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The prime orbit theorem and Mertens’ theorem are proved for a shift dynamical system of infinite type called the Dyck shift.
Different and more direct methods are used in the proof without any complicated theoretical discussion.

1. Introduction and Preliminaries

In number theory, recall that, for functions f,g : R — R,
one says f = O (g) means that f(x) is bounded with respect
to g(x) for all sufficiently large x. That is, there exist constants
c and x; such that

|f )l < elg )],
and f (x) is asymptotic to g(x), denoted by f ~ g, if

Vx > x, (1)

limw—l

x—’OOg(x) -

2)

The prime-counting function that gives the number of primes
less than or equal to x, for any real number x, is denoted by
7 (x). The prime number theorem (PNT) is the statement

X

log (x)

7T (x) ~

(3)

However, the asymptotic formula for primes p,

H(l—%>~ lzgyx, (4)

psx

where y = 0.5772... is Euler’s constant and x € R, is
known as Mertens” theorem of analytic number theory. The
logarithmic equivalent of Mertens’ theorem is

1 1
ZEZIOgIng+BI+O<logx>’ (5)

psx

and Mertens’ constant B; = 0.2614972128.....

Let X be a nonempty set and T : X — X a map.
The pair (X,T) is said to be a dynamical system. In tech-
niques, a dynamical system is an abstract mathematical
model describing the time dependence of point’s position
in its space. This is conventionally modeled by the map T
whose iterates denote the passage of time. Many dynamical
questions involve counting the number of closed orbits or the
periodic points under iteration of a map. A closed (periodic)
orbit 7 of length |7| = n for a continuous map T': X — X is
a set of the form {x, Tx, T’x, ..., T""lx} c X where T"x = x
for some x € Xandn > 1.

LetT: X — X beamap, and define

Zrm = {x e X {T* (0 o =},
Frn)={xeX:T"(x) =x},

Or (n) = {7 : 7 is a closed orbit of T of lengh |z| = n},
(6)

which are the set of points of least period n under T, the set
of points of period n under T, and the set of closed orbits
of length »n under T, respectively. It is well known that the
Mobius function, u(n) of n =1,2,3,...,1s

1 itn=1;
p(n) = (-1)* ifnisa product of k distinct primes;
0 otherwise.

7)

Indeed, |;4 (n)| < 1 for any natural number n. Moreover,
the sum over all positive divisors of n of the M6bius function
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is zero except when n = 1. The Mdobius Inversion Formula
[1] is defined as follows. If f,g : N — C are two arithmetic
functions satisfying

g =2 f(d), vn, ®)
din
then
fo=Yu(5)e@, wn ©)
dln d
Let
Ly (n) = |Zr ()], Fr(n) = |F 1 ()|,
(10)
Or (n) = |07 (n)].
It follows that
Oy (m) = 12,
n
(11)
Fr(n) =) Ly (d).
dln
Consequently
Fr(n) = ) dOr (d), 12)
dln
and, hence, by Mébius Inversion Formula,
1 n
Oy () = 1-%,4 (E) Fr(d). 13)

Following the analogy between closed orbits and prime
numbers, the asymptotic behavior of expressions like

mp (N) = {7 : |7] < N} (14)

may be viewed as a dynamical analogue of the prime number
theorem and a dynamical analogue of Mertens theorem
concerns asymptotic estimates for expressions like

O
o, (15)

M (N) = Z

n<N €

where h denotes the topological entropy of the map T

Parry in [2] initiated a line of research which uses ideas
and techniques of analytic number theory to attack problems
of this nature. When X has a metric structure with respect
to which T is hyperbolic or shift of finite type (which will
be given in detail in the subsequent section), results of Parry
and Pollicott [3] and Noorani [4] have shown similar analogy
between the number of closed orbits and the prime number
theorem. It has been shown that

eh(N+1)

”T(N)”‘m-

(16)
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Sharp in [5] also obtained an analogy between the number
of closed orbits and Mertens’ theorem for hyperbolic maps as
follows

My (N) ~logN +C,, 17)

for some constant C,.

Several orbit-counting results on the asymptotic behavior
of both (14) and (15) for other maps like quasihyperbolic toral
automorphism (ergodic but not hyperbolic) can be found, for
example, in [6-9].

