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Under a constraint between the potentials and eigenfunctions, the nonlinearization of the Lax pairs associated with the discrete
hierarchy of a generalization of the Toda lattice equation is proposed, which leads to a new symplectic map and a class of finite-
dimensional Hamiltonian systems. The generating function of the integrals of motion is presented, by which the symplectic map
and these finite-dimensional Hamiltonian systems are further proved to be completely integrable in the Liouville sense. Finally, the

representation of solutions for a lattice equation in the discrete hierarchy is obtained.

1. Introduction

Differential difference equations have very remarkable appli-
cations in modern mathematics and physics; they can model
a number of physically interesting phenomena, such as the
vibration of particle in lattice [1], the quantum spin chains
[2, 3], the Toda lattice [4], the vibration of pulse [5, 6],
the nonlinear self-dual network [7], and others. After Toda
[8] showed that the Toda lattice was associated with a
discretization of the Schrédinger spectral problem, various
discrete soliton equations are found, for instance, the discrete
nonlinear Schrodinger equation [9], the discrete sine-Gordon
equation [10], the discrete KAV equation [11], the discrete
mKdV equation [12], and so forth. Recently, the authors have
obtained a new discrete hierarchy associated with fourth-
order discrete spectral problem, in which a typical member
is a generalization of the Toda lattice equation [13].

It has been known that the key to complete integrability
of a finite-dimensional Hamiltonian system is the existence
of an involutive system of conserved integrals according
to the Liouville-Arnold theorem. Many researchers have
tried to construct complete integrable Hamiltonian systems.
Recently, there are active researches on soliton hierarchies
associated with so (3, R) [14]. However, it is a difficult work
to search for an involutive system of conserved integrals for
a given finite-dimensional Hamiltonian system. An effective
method, the nonlinearization of Lax pairs [15, 16], has

been developed and applied to various soliton hierarchies
associated with 2 x 2 matrix spectral problems to get finite-
dimensional completely integrable systems many years ago,
such as the nonlinearization of the AKNS hierarchy [15],
the coupled KdV hierarchy [17], the discrete Ablowitz-Ladik
hierarchy [18], the Heisenberg hierarchy [19], and the Kac-
van Moerbeke hierarchy [20]. Subsequently, this method
has been generalized to discuss the nonlinearization of Lax
pairs and adjoint Lax pairs of soliton hierarchies [21-23].
Moreover, there are attempts to apply the nonlinearization
method to the Lax pairs and adjoint Lax pairs of (2 +
1)-dimensional soliton systems, such as the Kadomtsev-
Petviashvili equation and the Davey-Stewartson equation, in
order to get (1 + 1)-dimensional integrable systems [24]. And
it is proved that the binary nonlinearization will be more
natural to carry out in the case of higher-order matrix spectral
problems [25].

Discrete versions of classical integrable systems have
become the focus of common concern in recent years because
of their importance. However, the known discrete integrable
systems are few compared with the continuous case. In the
present paper, the nonlinearization approach is developed
and applied to the discrete hierarchy associated with a 4 x
4 discrete eigenvalue problem. Such transformations are
adjoint symmetry constraints [26] and a general scheme
for doing nonlinearization for lattice soliton hierarchies was
presented in [27]. We propose a constraint between the
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potentials and eigenfunctions. The nonlinearization of the
Lax pairs for the discrete hierarchy leads to a new integrable
symplectic map and a class of finite-dimensional integrable
Hamiltonian systems.

The outline of this paper is as follows. In Section 2,
depending on the spectral problems given in [13], the
Bargmann constraint between the potentials and eigenfunc-
tions is introduced, from which a new symplectic map and a
class of finite-dimensional Hamiltonian systems are obtained.
In Section 3, the generating function approach is used to
calculate the involutivity of integrals, by which the symplectic
map and these finite-dimensional Hamiltonian systems are
further proved to be completely integrable in the Liouville
sense. Finally, in Section 4, the representation of solutions for
a lattice equation in the discrete hierarchy is obtained.

