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This paper deals with a modified iterative projection method for approximating a solution of hierarchical fixed point problems
for nearly nonexpansive mappings. Some strong convergence theorems for the proposed method are presented under certain
approximate assumptions of mappings and parameters. As a special case, this projection method solves some quadratic
minimization problem. It should be noted that the proposed method can be regarded as a generalized version of Wang and Xu
(2013), Ceng et al. (2011), Sahu et al. (2012), and many other authors.

1. Introduction

Throughout this paper,𝐶 is a nonempty closed convex subset
of a real Hilbert space 𝐻; ⟨⋅, ⋅⟩ denotes the associated inner
product; ‖ ⋅ ‖ stands for the corresponding norm. Let 𝐼 be
the identity mapping on 𝐶 and 𝑃𝐶 the metric projection of
𝐻 onto 𝐶. To begin with, let us recall the following concepts
which are commonly used in the context of convex and
nonlinear analysis. For all 𝑥, 𝑦 ∈ 𝐶, a mapping 𝐹 : 𝐶 → 𝐻

is said to be monotone if ⟨𝐹𝑥 − 𝐹𝑦, 𝑥 − 𝑦⟩ ≥ 0, 𝜂-strongly
monotone if there exists a positive real number 𝜂 such that
⟨𝐹𝑥−𝐹𝑦, 𝑥−𝑦⟩ ≥ 𝜂‖𝑥 − 𝑦‖

2, and 𝐿-Lipschitzian if there exists
a positive real number 𝐿 such that ‖𝐹𝑥 − 𝐹𝑦‖ ≤ 𝐿‖𝑥 − 𝑦‖.
Let us also recall that a mapping 𝑇 : 𝐶 → 𝐶 is said to be
contraction if there exists a constant 𝑘 ∈ [0, 1) such that
‖𝑇𝑥 − 𝑇𝑦‖ ≤ 𝑘‖𝑥 − 𝑦‖, nonexpansive if ‖𝑇𝑥 − 𝑇𝑦‖ ≤ ‖𝑥 − 𝑦‖,
and asymptotically nonexpansive if for each 𝑛 ≥ 1 there exists
a positive constant 𝑘

𝑛
≥ 1 with lim

𝑛→∞
𝑘
𝑛

= 1 such that
‖𝑇
𝑛
𝑥 − 𝑇
𝑛
𝑦‖ ≤ 𝑘

𝑛
‖𝑥 − 𝑦‖, for all 𝑥,𝑦 ∈ 𝐶.

As a generalization of asymptotically nonexpansive map-
pings, Sahu [1] introduced the class of nearly Lipschitzian
mappings. Let us fix a sequence {𝑎𝑛} in [0,∞) with 𝑎𝑛 → 0.
A mapping 𝑇 : 𝐶 → 𝐶 is called nearly Lipschitzian with

respect to {𝑎𝑛} if for each 𝑛 ≥ 1 there exists a constant 𝑘𝑛 ≥ 0

such that

󵄩󵄩󵄩󵄩𝑇
𝑛
𝑥 − 𝑇
𝑛
𝑦
󵄩󵄩󵄩󵄩 ≤ 𝑘
𝑛
(
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 + 𝑎
𝑛
) , ∀𝑥, 𝑦 ∈ 𝐶. (1)

The infimum constant 𝑘
𝑛
for which (1) holds will be denoted

by 𝜂(𝑇𝑛) and called nearly Lipschitz constant. Notice that

𝜂 (𝑇
𝑛
) = sup{

󵄩󵄩󵄩󵄩𝑇
𝑛
𝑥 − 𝑇
𝑛
𝑦
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 + 𝑎
𝑛

: 𝑥, 𝑦 ∈ 𝐶, 𝑥 ̸= 𝑦} . (2)

A nearly Lipschitzian mapping 𝑇 with sequence {𝑎𝑛, 𝜂(𝑇
𝑛
)}

is said to be nearly nonexpansive if 𝜂(𝑇
𝑛
) ≤ 1 for 𝑛 ≥

1. In this paper, we study a nearly nonexpansive mapping
which is studied by some authors (see [1–4]). This type of
mappings (not necessarily continuous) is important with
regard to generalization of the asymptotically nonexpansive
mappings. Particularly, the class of this type of mappings is
an intermediate class between the class of asymptotically non-
expansive mappings and that of mappings of asymptotically
nonexpansive type (please see [1] for nearly nonexpansive
mappings examples).
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Now, we focus on the hierarchical fixed point problem for
a nearly nonexpansive mapping 𝑇 with respect to a nonex-
pansive mapping 𝑆. This problem is to find a point 𝑥∗ ∈

Fix(𝑇) satisfying

⟨(𝐼 − 𝑆) 𝑥
∗
, 𝑥
∗
− 𝑥⟩ ≤ 0, ∀𝑥 ∈ Fix (𝑇) , (3)

where Fix(𝑇) is the set of fixed points of 𝑇; that is, Fix(𝑇) =

{𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥}. It is easy to see that the problem (3)
is equivalent to the problem of finding a point 𝑥∗ ∈ 𝐶 that
satisfies 𝑥∗ = 𝑃Fix(𝑇)𝑆𝑥

∗.
Let𝑁Fix(𝑇) be the normal cone to Fix(𝑇) defined by

𝑁Fix(𝑇)𝑥

=

{{{

{{{

{

{𝑢 ∈ 𝐻 : ⟨𝑦 − 𝑥, 𝑢⟩ ≤ 0,

∀𝑦 ∈ Fix (𝑇)} , if 𝑥 ∈ Fix (𝑇)
0, if 𝑥 ∉ Fix (𝑇) .

