
Research Article
A Comparison of Selected Modifications of
the Particle Swarm Optimization Algorithm

Michala Jakubcová, Petr Máca, and Pavel Pech

Department of Water Resources and Environmental Modeling, Faculty of Environmental Sciences,
Czech University of Life Sciences Prague, Kamýcká 1176, Prague 6, 165 21 Suchdol, Czech Republic

Correspondence should be addressed to Michala Jakubcová; jakubcovam@fzp.czu.cz

Received 10 October 2013; Accepted 24 March 2014; Published 15 June 2014

Academic Editor: Nan-Jing Huang

Copyright © 2014 Michala Jakubcová et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We compare 27 modifications of the original particle swarm optimization (PSO) algorithm.The analysis evaluated nine basic PSO
types, which differ according to the swarm evolution as controlled by various inertia weights and constriction factor. Each of the
basic PSOmodifications was analyzed using three different distributed strategies. In the first strategy, the entire swarmpopulation is
considered as one unit (OC-PSO), the second strategy periodically partitions the population into equally large complexes according
to the particle’s functional value (SCE-PSO), and the final strategy periodically splits the swarm population into complexes using
random permutation (SCERand-PSO). All variants are tested using 11 benchmark functions that were prepared for the special
session on real-parameter optimization of CEC 2005. It was found that the best modification of the PSO algorithm is a variant with
adaptive inertia weight. The best distribution strategy is SCE-PSO, which gives better results than do OC-PSO and SCERand-PSO
for seven functions. The sphere function showed no significant difference between SCE-PSO and SCERand-PSO. It follows that a
shuffling mechanism improves the optimization process.

1. Introduction

Particle swarm optimization (PSO) is a stochastic, meta-
heuristic computational technique for searching the optimal
regions from multidimensional space. It is an optimization
method inspired by social behaviour of organisms and
was established by Kennedy and Eberhart in 1995 [1]. The
technique is based on iterative workwith a population. PSO is
an evolutionary computation (EC) method within the group
of techniques known as swarm intelligence (SI) [2, 3]. PSO
mimics the movement of flock of birds or school of fish
using simple rules for adjusting the particle location, which
is adjusted by means of its velocity information.

PSO’s main benefits are that there are few parameters
to adjust and the method is easy to implement. Another
advantage of PSO over derivative based local search methods
is that there is no need for the gradient information during
the iterative search when solving complicated optimization
problems [4–6].

While it has been successfully applied to solve many
tests and real-life optimization problems [7–9], the PSO
method often suffers from premature convergence and, as a
result, from the optimization process’s finding a merely local
optimum. In order to achieve better algorithm performance,
the original PSO algorithm has been modified by adding the
parameter inertia weight or constriction factor [10–13].

Another important strategy for improving EC algo-
rithms relies on division of the original population into
subswarms or complexes which simultaneously search across
the parametric space and exchange information according to
some prescribed rule. Periodic shuffling is a typical example
[9, 14, 15].

In order to explore the interaction of modifications
in particle velocities together with the different types of
distributedPSOversions, this paper analyzes 27 different PSO
variants. Nine modifications of the PSO algorithm, in which
the original particle velocities are altered using different
approaches for setting the inertia weights and constriction

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 293087, 10 pages
http://dx.doi.org/10.1155/2014/293087

http://dx.doi.org/10.1155/2014/293087

2 Journal of Applied Mathematics

factor [13], are combined with three strategies for swarm
distribution. The population is either considered as one unit
(OC-PSO) or the swarm is divided into several complexes
either according to the functional value (SCE-PSO) [14] or
randomly (SCERand-PSO).

The remainder of this paper is organized as follows.
Section 2 describes the particle swarm optimization method.
The original equations and modifications of PSO algorithm
are included. Section 3 describes different strategies for
distribution of PSO. The experiment and obtained results
are compared in Section 4. Conclusions are discussed in
Section 5.

2. Particle Swarm Optimization

Particle swarm optimization is a global optimization method
applied to find the optimal solutionXopt of objective function
𝑓. The sought optimum is most generally a minimum value.
There exists a population of particles 𝑖 = 1, . . . , 𝑆, where 𝑆 is
the total number of individuals. All particles search through
the problem space of dimension 𝑑 = 1, . . . ,Dim, where
Dim is the total number of dimensions. Each particle stores
information about its position and velocity. The vector of the
𝑖th particle’s position is X

𝑖
= (x𝑖
1
, x𝑖
2
, . . . , x𝑖Dim) and the vector

of the 𝑖th particle’s velocity is V
𝑖
= (k𝑖
1
, k𝑖
2
, . . . , k𝑖Dim). Each

particle maintains a memory of its previous best position
which is represented as P

𝑖
= (p𝑖
1
, p𝑖
2
, . . . , p𝑖Dim). The best

position among all particles from the swarm is represented
as G = (g

1
, g
1
, . . . , gDim). Equations (1) and (2) are the

original PSO equations for computing a new velocity and new
position. Consider

v𝑖
𝑑
(𝑡 + 1) = v𝑖

𝑑
(𝑡) + 𝑐1 ⋅ 𝑟1 ⋅ (p

𝑖

𝑑
(𝑡) − x𝑖

𝑑
(𝑡))

+ 𝑐
2
⋅ 𝑟
2
⋅ (g
𝑑 (𝑡) − x𝑖

𝑑
(𝑡)) ,

(1)

x𝑖
𝑑
(𝑡 + 1) = x𝑖

𝑑
(𝑡) + v𝑖

𝑑
(𝑡 + 1) (2)

for all 𝑖 ∈ 1 . . . 𝑆, 𝑑 ∈ 1 . . .Dim, where 𝑡 is a time step, 𝑐
1
and 𝑐
2

are acceleration constants predefined by the user, and 𝑟
1
and

𝑟
2
are random numbers uniformly distributed in [0, 1]. The

component with P
𝑖
in (1) is known as the cognition part and

it tells us about the individual experience of the particle. The
component with G is called the social part and it represents
the cooperation among particles within the swarm [16].