In this paper, analogies between the number of closed
orbits of a shift of infinite type called the Dyck shift and both
(3) and (4) have been obtained. This paper is organized as fol-
lows. In the first section some introduction and preliminaries
are given. In the second section the Dyck shift is introduced.
The prime orbit theorem and Mertens’ theorem are proved in
Section 3.

2. The Dyck Shift

Let o/ be a finite alphabet. On @/“ there acts the shift that
sends the point (x;),., € A% into the point (x;,,);cy €
o*. The dynamical systems that are given by the closed shift
invariant subsets of o/%, with the restriction of the shift acting
on them, are called subshifts. These are studied in symbolic
dynamics. An element of &/ will be known as a word, or
a block of length n. A word of length 0 is called an empty
word and denoted by . The set of all finite words with letters
taken from & is the set &/ = (Ji, &". A word is called
admissible for the subshift X ¢ o/ if it appears somewhere
in a point of X. Let X ¢ &/* and let %, (X) denote the set
of all admissible words of length # in X. Then the language
of X is the collection & (X) = ;2 %, (X). The topological
entropy of a subshift X ¢ &% is given by

h(X) = lim *log|®, (X)|. (18)
n—>00n

Subshifts can be also defined using the notion of for-
bidden sets. Let & be a collection of words over &/, that is,
F C d*, which is called the forbidden set. For any such &,
define X to be the subset of sequences in &/ which do not
contain any word in . Then, the subshift is a subset X of
a full shift /% such that X = Xg for some collection & of
forbidden blocks over &. If furthermore & is finite, then we
call X a subshift of finite type. The golden mean shift which
is defined as the shift system over the alphabet &/ = {0, 1}
having a forbidden set & = {11} is a subshift of finite type.

The subshift comprises a lot of SFTs (shifts of finite type)
in the shift space, which is said to have property A. A class of
nonsofic systems, known as the Dyck systems, first suggested
by Krieger [10] and named after an early contributor to the
study of free groups and formal languages, codifies the rules
of matching parentheses, which is one of these shift spaces.
The Dyck shift D, which comes from language theory is
defined to be the shift system over an alphabet ¢ that consists
of N negative symbols and N positive symbols. For an x
in the full shift o/%, x is in D, if and only if every finite
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block appearing in x has a nonzero reduced form. Therefore,
the constraint for x cannot be bounded. A beautiful way to
describe the Dyck shift is in terms of its syntactic monoid.

Let o = {€,6,....,8y1,75, ..., 1y} The alphabet
consists of M pairs of matching left and right delimiters or
symbols. Let .# be a monoid (with zero) with generators ¢;, r;,
1 <i < M, and 1. The relations on the monoid are

Gor;=1 ifi=j, 1<i, j<M,
Gor;=0 ifi#j, 1<i, j<M,
aol=loa=a, aecdU{l}, (19)
xo0=00a=0, «aedU{l},

020=0.

We use a mapping red(): o/ — . such that, for

w=ww,w, €A (nx=1),
(20)
red (w) red (e) = 1.

=W owyo-ow,
Definition 1. The Dyck shift D,, [10] is defined by

Dy = {x e 7 :if i < j, then red (x[i,j)) # 0} , (21

where x[; ) = X;x;,q X

When M = 1, D, is the full shift on two symbols; we will
tacitly assume that M > 2. The topological entropy of the
Dyck shift D, is already computed as log (M + 1) in [10].

Theorem 2 (see [11]). The number of points in the Dyck shift
D1 having period n is given by

. n/2 n )
2{(M+1) —;(i)M}
+<Z>M”/2
2

(D2 N\
2{(M+1)"— ()M’} if nis odd.
| i

i=0

F(n) = 1 if nis even;

(22)

3. Counting Closed Orbits

In this section, we prove two theorems that involve the
counting of orbits for the Dyck shift, where the first one
is the prime orbit theorem and the second one is Mertens’
orbit theorem. However, in order to prove these theorems, we
firstly prove the following lemma which plays an important
role in proving our main results.

Lemma 3. There exist constants 0 < ¢; < 1 and ¢, > 1 such
that the following inequality holds for alln > 1:

qM+1)"<F(n)<e(M+1)". (23)

Proof. Assume that # is even. The case where n is odd can be
proved analogously.