(4)

Then, the hierarchical fixed point problem is equivalent to the
variational inclusion problem which is to find a point 𝑥∗ ∈ 𝐶

such that

0 ∈ (𝐼 − 𝑆) 𝑥
∗
+ 𝑁Fix(𝑇)𝑥

∗
. (5)

The existence problem of hierarchical fixed points for a
nonlinear mapping and approximation problem has been
studied by several authors (see [5–12]). In 2006, Marino and
Xu [13] introduced the following viscosity iterative method:

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + (𝐼 − 𝛼

𝑛
𝐴)𝑇𝑥

𝑛
, ∀𝑛 ≥ 0, (6)

where 𝑓 is a contraction, 𝑇 is a nonexpansive mapping, and
𝐴 is a strongly positive bounded linear operator on 𝐻; that
is, ⟨𝐴𝑥, 𝑥⟩ ≥ 𝛾‖𝑥‖, ∀𝑥 ∈ 𝐻 for some 𝛾 > 0. Under the
appropriate conditions, they proved that the sequence {𝑥

𝑛
}

defined by (6) converges strongly to the unique solution of
the variational inequality

⟨(𝛾𝑓 − 𝐴) 𝑥
∗
, 𝑥 − 𝑥

∗
⟩ ≤ 0, ∀𝑥 ∈ 𝐶, (7)

which is the optimality condition for the minimization
problem

min
𝑥∈𝐶

1

2
⟨𝐴𝑥, 𝑥⟩ − ℎ (𝑥) , (8)

where ℎ is a potential function for 𝛾𝑓; that is, ℎ󸀠(𝑥) = 𝛾𝑓(𝑥)

for all 𝑥 ∈ 𝐻.
In 2011, Ceng et al. [14] generalized the iterative method

(6) ofMarino and Xu [13] by taking a Lipschitzianmapping𝑉
and Lipschitzian and strongly monotone operator 𝐹 instead
of the mappings 𝑓 and 𝐴, respectively. They gave the follow-
ing iterative method:

𝑥
𝑛+1

= 𝑃
𝐶
[𝛼
𝑛
𝜌𝑉𝑥
𝑛
+ (𝐼 − 𝛼

𝑛
𝜇𝐹)𝑇𝑥

𝑛
] , ∀𝑛 ≥ 0, (9)

where𝑃
𝐶
is a metric projection and𝑇 is a nonexpansivemap-

ping, and they also proved that the sequence {𝑥
𝑛
} generated

by (9) converges strongly to the unique solution of the varia-
tional inequality

⟨(𝜌𝑉 − 𝜇𝐹) 𝑥
∗
, 𝑥 − 𝑥

∗
⟩ ≤ 0, ∀𝑥 ∈ Fix (𝑇) . (10)

Recently, motivated by the iteration method (9) of Ceng et al.
[14],Wang and Xu [15] studied the following iterativemethod
for a hierarchical fixed point problem:

𝑦𝑛 = 𝛽𝑛𝑆𝑥𝑛 + (1 − 𝛽𝑛) 𝑥𝑛,

𝑥
𝑛+1

= 𝑃
𝐶
[𝛼
𝑛
𝜌𝑉𝑥
𝑛
+ (𝐼 − 𝛼

𝑛
𝜇𝐹)𝑇𝑦

𝑛
] ,

∀𝑛 ≥ 0,

(11)

where 𝑆, 𝑇 : 𝐶 → 𝐶 are nonexpansive mappings, 𝑉 : 𝐶 →

𝐻 is a 𝛾-Lipschitzian mapping, and 𝐹 : 𝐶 → 𝐻 is a 𝐿-
Lipschitzian and 𝜂-strongly monotone operator.They proved
that under some suitable assumptions on the sequences {𝛼𝑛}
and {𝛽𝑛}, the sequence {𝑥𝑛} generated by (11) converges
strongly to the hierarchical fixed point of 𝑇 with respect to
the mapping 𝑆 which is the unique solution of the variational
inequality (10). With this study, Wang and Xu extend and
improve the many recent results of other authors.