The simplified original PSO algorithm is shown in
Algorithm 1. Initialization of a particle’s position is randomly
distributed in the range of [𝑥min, 𝑥max] as shown in

X = 𝑥min + (𝑥max − 𝑥min) ⋅ rand () , (3)

where rand() is a random number uniformly distributed
in [0, 1], while 𝑥min and 𝑥max are boundaries of the search
space and their values depend on the benchmark function
[17]. In this paper, initialization of particles is through Latin
hypercube sampling (LHS).

A particle’s initial velocity could be randomly distributed
in the range of [−Vmax, Vmax] or, alternatively, the velocities
could be initialized to 0, since the starting positions are

(1) initialize the position and velocity of all particles
(2) repeat
(3) for each particle 𝑖 = 1 to 𝑆 do
(4) if (𝑓 (𝑋

𝑖
) < 𝑓 (𝑃

𝑖
)) then

(5) 𝑃
𝑖
= 𝑋
𝑖

(6) end if
(7) 𝐺 = min {𝑃

0
, 𝑃
1
, . . . , 𝑃

𝑆
}

(8) for each dimension 𝑑 = 1 to Dim do
(9) 𝑣𝑖

𝑑
= 𝑣𝑖
𝑑
+ 𝑐
1
⋅ 𝑟
1
⋅ (𝑝𝑖
𝑑
− 𝑥𝑖
𝑑
) + 𝑐
2
⋅ 𝑟
2
⋅ (𝑔
𝑑
− 𝑥𝑖
𝑑
)

(10) 𝑥𝑖
𝑑
= 𝑥𝑖
𝑑
+ 𝑣𝑖
𝑑

(11) end for
(12) end for
(13) until termination criteria is met

Algorithm 1: Original PSO algorithm.

Table 1: Summary of PSO modifications.

Label Equation
AdaptW 𝑤 = (𝑤max − 𝑤min) ⋅ 𝑃𝑠 + 𝑤min

ChaoticRandW 𝑤 (iter) = 0.5 ⋅ rand() + 0.5 ⋅ 𝑧

ChaoticW
𝑤 (iter) = (𝑤max − 𝑤min) ⋅

itermax − iter
itermax

+ 𝑤min ⋅ 𝑧

ConstantW 𝑤 = 𝑐

ConstrFactor 𝐾 =
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 − 𝜑 − √𝜑2 − 4 ⋅ 𝜑

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

LinTimeVaryingW
𝑤 (iter) =

itermax − iter
itermax

⋅ (𝑤max − 𝑤min)

+ 𝑤min

NonlinTimeConstW 𝑤 (iter) = 𝑤ini ⋅ 𝑢
iter

NonlinTimeW 𝑤 (iter) = (
2

iter
)
0.3

RandomW 𝑤 = 0.5 +
rand()
2

already randomized [18]. In initial experiments, the value of
Vmax was set to 100 000, and in subsequent experiments and
applications it was found that a better approach is to limit
Vmax to 𝑥max [19]. Other authors [20, 21] have set the value
of maximum velocity as Vmax = 𝑘 ⋅ 𝑥max, where 0.1 < 𝑘 < 1.
A larger value of Vmax facilitates global exploration, whereas
a smaller value of Vmax encourages local exploitation [22]. In
this paper, Vmax = 𝑥max was applied for initial particle velocity.

2.1. Modifications of the PSO Algorithm. The original PSO
equation was modified to improve the ability for optimiza-
tion. The first group of modifications consists in incorporat-
ing the parameter of inertia weight 𝑤 and the second in using
the parameter of constriction factor 𝐾. In the present study,
nine variants of PSOalgorithmwere used and tested (Table 1),
including eight modifications using 𝑤 and one modification
with 𝐾.

Journal of Applied Mathematics 3

The use of the inertia weight parameter (4) was developed
by Shi and Eberhart [11] and it has provided for improved
performance:

v𝑖
𝑑
= 𝑤 ⋅ v𝑖

𝑑
+ 𝑐
1
⋅ 𝑟
1
⋅ (p𝑖
𝑑
− x𝑖
𝑑
) + 𝑐
2
⋅ 𝑟
2
⋅ (g
𝑑
− x𝑖
𝑑
) . (4)

There are many methods of computing the inertia weight
value. Nickabadi et al. [13] divided those techniques into
three classes which are applied in this paper: (1) constant
and random inertia weight, (2) time varying inertia weight
strategies, and (3) adaptive inertia weight. They compared all
modifications employing benchmark functions and proposed
a PSO algorithm using adaptive inertia weight.

The constant (“ConstantW”) and random (“RandomW”)
inertia weights are used, where no input information is
required. Bansal et al. [23] discussed their work with Shi
and Eberhart [10] and set the constant inertia weight to be
equal to 0.7. Gimmler et al. [24] proposed using constant
inertia weight for hybrid particle swarm optimization. The
best constant𝑤was 0.2.We set the constant inertia weight for
the “ConstantW” modification to 0.7 for this study, because
our experiment is more similar to that of Bansal et al.
[23]. Eberhart and Shi [25] had proposed random inertia
weight, where𝑤 is a variablewith uniformdistributionwithin
[0.5, 1].

Time varying inertia weight is defined as a function of
time or number of iterations and this method may be linear
or nonlinear. In linear decreasing 𝑤 (“LinTimeVaryingW”)
developed by Shi and Eberhart [11], inertia weight decreases
linearly from 𝑤max = 0.9 to 𝑤min = 0.4. This method of
determining the inertia weight value is very common [26, 27].
Eberhart and Shi [19] compared linearly decreasing 𝑤 with
constriction factor and found that better performance was
achieved when constriction factor was used. The chaotic
model (“ChaoticW”) and chaotic random model (“Chaoti-
cRandW”) of inertia weight were proposed by Feng et al. [28],
where 𝑧 = 4 ⋅ 𝑧 ⋅ (1 − 𝑧) and the initial value of 𝑧 is uniformly
distributed in [0, 1]. Two modifications of nonlinear time
varying inertia weight are used. In the “NonlinTimeW”
and the “NonlinTimeConstW”, where parameter 𝑢 is set to
1.0002, 𝑤ini is the initial value for inertia weight uniformly
distributed in [0, 1] and iter is the actual number of functional
evaluations [13].