Note first that
n/2 " ) n
Z(.)M'<(M+1)", n M < (M+1)". (24)
o\t 2
Therefore, we obtain
n/2 i n n/2
M (L) M

F(n)=2M+1)" 1 Zizo () +(’2) .

(M + l) (M + 1) (25)

<3(M+1)", Vn>1l.

Also

n/2
F(n) = (M +1)" —Z<’;>M" + (2)1\4”/2
0 2 (26)

T (M
M+1D)" |

:(M+1)"[1—

Estimating the term [1 - Z"/ 2 "YM'[ (M +1)" ] using the
binomial theorem we obtain

Zn/Z )Mz
(M +1)"
B YU (M
Zn/z 1( )Ml (n/Z)]VIn/2 + Z:L:n/2+1 (?)Ml (27)
X (1) M’
LT OOM B, (M
‘We set
n/2—1 n/2—1 12-i1
w3 (=S (2 e
(28)

v]
I

n/2—1 y
. n2+i+1.
n: Z ( )M Z < +z+1> ’
i=n+1

using the definition of the binomial coeflicient it is easy to
prove that

n n n
g—i—l - g+i+1 forany0£1£§—1, (29)

and also
M AP (MYY) forany 0<i < g ~ 1 (30)
utilizing (29) and (30) we obtain

B,>M"(A,). (31)



Applying inequality (31) to (27), we get

Sl (OM A,
(M +1)" A, +B,

A 1
A, +M2(A,) 1+M? )

hence, inequality (26) implies that

2

1
1+M2>_ 1+ M

F(n)z(M+1)"<l— (M +1)". (33)
Thus, if we take ¢, = M?/ (1 + Mz) and ¢, = 3, then we are
done. O

Theorem 4 (prime orbit theorem). Let T : D,, — D, be
the Dyck shift on a set of M pairs and T a closed orbit for T. Let
71(N) be the number of closed orbits of T not exceeding N and
F(n) the number of points having period n under T as given by
Theorem 2. Then

F(N)

N (34)

n(N) ~

Proof. Using Lemma 3, we get

ZF(”)S“’ZZ M+1)"

n<N n<N

:cZ(M+1)N<Z (M+1)"‘N>

n<N

- N 35
ety ey MY 9

=Q(M+1)

o M+ DN

cq-M

Similarly,
YFmzc ) (M+1)

n<N n<N

=¢q M+1)Y ( ZN(M + 1)”N> (36)

> ﬂ(z (M+1)"‘N>P(N);

) n<N

by combining (35) and (36), we obtain

0 < q(M+1) < lim ZnsNF(”) < oM+1) <
oM N—oo F(N) oM

(37)

Thus, by Mobius Inversion Formula we have

r =Y Su(5)F@
ns<N dln
1 1 (38)
n
-yl y(—)F(d)+ LEm).
n;v”dm,zdm d n;\Tn
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Subtracting the dominant terms, we obtain

(N) - Z%F(n) <

n<N

7Ly (e

n<N " "d|n,d<n

1

< Y= > F@) (39)

nSNndln,d<n

<> Y F@);

n<N d|n,d<n

sinced | n,d < n,thend < |n/2], so

equation (39) < Z Z F(d)

n<N d<|n/2]

_ZF< ) (40)

o)

To estimate the dominant terms, let K(N) = [N 1 4J. Then

Z lF (n) — Z lF (n)| < F(n)
n<N N-K(N)<n<N n<N—-K(N)
—O(F(N-K(N))).
(41)
Finally

Y lrm

N-K(N)<n<N™

CEW) [ <F(N—r) N )
N F(N) N-r

6«

0

(=]

=l

z

_EM) [ <F<N—r)

F(N)

r=0

=

_F) [ <F(N—r) F(N—r)(i)
N | &\ F F(N)
F(N=1) [ r\? _
S (N) +>]
in fact
F(N-r)

O <1, Y0<r<K(N); (43)
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then

equation (42) <

F(N) K({N)

IN
i
"
g
—
Z|~
~—

| =0 r=0 j=1
(44)