Let {𝑇
𝑛
} be a sequence of mappings from𝐶 into𝐻 and fix

a sequence {𝑎
𝑛
} in [0,∞) with 𝑎

𝑛
→ 0. Then, {𝑇

𝑛
} is called a

sequence of nearly nonexpansive mappings [16] with respect
to a sequence {𝑎

𝑛
} if

󵄩󵄩󵄩󵄩𝑇𝑛𝑥 − 𝑇𝑛𝑦
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 + 𝑎
𝑛, ∀𝑥, 𝑦 ∈ 𝐶, 𝑛 ≥ 1. (12)

It is obvious that the sequence of nearly nonexpansive map-
pings is a wider class of sequence of nonexpansive mappings.
For the sequence of nearly nonexpansive mappings defined
by (12), Sahu et al. [3] introduced a new iteration method
to solve the hierarchical fixed point problem and variational
inequality problem.

Remark 1. Let {𝑇
𝑛
} be a sequence of nearly nonexpansive

mappings. Then,

(1) for each 𝑛 ≥ 1,𝑇
𝑛
is not a nearly nonexpansive map-

ping,
(2) if 𝑇 is a mapping on 𝐶 defined by 𝑇𝑥 = lim

𝑛→∞
𝑇
𝑛
𝑥

for all 𝑥 ∈ 𝐶, then it is clear that 𝑇 is a nonexpansive
mapping.

Recently, in 2012, Sahu et al. [4] introduced the following
iterative method for the sequence of nearly nonexpansive
mappings {𝑇𝑛} defined by (12):

𝑥
𝑛+1

= 𝑃
𝐶 [𝛼𝑛𝜌𝑉𝑥𝑛 + (1 − 𝛼

𝑛
𝜇𝐹)𝑇

𝑛
𝑥
𝑛] , ∀𝑛 ≥ 1. (13)

They proved that the sequence {𝑥
𝑛} generated by (13) con-

verges strongly to the unique solution of the variational
inequality (10).

Remark 2. Since themapping𝑇
𝑛
is not a nearly nonexpansive

mapping for each 𝑛 ≥ 1, if one takes 𝑇
𝑛
:= 𝑇 for all 𝑛 ≥ 1 such

that 𝑇 is a nearly nonexpansive mapping, then the iteration
(13) is not well defined. Hence, the main result of Sahu et al.
[4] is no longer valid for a nearly nonexpansive mapping.
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In this paper,motivated and inspired by thework ofWang
and Xu [15], we introduce a modified iterative projection
method to find a hierarchical fixed point of a nearly nonex-
pansive mapping with respect to a nonexpansive mapping.
We show that our iterative method converges strongly to
the unique solution of the variational inequality (10). As a
special case, the presented projection method solves some
quadraticminimization problem. Also, ourmethod improves
and generalizes corresponding results of Yao et al. [5],Marino
and Xu [13], Ceng et al. [14], Wang and Xu [15], Moudafi [17],
Xu [18], Tian [19], and Suzuki [20].

2. Preliminaries

This section contains some lemmas and definitions which
will be used in the proof of our main result in the following
section. We write 𝑥𝑛 ⇀ 𝑥 to indicate that the sequence {𝑥𝑛}
converges weakly to 𝑥 and 𝑥𝑛 → 𝑥 for the strong conver-
gence. A mapping 𝑃

𝐶
: 𝐻 → 𝐶 is called a metric projection

if there exists a unique nearest point in𝐶 denoted by𝑃
𝐶
𝑥 such

that
󵄩󵄩󵄩󵄩𝑥 − 𝑃

𝐶
𝑥
󵄩󵄩󵄩󵄩 = inf
𝑦∈𝐶

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥 ∈ 𝐻. (14)

It is easy to see that 𝑃
𝐶 is a nonexpansive mapping and it

satisfies the following inequality:

⟨𝑥 − 𝑃
𝐶
𝑥, 𝑦 − 𝑃

𝐶
𝑥⟩ ≤ 0, ∀𝑥 ∈ 𝐻, 𝑦 ∈ 𝐶. (15)

Now, we give the definitions of a demicontinuous mapping,
asymptotic radius, and asymptotic center.

Let 𝐶 be a nonempty subset of a Banach space 𝑋 and 𝑇 :

𝐶 → 𝐶 a mapping. 𝑇 is called demicontinuous if 𝑥𝑛 → 𝑥 in
𝑋 implies 𝑇𝑥𝑛 ⇀ 𝑇𝑥 in 𝐶.

Let 𝐶 be a nonempty closed convex subset of a uniformly
convex Banach space 𝑋, {𝑥𝑛} a bounded sequence in 𝑋, and
𝑟 : 𝐶 → [0,∞) a functional defined by

𝑟 (𝑥) = lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 , 𝑥 ∈ 𝐶. (16)

The infimum of 𝑟(⋅) over 𝐶 is called asymptotic radius of {𝑥
𝑛}

with respect to 𝐶 and is denoted by 𝑟(𝐶, {𝑥𝑛}). A point 𝑥 ∈ 𝐶

is said to be an asymptotic center of the sequence {𝑥𝑛} with
respect to 𝐶 if

𝑟 (𝑥) = min {𝑟 (𝑥) : 𝑥 ∈ 𝐶} . (17)

The set of all asymptotic centers is denoted by 𝐴(𝐶, {𝑥𝑛}).
Related with these definitions, we will use the following in
our main results.