2. A New Symplectic Map
Consider the discrete 4 x 4 spectral problem given in [13]
A-b
4 1y n
¢, €, c,
El//n = UnV/n’ Un = 0 0 1 a, >
0 0 0 g
1 0 0 0
v, ®
¥
Y= >
¥,
v,

wherea,, b,, ¢, are three potentials and A is a constant spectral
parameter; E is a translation operator defined by Ef,, = f,.;-
For the sake of convenience, we usually denote f,,, = E* f,,
fox = E¥f,. In order to derive the hierarchy of Lattice
equations associated with (1), authors of [13] first solve the
stationary discrete zero-curvature equation:

Vn+1Un - Unvn =0, Vn = (Vn,ij)4><4’ (2)

where the entries V;; of the matrix V,, are Laurent expansions
of A. Let y,, satisfy the spectral problem (1) and its auxiliary
problem:

Vo =V, VI = (V) (3)

then the zero-curvature equation U,, = V,ETl)Un - UnVn('”)

yields the discrete hierarchy of a generalization of Toda lat-
tices. The first system of evolution equations in this hierarchy
is

1
nt = Ean (bn - bn+1) +a, 161 — Ap1Go>

2 2 2 2
bn,t =0, 170,16 G (4)

1
Cot = Ecn (bn - bn+2) >

which is a generalization of Toda lattice equation.
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Let A,,..., Ay be N distinct nonzero eigenvalues of (1),
and the associated eigenfunctions are denoted by

4 =v (). G=v(h),
pi=w(h) p=va(dy),

ko_ k ko_ k -
where we denote q; = qj(n) and p; = pj(n) (k = 1,2)
for convenience. Then the system associated with (1) can be
written in the form

(5)

Eq; =c,p;,  Eq;=q;+a,p;,
1 1 1 2 2 2 2 1 (6)
Ep; = s (a.pj +4; = A;p; +b,p}),  Epj =p;.
Now we consider the Bargmann constraint
N
le ;=G ?)
i

where G = (2a,,,b,,2¢,)" and VA is the functional gradient
of the eigenvalue A ; with regard to the potentials a,, b,, and
c,; that is,

VA, =| 2

dc, (8)
2p; 2]
pip;

-2 [on} v a0} + (4, 0) ]

Combining (7) and (8), it is easy to see that
a,=(p"p" b= (p"p)
1/2
)
where A = diag(A,,...,Ay) and (., -) is the standard inner-
product in RN, ¢' = (¢},...,¢\)"and p' = (p,....p'\)".
Substituting (9) into (6), we can get the following system:

1/2
Bg) = (~(p"2°) = (42" )+(ar% ") ~(07 7)) )
Eq: =g+ (p'.p") 1,
-1/2
B! = ~(=( 1) — () + (A ) (7))

x((p'.0%) pj + 5 — A0 + (p".P") P})

G, = (_<p1,p2>2 _ <q23P2> + <AP2,P2> _ <p2,p2>2)

Epjz. = p}.
(10)
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Through tedious calculations one infers

3

Therefore, (10) determines a symplectic map H of the
Bargmann type:

(qu,qu,Epl,Epz) _ H(ql,qz,pl,pz). (12)

N 2 N 2
d(Eq.)nd(Eq)) = dq. ndq.
]ZIZI (Ba) nd (B1)) lezl 7 ()  3.Liouville Integrability
Introducing a matrix 77,
A
-Qu(dhr)-5 @) lhe)+r i p)

7= (%3{)4x4 =

-Qy (ql:Pz)

where

i o Q;;PJJ;
Q p) = ,
A(q P) k;)t—)t

k k=1

o N i ]
Qu(da') = Y1k

(14)