One modification of adaptive inertia weight proposed
by Nickabadi et al. [13] is used (“AdaptW”), because it had
demonstrated the best performance in the original paper.The
𝑤 value is adapted based on one feedback parameter. The
value 𝑆 shows the success of particles and is defined as in
(5) and 𝑃

𝑠
is the success percentage of the swarm and it is

computed as in (6), where 𝑛 is the size of the population.The
range of inertia weights [𝑤min, 𝑤max] is [0, 1]. Consider

𝑆 (𝑖, 𝑡) =
{
{
{

1 if fit (p𝑖
𝑑
(𝑡)) < fit (p𝑖

𝑑
(𝑡 − 1)) ,

0 if fit (p𝑖
𝑑
(𝑡)) = fit (p𝑖

𝑑
(𝑡 − 1)) ,

(5)

𝑃
𝑠 (𝑡) =

∑
𝑛

𝑖=1
𝑆 (𝑖, 𝑡)

𝑛
. (6)

Beyond variants using inertia weight, the next modifica-
tion of the original PSO algorithm consists in incorporating
the parameter of constriction factor ((7) and (8)). This strat-
egy was first used by Clerc [29] and it increases convergence
of the algorithm.We have named themethod “ConstrFactor.”
Another approach to constriction factor is that of Bui et al.
[12]. They proposed a time-dependent strategy, where they
used nonlinear decay rules to adapt 𝐾. Their results are
not better than those obtained when using the setting in
accordance with Clerc [29], and we therefore calculate the 𝐾
value using

v𝑖
𝑑
= 𝐾 ⋅ (v𝑖

𝑑
+ 𝑐
1
⋅ 𝑟
1
⋅ (p𝑖
𝑑
− x𝑖
𝑑
)

+𝑐
2
⋅ 𝑟
2
⋅ (g
𝑑
− x𝑖
𝑑
)) ,

(7)

𝐾 =
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 − 𝜑 − √𝜑2 − 4 ⋅ 𝜑

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (8)

where 𝜑 = 𝑐
1
+ 𝑐
2
and 𝜑 > 4.

3. Distribution of PSO

All ninemodifications are usedwith three strategies of swarm
distribution (SD). We observed changes in behaviour of
the population for each modification and strategy. The first
distributed strategy considered the whole population as one
unit and we called it OC-PSO. In the next SD, the population
was divided into several complexes according to the particle’s
functional value (SCE-PSO) or through randompermutation
(SCERand-PSO).

3.1. One Complex Strategy (OC-PSO). In the OC-PSO
method, the entire population is considered as a single unit.
All particles participate in the PSO algorithm and share
information about the best position achieved so far.

3.2. Shuffled Complex Evolution (SCE-PSO). During the
optimization process a premature convergence to a local
optimum could appear instead of the global optimum.
Many researchers in this field are devoted avoiding this
premature convergence [30–32]. To address this, Duan et al.
[14] proposed shuffled complex evolution (SCE). Yan et al.
[33] combined SCE with the particle swarm optimization
algorithm (SCE-PSO).

The SCE-PSO method is described simply below and
is shown in Algorithm 2. After the first initialization, the
entire population is divided into subswarms according to the
functional values of the individuals. All particles are sorted
in increasing order and then each 𝑖th complex receives the
parent individuals X

𝑖
,X
𝑖+𝑁𝐶

,X
𝑖+2𝑁𝐶

, . . ., where 𝑁𝐶 is the
number of complexes [14, 34]. The PSO algorithm is applied
at each complex. After running a predefined number of
iterations in all complexes, all particles return to the swarm
and the shuffling and redistribution of complexes according
to the functional value are again made. This is repeated until
the termination criteria are satisfied.

4 Journal of Applied Mathematics

Require 𝑆, NC, N comp, max eval, fitness lim
(1) initialize population𝑋
(2) while (number eval ≤max eval) || (fitness best ≥ fitness lim) do
(3) 𝐸 ← sorted𝑋 in increasing order according to the functional value
(4) for 𝑖 = 1 to NC do
(5) 𝐴

𝑖
← divided E into NC complexes

(6) run PSO
(7) for 𝑗 = 1 to N comp do
(8) if (𝑓 (𝑋

𝑗
) < 𝑓 (𝑃

𝑗
)) then

(9) 𝑃
𝑗
= 𝑋
𝑗

(10) end if
(11) if (𝑓 (𝑋

𝑗
) < 𝑓 (G)) then

(12) 𝐺 = 𝑋
𝑗

(13) end if
(14) end for
(15) end for
(16) end while

Algorithm 2: Algorithm SCE-PSO.

The shuffling mechanism preserves the population diver-
sity and helps to prevent premature convergence. For this
study, the shuffling was performed after the running of a
predefined number of generations in each complex [34].
Another approach allows the shuffling to occur randomly
with some associated probability [35].

In the original SCE-PSO method [33], only a predefined
number of particles from each complex are chosen to par-
ticipate in the PSO algorithm. In this paper, the number of
participating individuals is equal to the number of particles in
the complex. This means that all particles from the complex
are inputs to the PSO algorithm.

3.3. Random Shuffled Complex Evolution (SCERand-PSO).
Random shuffled complex evolution differs from SCE-PSO in
that the entire population is divided into complexes according
to random permutation. There is no sorting by functional
value. The algorithm for computing random permutation is
according to Durstenfeld [36].

Algorithm 2 is applied for the SCERand-PSO, except that
at line 3 the following substitution is made: E ← sorted X
according to random permutation.

4. Experiment and Results

4.1. Experimental Setup. After running several tests with
different parameter settings, the following setup was found
to be the best.

The position of individuals is initialized randomly
between lower and upper bounds of the search space through
Latin hypercube sampling (LHS). The range of the problem
space depends on the benchmark function (Table 2). LHS
is a type of stratified Monte Carlo sampling first described
by McKay et al. in 1979 for the analysis of output from a
computer code [37].The range, which is in PSO optimization
defined by lower and upper bounds of the search space, is
portioned into 𝑛 intervals of equal probability 1/𝑛.The 𝑛 value

is in PSO which is equal to the population size. LHS then
randomly selects one value from each interval [38]. Due to
this selection, particles are uniformly distributed in the search
space.