Theorem 3 (see [21]). Let 𝐶 be a nonempty closed convex
subset of a uniformly convex Banach space 𝑋 satisfying the
Opial condition. If {𝑥

𝑛
} is a sequence in 𝐶 such that 𝑥

𝑛
⇀ 𝑥,

then 𝑥 is the asymptotic center of {𝑥
𝑛
} in 𝐶.

Lemma 4 (see [1]). Let 𝐶 be a nonempty closed convex subset
of a uniformly convex Banach space 𝑋 and 𝑇 : 𝐶 → 𝐶 a
demicontinuous nearly Lipschitzian mapping with sequence

{𝑎
𝑛
, 𝜂(𝑇
𝑛
)} such that lim

𝑛→∞
𝜂(𝑇
𝑛
) ≤ 1. If {𝑥

𝑛
} is a bounded

sequence in 𝐶 such that

lim
𝑚→∞

( lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇
𝑚
𝑥𝑛

󵄩󵄩󵄩󵄩) = 0, 𝐴 (𝐶, {𝑥
𝑛}) = {𝑥} ,

(18)

then 𝑥 is a fixed point of𝑇.

Lemma 5 (see [14]). Let 𝑉 : 𝐶 → 𝐻 be a 𝛾-Lipschitzian
mapping and let 𝐹 : 𝐶 → 𝐻 be a 𝐿-Lipschitzian and 𝜂-
strongly monotone operator; then, for 0 ≤ 𝜌𝛾 < 𝜇𝜂,

⟨(𝜇𝐹 − 𝜌𝑉) 𝑥 − (𝜇𝐹 − 𝜌𝑉) 𝑦, 𝑥 − 𝑦⟩

≥ (𝜇𝜂 − 𝜌𝛾)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
, ∀𝑥, 𝑦 ∈ 𝐶.

(19)

That is to say, the operator 𝜇𝐹 − 𝜌𝑉 is 𝜇𝜂 − 𝜌𝛾-strongly
monotone.

Lemma 6 (see [22]). Let 𝐶 be a nonempty subset of a real
Hilbert space 𝐻. Suppose that 𝜆 ∈ (0, 1) and 𝜇 > 0. Let
𝐹 : 𝐶 → 𝐻 be a 𝐿-Lipschitzian and 𝜂-strongly monotone
operator. Define the mapping 𝐺 : 𝐶 → 𝐻 by

𝐺𝑥 = 𝑥 − 𝜆𝜇𝐹𝑥, ∀𝑥 ∈ 𝐶. (20)

Then, 𝐺 is a contraction that provided 𝜇 < 2𝜂/𝐿
2. More

precisely, for 𝜇 ∈ (0, 2𝜂/𝐿
2
),

󵄩󵄩󵄩󵄩𝐺𝑥 − 𝐺𝑦
󵄩󵄩󵄩󵄩 ≤ (1 − 𝜆]) 󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶, (21)

where ] = 1 − √1 − 𝜇(2𝜂 − 𝜇𝐿2).

Lemma 7 (see [10]). Assume that {𝑥
𝑛
} is a sequence of

nonnegative real numbers such that

𝑥
𝑛+1

≤ (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝛽
𝑛
, ∀𝑛 ≥ 1, (22)

where {𝛼
𝑛
} and {𝛽

𝑛
} are sequences of real numbers which satisfy

the following conditions:
(i) {𝛼
𝑛
} ⊂ [0, 1], and ∑

∞

𝑛=1
𝛼
𝑛
= ∞;

(ii) either lim sup
𝑛→∞

𝛽
𝑛
≤ 0 or ∑∞

𝑛=1
𝛼
𝑛
𝛽
𝑛
< ∞.

Then lim𝑛→∞𝑥𝑛 = 0.

3. Main Result

Theorem 8. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻. Let 𝑆 be a nonexpansive mapping and
𝑇 a demicontinuous nearly nonexpansive mapping on 𝐶 with
respect to the sequence {𝑎𝑛} such that Fix(𝑇) ̸= 0. Let 𝑉 : 𝐶 →

𝐻 be a 𝛾-Lipschitzian mapping and 𝐹 : 𝐶 → 𝐻 a 𝐿-
Lipschitzian and 𝜂-strongly monotone operator such that the
coefficients satisfy 0 < 𝜇 < 2𝜂/𝐿

2, 0 ≤ 𝜌𝛾 < ], where ] =

1 − √1 − 𝜇(2𝜂 − 𝜇𝐿2). For an arbitrarily initial value 𝑥
1
∈ 𝐶,

consider the sequence {𝑥
𝑛
} in 𝐶 generated by

𝑦
𝑛
= 𝛽
𝑛
𝑆𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑥
𝑛
,

𝑥
𝑛+1

= 𝑃
𝐶
[𝛼
𝑛
𝜌𝑉𝑥
𝑛
+ (𝐼 − 𝛼

𝑛
𝜇𝐹)𝑇

𝑛
𝑦
𝑛
] ,

∀𝑛 ≥ 1,

(23)
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where {𝛼
𝑛
} and {𝛽

𝑛
} are sequences in [0, 1] satisfying the fol-

lowing conditions:

(i) lim
𝑛→∞

𝛼
𝑛
= 0, and ∑

∞

𝑛=1
𝛼
𝑛
= ∞;

(ii) lim
𝑛→∞(𝑎𝑛/𝛼𝑛) = 0, lim𝑛→∞(𝛽𝑛/𝛼𝑛) = 0,

lim𝑛→∞(|𝛼𝑛 − 𝛼𝑛−1|/𝛼𝑛) = 0, and lim𝑛→∞(|𝛽𝑛 −
𝛽
𝑛−1

|/𝛼
𝑛
) = 0;

(iii) lim𝑛→∞‖𝑇
𝑛
𝑥 − 𝑇

𝑛−1
𝑥‖ = 0, and lim𝑛→∞(‖𝑇

𝑛
𝑥 −

𝑇
𝑛−1

𝑥‖/𝛼𝑛) = 0, ∀𝑥 ∈ 𝐶.

Then, the sequence {𝑥
𝑛} converges strongly to 𝑥

∗
∈ Fix(𝑇),

where 𝑥
∗ is the unique solution of the variational inequality

(10).

Proof. Since the mapping 𝜇𝐹 − 𝜌𝑉 is a strongly monotone
operator from Lemma 5, it is known that the variational
inequality (10) has a unique solution. Let us denote this
solution by 𝑥

∗
∈ Fix(𝑇). Now, we divide our proof into five

steps.

Step 1. First we show that the sequence {𝑥
𝑛
} generated by (23)

is bounded. From condition (ii), without loss of generality,
we may suppose that 𝛽

𝑛
≤ 𝛼
𝑛
, for all 𝑛 ≥ 1. Hence, we get

lim
𝑛→∞

𝛽
𝑛

= 0. Let 𝑝 ∈ Fix(𝑇) and 𝑡
𝑛

= 𝛼
𝑛
𝜌𝑉𝑥
𝑛
+ (𝐼 −

𝛼
𝑛
𝜇𝐹)𝑇
𝑛
𝑦
𝑛
. Then we have

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝛽𝑛𝑆𝑥𝑛 + (1 − 𝛽
𝑛
) 𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑆𝑝
󵄩󵄩󵄩󵄩

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑆𝑝 − 𝑝
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑆𝑝 − 𝑝
󵄩󵄩󵄩󵄩 ,

(24)

and, by using the definition of nearly nonexpansive mapping
and Lemma 6, we obtain
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑃𝐶𝑡𝑛 − 𝑃

𝐶
𝑝
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑡𝑛 − 𝑝

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛼𝑛𝜌𝑉𝑥𝑛 + (𝐼 − 𝛼

𝑛
𝜇𝐹)𝑇

𝑛
𝑦
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝜌𝑉𝑥𝑛 − 𝜇𝐹𝑝
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩(𝐼 − 𝛼

𝑛
𝜇𝐹)𝑇

𝑛
𝑦
𝑛
− (𝐼 − 𝛼

𝑛
𝜇𝐹)𝑇

𝑛
𝑝
󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
𝜌𝛾

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝛼
𝑛

󵄩󵄩󵄩󵄩𝜌𝑉𝑝 − 𝜇𝐹𝑝
󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛
]) (󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝑎
𝑛
) .

(25)

From (24) and (25), we get

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
𝜌𝛾

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝛼
𝑛

󵄩󵄩󵄩󵄩𝜌𝑉𝑝 − 𝜇𝐹𝑝
󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛
]) (󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑆𝑝 − 𝑝
󵄩󵄩󵄩󵄩 + 𝑎
𝑛
)

≤ (1 − 𝛼𝑛 (] − 𝜌𝛾))
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ 𝛼
𝑛 (] − 𝜌𝛾)

× [
1

(] − 𝜌𝛾)
(
󵄩󵄩󵄩󵄩𝜌𝑉𝑝 − 𝜇𝐹𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑆𝑝 − 𝑝

󵄩󵄩󵄩󵄩 +
𝑎
𝑛

𝛼
𝑛

)] .

(26)

From condition (ii), this sequence is bounded, and so we can
write

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩 ≤ (1 − 𝛼

𝑛
(] − 𝜌𝛾))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
(] − 𝜌𝛾)𝑀,

(27)

where

1

(] − 𝜌𝛾)
(
󵄩󵄩󵄩󵄩𝜌𝑉𝑝 − 𝜇𝐹𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑆𝑝 − 𝑝

󵄩󵄩󵄩󵄩 +
𝑎
𝑛

𝛼
𝑛

) ≤ 𝑀,

∀𝑛 ≥ 1.