We can find that 7'y and ul — 7, are two solutions of
the stationary discrete zero-curvature equation (2) under the
Bargmann constraint (7), where y is a parameter and I is a
4 x4 unit matrix. Then we assert that det 7", and det(ul-7"))
are independent constants of the discrete variable n. On the
other hand,

det (Wl = 7,) = i + g(Al)#z + 9;2), 15)
where
ii ij
9,-;1) _ Z %f %ﬁ , 9732) =det7,. (16)
1<i<j<4 %f Wf\]

Substjtuﬁng the Laurent expansion of Q /\(q", pj ), Qi ( p", pj ),
Q.(q', ") into (16) we have

1 1 2 1) - =2 2) -
F =N YEOAT, FP =Y EAT @)

m>1 m>1

-Qi(q.4°) - (d".p*) Qi (dp
A

~Qi(dhq") - (a"p')  Qldhr) Qldhp)+F -Qi(dha')-(d"p")

Q (P p?) +1

)
VDl Qe g) - (dhp7) W)
1,2 2 .2 A
Q(ehy) (@) -3
where
FP =7 e F N
E)

_ Z (_ <qu1,p1></\kql,pl> B <qu2,p2><1\kq2,p2>
. <Ajp1,p1> <Akp1,p1>
+ <AJp2)p1> <Akq2)q2> +2 <A]P1,p2>
% <Akq1,q2> _2 <qu1)p2> <Akq2>p1>)
+ <ql’pl> <Am71P1)pl> + <q2’p2> <Am71p2’p2>
+2 <ql’p2> <Am_1P1,P2> + <Am_lql)ql
+ <Am—1q2,q2> _ <Amq1,p2> _ <Amq2’p2> ,
FO
<Akq1,P1> <AkP1’P2> <AkP1’P1> <Akq2»Pl>
_ <qul;q2> <qu2;P2> <qu2;Pl> <A1q2)q2>
k}f;ﬁ;rigg‘l <Aiq1,q1> <Aiq1,p2> <Aiql>Pl> <Aiq1’q2>
<Asq1>P2> <ASP2>P2> <ASP1’P2> <Asq2,P2>
<A]q2’P2> <A1q2,P1> <A]q2)q2>
<Akql,P2> <Akq1>P1> <Akql,q2>
<Asp2,p2> <ASP1)P2> <Asq2’p2>
<Akq1,Pl> <Akpl>P1> <Akq2,P1>
+ <qu1,q1> <A]q1ap1> <AJCI1,6]2>
<Asq1,p2> <ASP1>P2> <Asq2)P2>

>

k+j+s=m-2
jok520



AL D] i)
A A ANq

< 5q1 q2> < qu p2> < s 2 2>
(x°q',p*) (A% p%) <Aq )
(Afq'p') (A*php') (A'gp")
N <qu1)q2> <qu2)p1> <qu2)qz>
<Asq1’q1> <Asq1,p1> <Asq1,q2>
+<q2,p2>

(Mg p') (A'php?) (AP p)
x <A1q1>q1> <A1q1,P2> <A1q1,P1>
<Asq1’p2> <Asp2’p2> <Aspl’p2>
+<q1,p1>

(Mpp?) (M°php') (A'qp')
% <A1q2>P2> <A]q2,p1> <A]q2)q2>
<A5P2,P2> <A5P1,P2> <Asq2’p2>
—2<q1,p2>

<AkP1>P2> <AkP1»P1> <Akq2’Pl>‘>

)
k+j+s=m—
j,k,s>0

% <A]q1>P2> <A]q1)P1> <A]q1)q2>
<Asp2)p2> <ASP1aP2> <Asq2’P2>

- 3 [ (ve g

—————

- (A q") (A q7) +2(q". ")

x ((A'q', p') (A% p") - (A"p" p")
(A q")+(A'q p") (A" p")
~(A'qq") (A% p")) - (d'p")

x ((A'q% p") (a°d, ") - (A"p'p")
x(Nq’,q") + (A, p*) (N0, p*)

~ (A q) (NP7 p7)) - (ap?)

