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In [1, Definition1.9], the concept “s-geometrically convex
function” was introduced.

Making use of [1, Lemma 2.1], Holder’s integral inequality,
and other analytic techniques, some inequalities of Hermite-
Hadamard type were established. However, there are some
vital errors appeared in main results of the paper [1].

The aim of this paper is to correct these errors and we now
start off to correct them.

Correction to Theorem 3.1. Let f : I ¢ R, — Rbea
differentiable function on I° such that f’ € L([a,b]) for
0<a<bc<ool If'(x)lq is s-geometrically convex and
monotonically decreasing on [a,b] for g > 1 and s € (0,1],
then
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Proof. Since |f'|7 is s-geometrically convex and monoton- When | f'(b)| < 1 < |f'(a)l, by (7), we obtain
ically decreasing on [a,b], using Lemma 2.1 and Holder’s
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6) Since | f'|? is s-geometrically convex and monotonically
decreasing on [a, b], by Lemma 2.1 and Hélder’s inequality,
we obtain
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When |f'(a)| < 1, we have
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When [f'(b)| < 1 < |f'(a)l, by (7), we obtain
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Substituting (15) to (20) into (14) leads to inequality (2).
Theorem 3.1 is thus proved. O

Correction to Corollary 3.2 . Under the conditions of Theorem
31,
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Proof. Since |f'|7 is s-geometrically convex and monoton-
ically decreasing on [a,b], by Lemma 2.1 and Holder’s

inequality, we have
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When |f'(b)] < 1 < [f'(a)l, by (7), we obtain
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When 1 < |f'(b)], by (7), we have
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Substituting (28) to (33) into (26) and (27) results in inequal-
ities (23) and (24). Theorem 3.3 is thus proved. O

Correction to Corollary 3.4 . Under the conditions of Theorem
3.3, when s = 1, we have

b-af q-1 1-1/q .
< 2 (2(1—_1> G, (1, g9 (@),
b b
f(a);f( )_biaj F(x)dx
b-afq-1 1-l/q o)
< ) <2q—_1> Gz(l’q593(“))-

Correction to Theorem 4.1. Let0 <a<b <1,0 < s < 1,and
q > 1. Then
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for a#b and p € R with p+#0,—-1 are the arithmetic,
logarithmic, and generalized logarithmic means, respectively.
If g = 1, then
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Proof. Let0 < s < 1,q > 1,and f(x) = x*/s for x € (0,1].

Then the function | f '(x)|1 is s-geometrically convex on (0, 1]
for0<s<1,
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By Theorem 3.1, Theorem 4.1 isthus proved. O

Correction to Theorem 4.2.Let0 <a<b <1,0< s < 1,and
q > 1. Then
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1 _ .
9:(®)= Qbs(l—s)q/ZL(aS(l WP )

Hence, by Theorem 3.3, Theorem 4.2 is thus proved. [

Remark. By the way, all the powers 1 — (3/q) which appeared
four times in [2, Theorem 4.2 and Corollary 4.2] should be
corrected as 3(1 — (1/q)), respectively.
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