].
It is easy to obtain that L, =0, L, = —1.

The corresponding response system is designed as (5),
where the initial condition ¢(s) = 1, s € [-7,0].

By choosing 0, = 0, = 0.5, b = —0.8 and then using
MATLAB LMI toolbox and (31), we can obtain the following
feasible solutions to LMIs and s, 6, in Corollary 10:

P =0.0068,

Q, = 00161, Q,=0.8861,

6, =0.2283, 6, =0.0083, 6 =2.3538, 6, =129.6849.

(39)
Hence, the designed impulsive controller is
sup {t, — tj_q} < 0.0248. (40)

With the same initial conditions as given above, the simula-
tions of the synchronization error in Example 14 under the
impulsive controller (0.02k, —0.8) are shown in Figure 3(b).

5. Conclusion

In this paper, the impulsive synchronization problem of
chaotic delayed neural networks has been investigated. Some
new criterions which ensure that the coupled chaotic delayed
neural networks can be asymptotically synchronized have
been derived in terms of linear matrix inequalities (LMIs) by
using Lyapunov stability theorem, impulsive control theory,
and linear matrix inequality (LMI) technique. The desired
impulsive controller which is with respect to the stable
impulsive interval and the impulsive matrix is established, its
existence can be verified effectively by the simulations. It is
worthwhile to mention that the positive constants set (05,0,)
can increase the flexibility for the design of the impulsive
controller. Moreover, the stable impulsive interval can be
calculated combining MATLAB LMI toolbox and one of the
two given equations objectively.

Finally, two illustrative examples are given to show the
applicability and usefulness of the proposed results.
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