x ((A'q', p') (A% p") - (A"p" p")
x(A'qq") + (Mg, p") (N°d' p7)

-(4'q") (20" p7))
+({d ") (a0 (a5 )

x ((A*p' p?) (Np' p7)
~(aph ") (WP’ 7))
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v 2 [(a'a) (v’ p')

+++++

- (A p') (N
+(N'q7) (Nq',p*)
- (07, ") (A°dq') + (' p7)
x ((A'q', p*) (A"p' p")
- (A", p') (A°p', p%)
+ (Mg p) (A% p7)
(AL ph) (ap' p?))
- p") ((A', p*) (A, ')
~ (AL ") (N ')
+(q ") ((A p") (nd', p)
= (A'q,pt) (A% p%))]
v 2 (%' p") (X'’ ")

- (A% p") (10 p"))
+(d"p") (A", p") - (A" p"))
~(a"p") (A", p") = (a". p*) (A" p")
~2(q"p") (A"'q', %) - (A"q'q°
+(a'p") (A" a) +(d ") (A1)
-((@.p?) - dp') (a5 4))

y (<Am71p1)P1> + <A”Hp2,p2>), m> 1.
(18)

In the above equations, the Poisson bracket of two functions
is defined as

o wag_@w>
-9 Eé(wwm o o] N

Then we can prove the following assertions.
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Proposition 1. The functions {ny? | i = 1,2,m > 1} are in
involution in pairs; that is,

{FY FY } =0,

m?>~7]

Vm,l>1, 1<i, j<2. (20)
Proof. Through tedious calculation we can obtain

(70.70) = (70,79} = {7272} =0

g (21)
VA, ueC.
Then we have
(1) M) _ 1)z _ [@ @) _
{gh’gﬂ}_{gk’gu }_{gA’gu}_O’ (22)

VA, ueC.

Then relation (20) follows by comparison of power of A" in
(22) with (17) taken into account. O

Proposition 2. The 2N I-forms dF](.i) (1<j<N,i=12)
are linearly independent.

Proof. Assuming that there exist 2N constants bl(i), so that

Z( XCO N BPAC) =0, i=12. (23)
- l ] aq

(Ag' p*) pr +(d ) Mipt

<‘11’P2> (A=)

Il
—]=
>
~. N

<.
Il
—

(a'.p") (A% -

<‘11>P2> (An—2Ay)

(7*q'p*) pi+{a" P ) Nipy -

(Mg p*) 3+ (as ) hps (A%dp%) p3+(a'p°) A3ps

(A p7) P+ (a' p7) Anpxe (A0 p%) pr+ (d' p°) Aapy -+
(Mg, p*) +{a' p*) Ay (A°q',p7) +{(d'.p") A -
(q'.p°) (A3 -17)

5
It is easy to obtain
) (2)
aFj PN aFj =0
0q" - ’ oq' o
(P, p2q2)=0 (P'.p%q)=0 24)
1<j<N.
Then we have
N .
ij(l),\i‘l =0, 1<k<N, (25)
=1

= 0,1 < j < N, by utilizing the fact
that the Vandermonde determinant is not zero. Therefore,
(23) is reduced to

which gives rise to b](l)

N (2)
Z ‘ i=1,2. (26)

Take P, € R*N with the coordinates g* = p' = 0, q" = O(e),

and p2 = O(¢), where ¢ is a small real number. Then, at P,
or! ) .
aél = (Mg, p*)p* + (g, p YN p?