(28)

Therefore, by induction, we get
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 ≤ max {󵄩󵄩󵄩󵄩𝑥1 − 𝑝
󵄩󵄩󵄩󵄩 ,𝑀} . (29)

Hence, we obtain that {𝑥
𝑛
} is bounded. So, the sequences {𝑦

𝑛
},

{𝑇𝑥
𝑛
}, {𝑆𝑥
𝑛
}, {𝑉𝑥

𝑛
}, and {𝐹𝑇𝑦

𝑛
} are bounded too.

Step 2. Secondly, we show that lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0. By

using the iteration (23), we have
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦

𝑛−1

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝛽𝑛𝑆𝑥𝑛 + (1 − 𝛽

𝑛
) 𝑥
𝑛
− 𝛽
𝑛−1

𝑆𝑥
𝑛−1

− (1 − 𝛽
𝑛−1

) 𝑥
𝑛−1

󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑆𝑥𝑛−1
󵄩󵄩󵄩󵄩 + (1 − 𝛽

𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨 (
󵄩󵄩󵄩󵄩𝑆𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛−1

󵄩󵄩󵄩󵄩)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽

𝑛−1

󵄨󵄨󵄨󵄨𝑀1,

(30)

where𝑀
1 is a constant such that sup𝑛≥1{‖𝑆𝑥𝑛‖ + ‖𝑥𝑛‖} ≤ 𝑀1,

and
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑃𝐶𝑡𝑛 − 𝑃

𝐶
𝑡
𝑛−1

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝛼
𝑛
𝜌𝑉𝑥
𝑛
+ (𝐼 − 𝛼

𝑛
𝜇𝐹)𝑇

𝑛
𝑦
𝑛
− 𝛼
𝑛−1

𝜌𝑉𝑥
𝑛−1

− (𝐼 − 𝛼
𝑛−1

𝜇𝐹)𝑇
𝑛−1

𝑦
𝑛−1

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝛼𝑛𝜌𝑉 (𝑥

𝑛
− 𝑥
𝑛−1

) + (𝛼
𝑛
− 𝛼
𝑛−1

) 𝜌𝑉𝑥
𝑛−1

+ (𝐼 − 𝛼
𝑛
𝜇𝐹)𝑇

𝑛
𝑦
𝑛
− (𝐼 − 𝛼

𝑛
𝜇𝐹)𝑇

𝑛
𝑦
𝑛−1

+ 𝑇
𝑛
𝑦
𝑛−1

− 𝑇
𝑛−1

𝑦
𝑛−1

+ 𝛼
𝑛−1

𝜇𝐹𝑇
𝑛−1

𝑦
𝑛−1

− 𝛼
𝑛
𝜇𝐹𝑇
𝑛
𝑦
𝑛−1

󵄩󵄩󵄩󵄩
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≤ 𝛼𝑛𝜌𝛾
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩 + 𝜌
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑉𝑥𝑛−1

󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛
]) 󵄩󵄩󵄩󵄩𝑇
𝑛
𝑦
𝑛
− 𝑇
𝑛
𝑦
𝑛−1

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛
𝑦
𝑛−1

− 𝑇
𝑛−1

𝑦
𝑛−1

󵄩󵄩󵄩󵄩󵄩

+ 𝜇
󵄩󵄩󵄩󵄩󵄩
𝛼
𝑛−1

𝐹𝑇
𝑛−1

𝑦
𝑛−1

− 𝛼
𝑛
𝐹𝑇
𝑛
𝑦
𝑛−1

󵄩󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
𝜌𝛾

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩 + 𝜌
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛−1

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑉𝑥𝑛−1

󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛
]) [󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦

𝑛−1

󵄩󵄩󵄩󵄩 + 𝑎
𝑛
]

+
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛
𝑦
𝑛−1

− 𝑇
𝑛−1

𝑦
𝑛−1

󵄩󵄩󵄩󵄩󵄩

+ 𝜇
󵄩󵄩󵄩󵄩󵄩
𝛼
𝑛−1

(𝐹𝑇
𝑛−1

𝑦
𝑛−1

− 𝐹𝑇
𝑛
𝑦
𝑛−1

)

− (𝛼𝑛 − 𝛼
𝑛−1

) 𝐹𝑇
𝑛
𝑦
𝑛−1

󵄩󵄩󵄩󵄩󵄩
.

(31)

So, from (30) and (31), we get
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
𝜌𝛾

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩 + 𝜌
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛−1

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑉𝑥𝑛−1

󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛
]) 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛])

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨𝑀1

+ (1 − 𝛼𝑛]) 𝑎𝑛 +
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛
𝑦𝑛−1 − 𝑇

𝑛−1
𝑦𝑛−1

󵄩󵄩󵄩󵄩󵄩

+ 𝜇𝛼
𝑛−1𝐿

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛
𝑦𝑛−1 − 𝑇

𝑛−1
𝑦𝑛−1

󵄩󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛−1

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝐹𝑇
𝑛
𝑦
𝑛−1

󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
(] − 𝜌𝛾))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛−1