In accordance with Eberhart and Shi [19], the maximum
value of velocity is set to 𝑥max. The value of acceleration
constants 𝑐

1
and 𝑐
2
in variants with inertia weight is set to 2.

In modifications with constriction factor, the𝐾 value is set to
0.729 and 𝑐

1
= 𝑐
2
= 1.49445 [19].

In accordance with Eberhart and Shi [39], the population
size is set to 25. In the OC-PSO method, all particles
are solved together. In the SCE-PSO and SCERand-PSO
methods, individuals are uniformly divided into 6 complexes,
where each complex contains 25 particles. The number of
shuffling is set to 5. The maximum number of function
evaluations is 10 000 ⋅Dim and the dimension of the solution
is set to 30. For analyzing the results, the total number of
optimization runs is set to 25. Each run stops when the
maximum number of evaluations is achieved.

4.2. Benchmark Problems. For comparison purposes, 11
benchmark functions prepared for the special session on
real-parameter optimization of CEC 2005 [40] were used.
All functions have shifted global optima, and some of them
are rotated or with noise. The benchmark functions are
summarized in Table 2. The aim is to find the minimum of
all functions.

The optimization problem is constrained except for
function 𝑓

7
. Particles move only in restricted space and

cannot cross the boundaries. This means that each position
of particle 𝑖 is bounded by lower and upper limits [41]. In
the PSO algorithm, it is reflected such that the particles must
lie within the range [𝑥min, 𝑥max]. If a new particle position is
outside the boundaries, that particle retains the position of its
parent. In function𝑓

7
, the global optimum is situated outside

the range [40] and therefore the optimization problem is
unconstrained and particles can cross the boundaries.

Journal of Applied Mathematics 5

Table 2: Summary of benchmark functions.

Function Range 𝑓(Xopt)

Sphere 𝑓
1
(𝑥) =

𝑑

∑
𝑖=1

𝑧2
𝑖

[−100, 100]𝑑 −450

Schwefel 1.2 𝑓
2
(𝑥) =

𝑑

∑
𝑖=1

(
𝑖

∑
𝑗=1

𝑧
𝑗
)

2

[−100, 100]𝑑 −450

Elliptic rotated 𝑓
3
(𝑥) =

𝑑

∑
𝑖=1

((106)
(𝑖−1)/(𝑑−1)

𝑧2
𝑖
) [−100, 100]𝑑 −450

Schwefel 1.2 noise 𝑓
4
(𝑥) = (

𝑑

∑
𝑖=1

(
𝑖

∑
𝑗=1

𝑧
𝑗
)

2

) ⋅ (1 + 0.4 |𝑁 (0, 1)|) [−100, 100]𝑑 −450

Schwefel 2.6 𝑓
5
(𝑥) = max {󵄨󵄨󵄨󵄨𝐴 𝑖𝑥 − 𝐵𝑖

󵄨󵄨󵄨󵄨} [−100, 100]𝑑 −310

Rosenbrock 𝑓
6
(𝑥) =

𝑑−1

∑
𝑖=1

(100(𝑧2
𝑖
− 𝑧
𝑖+1
)
2

+ (𝑧
𝑖
− 1)
2

) [−100, 100]𝑑 390

Griewank rotated 𝑓
7
(𝑥) =

𝑑

∑
𝑖=1

𝑧2
𝑖

4000
−
𝑑

∏
𝑖=1

cos(
𝑧
𝑖

√𝑖
) + 1 [0, 600]𝑑 −180

Ackley rotated 𝑓
8
(𝑥) = −20 exp(−0.2√

1

𝑑

𝑑

∑
𝑖=1

𝑧2
𝑖
) − exp(1

𝑑

𝑑

∑
𝑖=1

cos (2𝜋𝑧
𝑖
)) + 20 + 𝑒 [−32, 32]𝑑 −140

Rastrigin 𝑓
9
(𝑥) =

𝑑

∑
𝑖=1

(𝑧2
𝑖
− 10 cos (2𝜋𝑧

𝑖
) + 10) [−5, 5]𝑑 −330

Rastrigin rotated 𝑓
10
(𝑥) =

𝑑

∑
𝑖=1

(𝑧2
𝑖
− 10 cos (2𝜋𝑧

𝑖
) + 10) [−5, 5]𝑑 −330

Weierstrass rotated 𝑓
11
(𝑥) =

𝑑

∑
𝑖=1

[
20

∑
𝑘=0

(0.5𝑘 cos (2𝜋3𝑘 (𝑧
𝑖
+ 0.5)))] − 𝑑

20

∑
𝑘=0

(0.5𝑘 cos (2𝜋3𝑘 ⋅ 0.5)) [−0.5, 0.5]𝑑 90

Table 3: Statistical indices of the best solutions of 11 benchmark functions.

Function Modification SDa min 25% median 75% max mean std

𝑓
1

AdaptW 2 0.00E + 00 5.68E − 14 1.14E − 13 1.71E − 13 2.27E − 13 1.02E − 13 6.14E − 14
AdaptW 3 0.00E + 00 5.68E − 14 1.14E − 13 1.14E − 13 5.59E − 05 4.74E − 06 1.53E − 05

𝑓
2

AdaptW 2 5.68E − 14 2.27E − 13 3.98E − 13 6.82E − 13 1.53E − 12 5.16E − 13 4.33E − 13
𝑓
3

AdaptW 2 4.17E + 05 7.08E + 05 1.02E + 06 1.57E + 06 2.30E + 06 1.15E + 06 5.78E + 05
𝑓
4

NonlinTimeConstW 2 7.09E − 02 7.56E − 01 2.21E + 00 4.38E + 00 1.94E + 03 1.20E + 02 4.27E + 02
𝑓
5

NonlinTimeConstW 1 1.31E + 03 2.78E + 03 3.21E + 03 4.57E + 03 6.14E + 03 3.66E + 03 1.26E + 03
𝑓
6

AdaptW 2 1.71E − 03 3.83E + 00 4.06E + 00 7.47E + 00 1.80E + 01 5.76E + 00 4.87E + 00
𝑓
7

NonlinTimeConstW 2 2.84E − 14 9.86E − 03 1.23E − 02 2.22E − 02 6.87E − 02 1.70E − 02 1.73E − 02
𝑓
8