B

1,2 1,2 2\ 2 (27)
~2(q.p") (N7P% %) p
= <qu1,p2> P+ <q1,p2> Np*+0 (35) ,
and the determinant of the coefficients of the linear system of

equations

N (2)
2 0,

k

1<k<N, (28)

is

<Aqu p >P1+<‘1 p >A1P1

(ANg', p*) p2 +(q', p*) A5 p?
+O(85N)

(NG p*) pio + (a' p7) ANpy
<ANq1aP2> + <q1)p2>A11\7

@A) |

(a'. %) (AN -AY)
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<Aq p > <Azq1 p > <A§q1,1§> M AE . Ag
N gl A=A A=A Ay —A A - A
:Hp]g ql, 2>N 1 2 ' 1 +< 1,p2>N 2 '2 .2 +O(£SN),
=1 : : : :
Av-A A=A AN =AY Ay Ay AN
(29)
where 4. The Representation of Solutions
< Ag'p > < A p > B < AVg! p2> Consider the following initial value problem:
AL-A A=A o AN
;  OH, i _ OH,
: : : @= 30 £ TS
A=A A?\I_Ai A%_/vl\] P q
i i i (33)
1 A ﬁ /\11\] (q P )|t:0 - (q ©).p (0))’
0 (A p*) (A°q,p") - (A%, p?) i=12,
=1 A, A A,
: : " : where H, = —(1/2)Ff1). In fact, the first two equations in (33)
2 N
1 An Ay AN (30)  are

1 A A AN

1 Ay Ay e AN

(@) TT(-1,).

ij=1
i>j

Therefore,

H(/\ 1) | +0(eN) #o.

ij=1
i>j

wiaor )
(3D

Then we obtain b;z) = 0,1 < j < N. The proof is complete.
O

Combining Propositions 1 and 2, we have immediately the
following conclusions.

Proposition 3. The symplectic map of the Bargmann type
defined by (10) is completely integrable in the Liouville sense.

Proposition 4. The systems defined as follows are completely
integrable in the Liouville sense:

i aF(l) i aF(l)
%—i: a;; , %:— a"; , m>1,i=12 (32)

- ; (a-(p"p"))d'
== (P 5 (A= (o))

-{a".p*) p' = {d". ") P, (34)

_ <q1)p1>p1 _ <q1,p2>p2,

pi=a'+ 5 ((php) - 8) P+ (2" 07) P
p=d+5 ((phr) - A) P

Then we can obtain the presentation of solutions for the lattice
equation (4).

Proposition 5. Let qi(t) and pi(t) (1 <i < 3) be a solution of
(33); define

(4" mb),q" (1), p' (1), p (n,1))

(35)
=H"(¢' ().4" ®),p' (), p* ®)).
Then
a,=(p'p"),  b=(p"0")
6= ({07 - @p>mpm<pw{ﬂ
36

and solve the lattice equation (4).
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Proof. It is easy to see that (35) is equivalent to (12), that is,

(10) with (¢'(0,1), p'(0,1)) = (q'(1), p'(t)). Using (33), (36),
and (10), a direct calculation shows that

e = 5 (0827 (0101 + (07270 07) (')
+(a'p") + (4" p") - (Ap".p")
= %(E’lcn - GE) (2(p", p*)) + %an (1-E)(p’p*),
=% p") (" P") + 2400’ ") - (P p7)
2B -1)a, (2 p) + (- 1)
x(-a, (p" p*) (2", p") +(Ap". P*) - b, {P". "))
=3 (P2 (. )+ (A ) (8 ))
<[ (p%p?) ((p'27) + (@ 07) - (20" p7)
2(p" ")) = (p.0")
x((php?) (2l p') +2(p%0") (P P)
“2(aphpt) +2(qp')) - 2(P%p")
x((Aq.p*) = (Ap".p"))
(20" ) +2(Aq, ") - (NP )]

=S (1-B) (P p%).

-

n,

(37)
Therefore, we have
2(a,b,c)T=J§VA-=JG‘°>, (38)
ot n Yndtn n]':I Jj n=n
where
1, . 1
E(E ‘e, - ,E) 50 (1= E) 0
I S 1,
Jn = S(E'-1)a, 1 0 S(ET-1)q,
2
0 Sa(1-F) 0
(39)

Then (38) is equivalent to the generalization of Toda lattice
equation (4). This proves Proposition 5. O
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