Z]'fl (r/N )j is a geometric series with (r/N) as a first term;
then we have

2o (25)]

r=0
_F(N) &
N [(1<(1\1)+1)+o(r20N

(45)

_[Eowmxmm+y S Ea)EL
B N N2

(F(N)) (K(N) +1) F(N)
B N +O<N3/2 )

since K(N) = [N1/4J.
Therefore, it can be seen that from (40), (41), and (45)

- 3021 (1 (2)

n<N
y B0 EO) o rv -k (v,
neN 1 N-K(N)<n<N
F(n) ((F(N))(K(N)+1) F(N)
N—K(g):SnsN no ( N ) : k3< N2 )
(46)
Thus
7(N) - ((F(N)) (IIfI(N) + 1))

sk1<F<IZ>)+k (F (N - K(N)))+k< (3/2)>

N
:’”(N)'((F(N»(K(N)H))‘

k( (N) (F (N/2)) )
“(F(N)) (K(N) +1)

. <(N) (F (N - K(N)))>
2\ (F(N) (K (N) +1)

Lk ( (N) (F (N)) )
SU(N2) (F(N) (K (N)+1) )’
(47)

since K (N) = [N"*| = K (N) < N'/*, then

N
(N ((F (N) (N + 1)) )

k( (N) (F (N/2) )
- (F(N)) (NV*+1)

(48)

NIECE)

(F(N)) (N4 +1)

ok ( (N) (F(N)) )
P\ (N2) (F(N) (N +1) )

Using Lemma 3, we obtain

N (F (N/2))
F(N)(NYV*+1) ~

N (M + )N
¢ M+ 1N

) N3/4-r2 . N
=——x5 —0 aN—oo
¢ -(M+1)

N(F(N-N'"))
F(N)(NY*+1)

< N
¢ M+ 1N

as N — oo.
(49)

Thus, letting N — oo implies that

K ( (N) (F (N/2)) )+k (N) (F(N - N'*))
(F(N)) (NY*+1) 2\ " FV) (NV4+1)

< (N) (F (N)) ) o
(N*P2) (F(N)) (NV* + 1) '

(50)
So
N
H(N)'((F(N))(N1/4+1))_1—)O. (51)
Therefore
/
)~ (F(N)) (N"* + 1)’ (52)
N
which is equivalent to
()~ SO0, (53)
as required. O



Theorem 5 (Mertens orbit theorem). Let T : D,;, — Dy,
be the Dyck shift on a set of M pairs and F (n) the number of
points having period n under T that is given in Theorem 2. Then

My (N)

__-hN (54)
_ O(F(N) [ lehe_ . —log(l - lh) +(N‘1)D,

e

where h = log (M + 1).

Proof. The dynamical Mertens theorem asserts that

AR

n<N

=3 u()F@ )

n<N dln

1 n F (n)
=2 o X M(3>F(d)+ 2, nehn

hn
n<N ne d|n,d<n n<N

Firstly we want to estimate the term

) M(S)F(d). (56)

n<N ne dln,d<n

Note that
n
lum)] <1, dlng (d) < nF <5> Vn e N. (57)
Hence

N

S 3 u()r@

n=1 ne dln,d<n

N N
1 n F(n/2)
|y e (5)|=
NV E(N/2)
- = ehn

(58)

therefore
Il

Y ¥ u(Z)F@ =O<F(N);:ew)>-

n=11€ dnd<n
(59)
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Now for

F(n)
Y (60)

n<N ne

in order to estimate this partial sum, the following lemma is
extremely needed.

Lemma 6. If w is a complex number of modulus one and is not
a root of unity, then

Z%:—log(l—w)+O(N_1). (61)

n<N

Since h > 0, then 1/e" # 1; therefore we can apply the
above lemma. Hence
F(n) F(N)
Z hn = Z hn

n<N ne n<N ne

(62)
- F(N) [—1og<1—elh>+o(N“)].
It follows that
M1 (N)
1-e "N 1 _
:O(F(N)[ ehe—l —log(l—e—h)+O(N I)D
(63)

In fact, from the properties of asymptotic estimates, we have

0(0(f))=0(f ). (64)

Therefore, we conclude that

_ _-hN (65)
:O(F(N)[lhe_l —1og(1—ih)+(N‘1)]).

e

O
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