AdaptW 2 2.06E + 01 2.14E + 01 2.16E + 01 2.18E + 01 2.20E + 01 2.15E + 01 3.89E − 01
𝑓
9

ChaoticW 3 2.89E + 01 6.78E + 01 8.51E + 01 1.12E + 02 6.07E + 02 1.21E + 02 1.27E + 02

𝑓
10

ChaoticRandW 3 7.87E + 01 1.63E + 02 4.22E + 02 4.85E + 02 6.56E + 02 3.44E + 02 1.88E + 02
LinTimeVaryingW 3 8.38E + 01 2.03E + 02 4.02E + 02 4.81E + 02 5.71E + 02 3.54E + 02 1.54E + 02

𝑓
11

LinTimeVaryingW 2 2.66E + 01 3.12E + 01 3.25E + 01 3.52E + 01 4.78E + 01 3.38E + 01 4.97E + 00
aSD = swar distribution, where 1 is for OC-PSO, 2 is for SCE-PSO, and 3 is for SCERand-PSO.

There exist two versions of the PSO algorithm: global
and local. In the global variant, the neighborhood consists of
all particles of the swarm. In the local variant, each particle
is assigned to a neighborhood consisting of a predefined
number of particles [41, 42]. For the OC-PSO method, the
global variant is used. For the SCE-PSO and SCERand-PSO,
the local variant is used and particles share the information

about their best positions only with other particles from a
given complex.

4.3. Results and Discussion. The nonparametric Wilcoxon
test was used for statistical comparison. Inputs to those
calculations were the best fitness values achieved for all
modifications. The null hypothesis 𝐻

0
of the Wilcoxon test

6 Journal of Applied Mathematics

Table 4: Estimation of the best and poorest modifications.

𝑓
1

Best Poorest

OC-PSO

AdaptW,
ChaoticRandW,
ChaoticW,
NonlinTimeConstW

ConstantW

SCE-PSO AdaptW ConstantW

SCERand-PSO AdaptW,
NonlinTimeConstW ConstantW

𝑓
2

Best Poorest

OC-PSO AdaptW,
LinTimeVaryingW ConstrFactor

SCE-PSO AdaptW ConstrFactor
SCERand-PSO AdaptW ConstrFactor
𝑓
3

Best Poorest
OC-PSO LinTimeVaryingW ConstantW

SCE-PSO AdaptW,
NonlinTimeW ConstantW

SCERand-PSO AdaptW,
NonlinTimeW

ConstantW,
RandomW

𝑓
4

Best Poorest

OC-PSO ChaoticRandW,
LinTimeVaryingW ConstrFactor

SCE-PSO NonlinTimeConstW ConstrFactor
SCERand-PSO NonlinTimeConstW ConstrFactor
𝑓
5

Best Poorest

OC-PSO ChaoticRandW,
NonlinTimeConstW ConstantW

SCE-PSO
ChaoticRandW,
ChaoticW,
NonlinTimeConstW

ConstantW

SCERand-PSO

ChaoticRandW,
ChaoticW,
LinTimeVaryingW,
NonlinTimeConstW

ConstantW

𝑓
6

Best Poorest

OC-PSO ChaoticRandW,
NonlinTimeConstW ConstantW

SCE-PSO AdaptW ConstantW
SCERand-PSO AdaptW ConstantW
𝑓
7

Best Poorest

OC-PSO NonlinTimeConstW ConstantW,
RandomW

SCE-PSO NonlinTimeConstW ConstantW,
ConstrFactor

SCERand-PSO AdaptW,
NonlinTimeW

ConstantW,
ConstrFactor,
LinTimeVarying

𝑓
8

Best Poorest
OC-PSO AdaptW ConstrFactor
SCE-PSO AdaptW LinTimeVarying

SCERand-PSO AdaptW

ConstantW,
ConstrFactor,
LinTimeVaryingW,
NonlinTimeConstW

Table 4: Continued.

𝑓
9

Best Poorest

OC-PSO ChaoticW
ConstantW,
ConstrFactor,
RandomW

SCE-PSO ChaoticW ConstantW,
ConstrFactor

SCERand-PSO ChaoticW ConstantW
𝑓
10

Best Poorest
OC-PSO ChaoticRandW ConstantW
SCE-PSO ChaoticW ConstantW

SCERand-PSO
ChaoticRandW,
ChaoticW,
LinTimeVaryingW

ConstantW

𝑓
11

Best Poorest

OC-PSO

AdaptW,
LinTimevaryingW,
NonlinTimeConstW,
NonlinTimeW

ConstantW,
ConstrFactor

SCE-PSO LinTimevaryingW
ConstantW,
ConstrFactor,
RandomW

SCERand-PSO AdaptW
ConstantW,
ConstrFactor,
RandomW

is that the differences between algorithms have a median of
zero.The𝐻

0
is rejected if the𝑃 value is less than 0.05 [43, 44].

Algorithms were written in C++ and computations of𝑃 value
and graphs were made in the program R.

Table 3 reflects the best modification and distributed
strategy for each function. In the table, the minimum,
25% quartile, median, 75% quartile, maximum, mean, and
standard deviation are indicated. All 25-program runs of each
modification and strategy were compared in each numbered
evaluation. The values in Table 3 reflect the best fitness
achieved and report other statistical indices belonging to the
same numbered evaluation. As can be seen, strategy SCE-
PSO produced the best solution in seven functions. Strategy
SCERand-PSO produced the best solution in two functions
(𝑓
9
, 𝑓
10
) and in one function (𝑓

5
) the best solution was from

strategy OC-PSO. For function 𝑓
1
, there was no significant

difference between strategy SCE-PSO and SCERand-PSO.
Upon closer examination and as seen in Table 4,

“AdaptW” and “NonlinTimeConstW” are the best modifica-
tions for unimodal functions (𝑓

1
–𝑓
5
). The poorest variants

are “ConstantW” and “ConstrFactor.”Thebest PSOmodifica-
tion for multimodal functions (𝑓

6
–𝑓
11
) is “AdaptW” and the

poorest is “ConstantW.”
For rotated functions (𝑓

3
, 𝑓
7
, 𝑓
8
, 𝑓
10
, 𝑓
11
) the best modi-

fication of the PSO algorithm appears to be “AdaptW” and
the poorest is “CostantW.” For functions where there is
no transformation matrix to rotate them, “AdaptW” is the
best variant and the poorest variants are “ConstantW” and
“ConstrFactor.”