󵄨󵄨󵄨󵄨 (𝜌
󵄩󵄩󵄩󵄩𝑉𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐹𝑇
𝑛
𝑦
𝑛−1

󵄩󵄩󵄩󵄩)

+ (1 + 𝜇𝛼
𝑛−1

𝐿)
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛
𝑦
𝑛−1

− 𝑇
𝑛−1

𝑦
𝑛−1

󵄩󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽

𝑛−1

󵄨󵄨󵄨󵄨𝑀1 + 𝑎
𝑛

≤ (1 − 𝛼
𝑛
(] − 𝜌𝛾))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
𝑛−1

󵄩󵄩󵄩󵄩 + 𝛼
𝑛
(] − 𝜌𝛾) 𝛿

𝑛
,

(32)

where

𝛿𝑛 =
1

(] − 𝜌𝛾)

× [(1 + 𝜇𝛼
𝑛−1

𝐿)

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛
𝑦
𝑛−1

− 𝑇
𝑛−1

𝑦
𝑛−1

󵄩󵄩󵄩󵄩󵄩

𝛼
𝑛

+(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼
𝑛
− 𝛼
𝑛−1

𝛼𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛽
𝑛
− 𝛽
𝑛−1

𝛼𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)𝑀
2
+

𝑎
𝑛

𝛼𝑛

] ,

sup
𝑛≥1

{𝜌
󵄩󵄩󵄩󵄩𝑉𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐹𝑇𝑛𝑦𝑛−1

󵄩󵄩󵄩󵄩 ,𝑀1} ≤ 𝑀2.

(33)

By using the conditions (ii) and (iii), since lim sup
𝑛→∞

𝛿
𝑛
≤

0, it follows from Lemma 7 that
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0, as 𝑛 󳨀→ ∞. (34)

Step 3. Next, we show that lim
𝑛→∞

‖𝑥
𝑛
− 𝑇𝑥
𝑛
‖ = 0. For 𝑛 ≥

𝑚 ≥ 1, we get
󵄩󵄩󵄩󵄩𝑇
𝑛
𝑦
𝑛
− 𝑇
𝑚
𝑥
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛
𝑦
𝑛
− 𝑇
𝑛−1

𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛−1

𝑦
𝑛
− 𝑇
𝑛−2

𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩

+ ⋅ ⋅ ⋅ +
󵄩󵄩󵄩󵄩𝑇
𝑚
𝑦
𝑛
− 𝑇
𝑚
𝑥
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛
𝑦
𝑛
− 𝑇
𝑛−1

𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛−1

𝑦
𝑛
− 𝑇
𝑛−2

𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩

+ ⋅ ⋅ ⋅ +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 + 𝑎
𝑚
,

(35)

and so
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑇

𝑚
𝑥𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑃𝐶𝑡𝑛 − 𝑃

𝐶
𝑇
𝑚
𝑥
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝛼𝑛𝜌𝑉𝑥𝑛 + (𝐼 − 𝛼

𝑛
𝜇𝐹)𝑇

𝑛
𝑦
𝑛
− 𝑇
𝑚
𝑥
𝑛

󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝜌𝑉𝑥𝑛 − 𝜇𝐹𝑇
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇
𝑛
𝑦
𝑛
− 𝑇
𝑚
𝑥
𝑛

󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝜌𝑉𝑥𝑛 − 𝜇𝐹𝑇
𝑛
𝑦𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛
𝑦𝑛 − 𝑇

𝑛−1
𝑦𝑛

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛−1

𝑦𝑛 − 𝑇
𝑛−2

𝑦𝑛

󵄩󵄩󵄩󵄩󵄩
+ ⋅ ⋅ ⋅ +

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 + 𝑎
𝑚.

(36)

Hence, we obtain from (35) and (36) that
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑚
𝑥
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑇

𝑚
𝑥
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩 + 𝛼
𝑛

󵄩󵄩󵄩󵄩𝜌𝑉𝑥𝑛 − 𝜇𝐹𝑇
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛
𝑦
𝑛
− 𝑇
𝑛−1

𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛−1

𝑦
𝑛
− 𝑇
𝑛−2

𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩

+ ⋅ ⋅ ⋅ +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 + 𝑎
𝑚

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩 + 𝛼
𝑛

󵄩󵄩󵄩󵄩𝜌𝑉𝑥𝑛 − 𝜇𝐹𝑇
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛
𝑦
𝑛
− 𝑇
𝑛−1

𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛−1

𝑦
𝑛
− 𝑇
𝑛−2

𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩

+ ⋅ ⋅ ⋅ + 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 + 𝑎
𝑚
.

(37)

Since ‖𝜌𝑉𝑥
𝑛
−𝜇𝐹𝑇

𝑛
𝑦
𝑛
‖ and ‖𝑆𝑥

𝑛
−𝑥
𝑛
‖ are bounded, it follows

from (34), (37), condition (i), and condition (iii) that

lim
𝑚→∞

( lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇
𝑚
𝑥𝑛

󵄩󵄩󵄩󵄩) = 0. (38)

Combining (38) and condition (iii), we have
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑚
𝑥𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑇
𝑚
𝑥
𝑛
− 𝑇𝑥
𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0, as 𝑛,𝑚 󳨀→ ∞.