It is clear that the best modification of the particle swarm
optimization algorithm for the selected benchmark functions

Journal of Applied Mathematics 7

0 50000 100000 150000 200000 250000 300000

1e − 13

1e − 09

1e − 05

1e − 01

1e + 03

f1

Evaluation

Fi
tn

es
s (

lo
g)

AdaptW (SCE-PSO)
AdaptW (SCERand-PSO)

(a)

0 50000 100000 150000 200000 250000 300000

1e − 14

1e − 09

1e − 04

1e + 01

1e + 06

f2

Evaluation

Fi
tn

es
s (

lo
g)

AdaptW (SCE-PSO)

(b)

0 50000 100000 150000 200000 250000 300000

1e + 06

1e + 07

1e + 08

1e + 09

1e + 10

f3

Evaluation

Fi
tn

es
s (

lo
g)

AdaptW (SCE-PSO)

(c)

500000 100000 150000 200000 250000 300000

1e + 00

1e + 02

1e + 04

1e + 06

f4

Evaluation

Fi
tn

es
s (

lo
g)

NonlinTimeConstW (SCE-PSO)

(d)

0 50000 100000 150000 200000 250000 300000

5000

10000

20000

50000

Evaluation

NonlinTimeConstW (OC-PSO)

f5

Fi
tn

es
s (

lo
g)

(e)

0 50000 100000 150000 200000 250000 300000
Evaluation

AdaptW (SCE-PSO)

1e + 01

1e + 04

1e + 07

1e + 10

f6

Fi
tn

es
s (

lo
g)

(f)

0 50000 100000 150000 200000 250000 300000
Evaluation

NonlinTimeConstW (SCE-PSO)

1e + 00

1e + 02

1e + 04

f7

Fi
tn

es
s (

lo
g)

1e − 02

(g)

0 50000 100000 150000 200000 250000 300000

21.0

21.2

21.4

21.6

Evaluation
AdaptW (SCE-PSO)

Fi
tn

es
s (

lo
g)

f8

(h)
Figure 1: Continued.

8 Journal of Applied Mathematics

0 50000 100000 150000 200000 250000 300000

100

200

500

Evaluation
ChaoticW (SCERand-PSO)

f9
Fi

tn
es

s (
lo

g)

(i)

0 50000 100000 150000 200000 250000 300000

200

500

1000

Evaluation

ChaoticRandW (SCERand-PSO)
LinTimeVaryingW (SCERand-PSO)

f10

Fi
tn

es
s (

lo
g)

(j)

0 50000 100000 150000 200000 250000 300000

35

40

45

50

55
60

Evaluation

LinTimeVaryingW (SCE-PSO)

f11

Fi
tn

es
s (

lo
g)

(k)

Figure 1: Convergence graphs for best fitness of the best modifications and strategy of PSO for functions 𝑓
1
–𝑓
11
according to Table 3.

is “AdaptW,” that is, adaptive inertia weight. The variant
called “NonlinTimeConstW” also produced good results.
On the other hand, the poorest modifications appear to be
“ConstantW” and “ConstrFactor.”

The convergence to the global optimum using particle
swarm optimization is good, but only in three of the eleven
benchmark functions is the obtained error value less than
10−8. In spite of this, the shuffling mechanism improves the
optimization. Strategies SCE-PSO and SCERand-PSO are
better than OC-PSO in ten functions.

The global minimum was achieved in three benchmark
functions,𝑓

1
, 𝑓
2
, and 𝑓

7
, and our results are comparable with

those of Hansen [45] who compares eleven optimization
algorithms on twelve functions.Theparticle swarmoptimiza-
tion algorithm achieved the global minimum in functions𝑓

1
,

𝑓
2
, 𝑓
3
, 𝑓
6
, and 𝑓

7
. Our results using SCE-PSO are better than

those of the optimization algorithms BLX-MA and DE and
are as good as those fromCoEVOas reported byHansen [45].

Bui et al. [12] achieved the global optimum in two uni-
modal functions𝑓

1
and𝑓
2
using the PSOmethodAPSO1 and

in three unimodal functions 𝑓
1
, 𝑓
2
, and 𝑓

4
using the DPSO

method. APSO is PSO algorithm with adaptive constriction
factor and in DPSO the bound of the velocity is adapted.
None of their algorithms converge to the global minimum
in multimodal functions [12]. In this regard, our results are
better.

Nickabadi et al. [13] compare six inertia weight adjusting
methods on 15 test problems with dimension set to 30. If we
look only at functions solved for this paper, Nickabadi et al.
[13] achieved the global optimum in functions 𝑓

1
, 𝑓
2
, and

𝑓
8
. They obtained the best results using the adaptive inertia

weight, which they had proposed (modification “AdaptW” in
this paper). Their results are comparable with those achieved
in the present study. The difference being that our functions
have shifted the global optimum,whereasNickabadi et al. [13]
did not.

Figure 1 presents the convergence graphs for each func-
tion while utilizing the best modification of the PSO algo-
rithm. The 𝑥-axis indicates the number of function evalua-
tions and the 𝑦-axis the logarithmic value of the best fitness,
which is the difference between the searched and the best
achieved functional value. A decline with the number of
evaluations is clearly visible for all functions, thus indicating
the approach to the global optimum.

5. Conclusions

This paper compared 27 variants of particle swarm optimiza-
tion algorithm. Eight modifications were performed using
the parameter inertia weight and one modification using

Journal of Applied Mathematics 9

constriction factor. Both parameters improved the optimiza-
tion. All modifications were tested with three strategies of
swarm distribution, which were in terms of population.
The population was either considered as a single unit (OC-
PSO) or it was divided into several complexes. Division into
complexes was made according to the functional value of
each particle (SCE-PSO) or through random permutation
(SCERand-PSO).

The main aim of this work was to find the global minima
of eleven benchmark functions prepared for the special
session on real-parameter optimization of CEC 2005. The
achievement of the minimum is when the obtained error
value is less than 10−8. We obtained the global minimum in
two unimodal functions (𝑓

1
and 𝑓

2
) and in one multimodal

function (𝑓
7
). The original particle swarm optimization has

slow convergence to the global optimum, but the shuffling
mechanism improves the optimization.

The best modification of the PSO algorithm is the variant
called “AdaptW.” The best choice for selected benchmark
functions is to use the parameter of inertia weight, where the
𝑤 value is adapted based on a feedback parameter. The best
strategy for swarm distribution is SCE-PSO. Shuffled com-
plex evolution particle swarm optimization with allocation of
particles into complexes according to their functional values
is better than OC-PSO and SCERand-PSO.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors are grateful to the anonymous referees for
their valuable comments and suggestions for improving
the presentation of this paper. This work was supported
by the Internal Grant Agency, Faculty of Environmental
Sciences, Czech University of Life Sciences Prague (Project
no. 422001312315820144227).

References

[1] J. Kennedy and R. Eberhart, “Particle swarm optimization,”
in Proceedings of the IEEE International Conference on Neural
Networks, pp. 1942–1948, Perth, Australia, December 1995.

[2] T.Weise,Global Optimization Algorithms—Theory and Applica-
tion, 2009, http://www.it-weise.de/projects/bookNew.pdf.

[3] W.Deng, R. Chen, B.He, Y. Liu, L. Yin, and J. Guo, “Anovel two-
stage hybrid swarm intelligence optimization algorithm and
application,” Soft Computing, vol. 16, no. 10, pp. 1707–1722, 2012.

[4] N. Gershenfeld, The Nature of Mathematical Modeling, Cam-
bridge University Press, New York, NY, USA, 1999.

[5] R. Mendes, Population topologies and their influence in particle
swarm performance [Ph.D. thesis], University of Minho, 2004.

[6] Z.Michalewicz andD. Fogel,How to Solve It:ModernHeuristics,
Springer, New York, NY, USA, 2004.

[7] A. M. Baltar and D. G. Fontane, “Use of multiobjective particle
swarm optimization in water resources management,” Journal

of Water Resources Planning and Management, vol. 134, no. 3,
pp. 257–265, 2008.

[8] M. K. Gill, Y. H. Kaheil, A. Khalil, M. McKee, and L. Bastidas,
“Multiobjective particle swarm optimization for parameter
estimation in hydrology,”Water Resources Research, vol. 42, no.
7, 2006.

[9] D. M. Munoz, C. H. Llanos, L. D. S. Coelho, and M. Ayala-
Rincon, “Opposition-based shuffled PSO with passive congre-
gation applied to FM matching synthesis,” in Proceedings of the
IEEECongress of Evolutionary Computation (CEC '11), pp. 2775–
2781, IEEE, New Orleans, La, USA, June 2011.

[10] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,”
in Proceedings of the IEEE International Conference on Evolu-
tionary Computation (ICEC '98), pp. 69–73, IEEE Computer
Society, Washington, DC, USA, May 1998.

[11] Y. Shi and R. Eberhart, “Empirical study of particle swarm
optimization,” in Proceedings of the Congress on Evolutionary
Computation, pp. 1945–1950, Washington, DC, USA, 1999.

[12] L. T. Bui, O. Soliman, and H. A. Abbass, “A modified strategy
for the constriction factor in particle swarm optimization,”
in Progress in Artificial Life: Proceedings of the 3rd Australian
Conference; ACAL 2007 Gold Coast, Australia, December 4–6,
2007, vol. 4828 of Lecture Notes in Computer Science, pp. 333–
344, Springer, Berlin, Germany, 2007.

[13] A. Nickabadi, M. M. Ebadzadeh, and R. Safabakhsh, “A novel
particle swarm optimization algorithm with adaptive inertia
weight,”Applied Soft Computing Journal, vol. 11, no. 4, pp. 3658–
3670, 2011.

[14] Q. Y. Duan, V. K. Gupta, and S. Sorooshian, “Shuffled complex
evolution approach for effective and efficient global minimiza-
tion,” Journal of Optimization Theory and Applications, vol. 76,
no. 3, pp. 501–521, 1993.

[15] J. A. Vrugt, B. A. Robinson, and J. M. Hyman, “Self-adaptive
multimethod search for global optimization in real-parameter
spaces,” IEEETransactions onEvolutionaryComputation, vol. 13,
no. 2, pp. 243–259, 2009.

[16] M. Pant, R. Thangaraj, and A. Abraham, “Particle swarm
optimization: performance tuning and empirical analysis,” in
Foundations of Computational Intelligence, A. Abraham, A.-E.
Hassanien, P. Siarry, and A. Engelbrecht, Eds., vol. 3 of Studies
in Computational Intelligence, pp. 101–128, Springer, Berlin,
Germany, 2009.

[17] R. Hassan, B. Cohanim, O. D. Weck, and G. Venter, “A
comparison of particle swarm optimization and the genetic
algorithm,” in Proceedings of the 1st AIAA Multidisciplinary
Design Optimization Specialist Conference, pp. 1–13, 2005.

[18] F. V. D. Bergh, An analysis of particle swarm optimizers [Ph.D.
thesis], University of Pretoria, 2001.

[19] R. C. Eberhart and Y. Shi, “Comparing inertia weights and con-
striction factors in particle swarm optimization,” in Proceedings
of the Congress on Evolutionary Computation (CEC '00), vol. 1,
pp. 84–88, IEEE, La Jolla, Calif, USA, July 2000.

[20] R. Eberhart, P. Simpson, and R. Dobbins, Computational Intel-
ligence PC Tools, Academic Press Professional, San Diego, Calif,
USA, 1996.

[21] D. Corne, M. Dorigo, F. Glover et al., Eds., New Ideas in
Optimization, McGraw-Hill, Maidenhead, UK, 1999.

[22] R. C. Eberhart and Y. Shi, “Particle swarm optimization:
developments, applications and resources,” in Proceedings of the
Congress on Evolutionary Computation, vol. 1, pp. 81–86, Seoul,
Republic of Korea, May 2001.

10 Journal of Applied Mathematics

[23] J. C. Bansal, P. K. Singh, M. Saraswat, A. Verma, S. S. Jadon,
and A. Abraham, “Inertia weight strategies in particle swarm
optimization,” in Proceedings of the 3rd World Congress on
Nature and Biologically Inspired Computing (NaBIC '11), pp.
633–640, Salamanca, Spain, October 2011.

[24] J. Gimmler, T. Stützle, and T. E. Exner, “Hybrid particle swarm
optimization: an examination of the influence of iterative
improvement algorithms on performance,” in Ant Colony Opti-
mization and Swarm Intelligence: Proceedings of the 5th Interna-
tional Workshop, ANTS 2006, Brussels, Belgium, September 4–7,
2006, vol. 4150 of Lecture Notes in Computer Science, pp. 436–
443, Springer, Berlin, Germany, 2006.

[25] R. C. Eberhart and Y. Shi, “Tracking and optimizing dynamic
systems with particle swarms,” in Proceedings of the Congress on
Evolutionary Computation, vol. 1, pp. 94–100, May 2001.

[26] J. Xin, G. Chen, and Y. Hai, “A particle swarm optimizer with
multi-stage linearly-decreasing inertia weight,” in Proceedings
of the International Joint Conference on Computational Sciences
andOptimization (CSO '09), vol. 1, pp. 505–508, IEEEComputer
Society, Sanya, China, April 2009.

[27] C.-H. Yang, C.-J. Hsiao, and L.-Y. Chuang, “Linearly decreasing
weight particle swarm optimization with accelerated strategy
for data clustering,” IAENG International Journal of Computer
Science, vol. 37, no. 3, p. 1, 2010.

[28] Y. Feng, G.-F. Teng, A.-X.Wang, andY.-M. Yao, “Chaotic inertia
weight in particle swarmoptimization,” inProceedings of the 2nd
International Conference on Innovative Computing, Information
and Control (ICICIC '07), p. 475, Kumamoto, Japan, September
2007.

[29] M. Clerc, “The swarm and the queen: towards a deterministic
and adaptive particle swarm optimization,” in Proceedings
of the Congress on Evolutionary Computation, pp. 1951–1957,
Washington, DC, USA, 1999.

[30] P. J. Angeline, “Using selection to improve particle swarm opti-
mization,” in Proceedings of the IEEE International Conference
on EvolutionaryComputation (ICEC '98), pp. 84–89, Anchorage,
Alaska, USA, May 1998.

[31] K. E. Parsopoulos, V. P. Plagianakos, G. D. Magoulas, and M.
N. Vrahatis, “Improving particle swarm optimizer by function
stretching,” in Advances in Convex Analysis and Global Opti-
mization, pp. 445–457, Springer, New York, NY, USA, 2001.

[32] K. E. Parsopoulos and M. N. Vrahatis, “Initializing the particle
swarm optimizer using the nonlinear simplex method,” in
Advances in Intelligent Systems, Fuzzy Systems, Evolutionary
Computation, pp. 216–221, WSEAS Press, 2002.

[33] J. Yan, H. Tiesong, H. Chongchao, W. Xianing, and G. Faling,
“A shuffled complex evolution of particle swarm optimization
algorithm,” in Adaptive and Natural Computing Algorithms:
Proceedings of the 8th International Conference, ICANNGA
2007, Warsaw, Poland, April 11–14, 2007, Part I, vol. 4431 of
LectureNotes in Computer Science, pp. 341–349, Springer, Berlin,
Germany, 2007.

[34] V. C. Mariani, L. G. Justi Luvizotto, F. A. Guerra, and L.
D. S. Coelho, “A hybrid shuffled complex evolution approach
based on differential evolution for unconstrained optimization,”
Applied Mathematics and Computation, vol. 217, no. 12, pp.
5822–5829, 2011.

[35] M. Weber, F. Neri, and V. Tirronen, “Shuffle or update parallel
differential evolution for large-scale optimization,” Soft Com-
puting, vol. 15, no. 11, pp. 2089–2107, 2011.

[36] R.Durstenfeld, “Algorithm235: randompermutation,”Commu-
nications of the ACM, vol. 7, no. 7, p. 420, 1964.

[37] M. D. McKay, R. J. Beckman, andW. J. Conover, “A comparison
of three methods for selecting values of input variables in the
analysis of output from a computer code,” Technometrics, vol.
21, no. 2, pp. 239–245, 1979.

[38] G. D. Wyss and K. H. Jorgensen, A User's Guide to LHS:
Sandias Latin Hypercube Sampling Software, Sandia National
Laboratories, 1998.

[39] R. Eberhart and Y. Shi, Computational Intelligence: Concepts to
Implementations, Morgan Kaufmann, Boston,Mass, USA, 2007.

[40] P. N. Suganthan, N. Hansen, J. J. Liang et al., “Problem
definitions and evaluation criteria for the CEC, 2005 special
session on real-parameter optimization,” Tech. Rep., Nanyang
Technological University, Singapore, 2005.

[41] J. C. F. Cabrera and C. A. C. Coello, “Handling constraints in
particle swarm optimization using a small population size,” in
MICAI 2007: Advances in Artificial Intelligence: Proceedings of
the 6th Mexican International Conference on Artificial Intelli-
gence, Aguascalientes, Mexico, November 4–10, 2007, vol. 4827
of Lecture Notes in Computer Science, pp. 41–51, Springer, Berlin,
Germany, 2007.

[42] K. Parsopoulos andM. N. Vrahatis, “On the Computation of all
global minimizers through particle swarm optimization,” IEEE
Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 211–
224, 2004.

[43] C. Dytham, Choosing and Using Statistics: A Biologist's Guide,
Blackwell Science, Oxford, UK, 2011.

[44] S. Garćıa, D. Molina, M. Lozano, and F. Herrera, “A study on
the use of non-parametric tests for analyzing the evolutionary
algorithms'behaviour: a case study on the CEC'2005 Special
Session on Real Parameter Optimization,” Journal of Heuristics,
vol. 15, no. 6, pp. 617–644, 2009.

[45] N. Hansen, “Compilation of results on the 2005 CEC bench-
mark function set,” Online, 2006.