(39)

Step 4. Now, we show that lim sup
𝑛→∞

⟨(𝜌𝑉 − 𝜇𝐹)𝑥
∗
, 𝑥
𝑛
−

𝑥
∗
⟩ ≤ 0, where 𝑥

∗ is the unique solution of the variational
inequality (10). Since the sequence {𝑥𝑛} is bounded, it has a
weak convergent subsequence {𝑥𝑛𝑘} such that

lim sup
𝑛→∞

⟨(𝜌𝑉 − 𝜇𝐹) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩

= lim sup
𝑘→∞

⟨(𝜌𝑉 − 𝜇𝐹) 𝑥
∗
, 𝑥
𝑛𝑘
− 𝑥
∗
⟩ .

(40)



6 Journal of Applied Mathematics

Let 𝑥
𝑛𝑘

⇀ 𝑥, as 𝑘 → ∞. Then, Opial’s condition guarantees
that the weakly subsequential limit of {𝑥

𝑛
} is unique. Hence,

this implies that 𝑥
𝑛
⇀ 𝑥, as 𝑛 → ∞. So, it follows from (38),

Theorem 3, and Lemma 4 that 𝑥 ∈ Fix(𝑇). Therefore

lim sup
𝑛→∞

⟨(𝜌𝑉 − 𝜇𝐹) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩

= ⟨(𝜌𝑉 − 𝜇𝐹) 𝑥
∗
, 𝑥 − 𝑥

∗
⟩ ≤ 0.

(41)

Step 5. Finally, we show that the sequence {𝑥
𝑛
} converges

strongly to 𝑥
∗. By using inequality (15), we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

= ⟨𝑃
𝐶
𝑡
𝑛
− 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

= ⟨𝑃𝐶𝑡𝑛 − 𝑡𝑛, 𝑥𝑛+1 − 𝑥
∗
⟩ + ⟨𝑡𝑛 − 𝑥

∗
, 𝑥𝑛+1 − 𝑥

∗
⟩

≤ ⟨𝛼
𝑛
𝜌𝑉𝑥
𝑛
+ (𝐼 − 𝛼

𝑛
𝜇𝐹)𝑇

𝑛
𝑦
𝑛
− 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

= ⟨𝛼
𝑛
(𝜌𝑉𝑥
𝑛
− 𝜇𝐹𝑥

∗
) + (𝐼 − 𝛼

𝑛
𝜇𝐹)𝑇

𝑛
𝑦
𝑛

− (𝐼 − 𝛼
𝑛
𝜇𝐹)𝑇

𝑛
𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

= 𝛼
𝑛
𝜌 ⟨𝑉𝑥

𝑛
− 𝑉𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

+ 𝛼
𝑛
⟨𝜌𝑉𝑥
∗
− 𝜇𝐹𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

+ ⟨(𝐼 − 𝛼𝑛𝜇𝐹)𝑇
𝑛
𝑦𝑛 − (𝐼 − 𝛼𝑛𝜇𝐹)𝑇

𝑛
𝑥
∗
, 𝑥𝑛+1 − 𝑥

∗
⟩

≤ 𝛼
𝑛
𝜌𝛾

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
⟨𝜌𝑉𝑥
∗
− 𝜇𝐹𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

+ (1 − 𝛼
𝑛]) (

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 + 𝑎

𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩 .

(42)

Also, by using inequality (24), we get

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛
𝜌𝛾

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

+ 𝛼
𝑛 ⟨𝜌𝑉𝑥

∗
− 𝜇𝐹𝑥

∗
, 𝑥𝑛+1 − 𝑥

∗
⟩

+ (1 − 𝛼
𝑛
]) (󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑆𝑥
∗
− 𝑥
∗󵄩󵄩󵄩󵄩 + 𝑎

𝑛
)

×
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
(] − 𝜌𝛾))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
⟨𝜌𝑉𝑥
∗
− 𝜇𝐹𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

+ (1 − 𝛼𝑛]) 𝛽𝑛
󵄩󵄩󵄩󵄩𝑆𝑥
∗
− 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛
]) 𝑎
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

≤
(1 − 𝛼𝑛 (] − 𝜌𝛾))

2
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

2
)

+ 𝛼𝑛 ⟨𝜌𝑉𝑥
∗
− 𝜇𝐹𝑥

∗
, 𝑥𝑛+1 − 𝑥

∗
⟩

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑆𝑥
∗
− 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩 + 𝑎

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩 ,

(43)

which implies that
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

2

≤
(1 − 𝛼

𝑛
(] − 𝜌𝛾))

(1 + 𝛼𝑛 (] − 𝜌𝛾))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+
2𝛼
𝑛

(1 + 𝛼
𝑛
(] − 𝜌𝛾))

⟨𝜌𝑉𝑥
∗
− 𝜇𝐹𝑥

∗
, 𝑥𝑛+1 − 𝑥

∗
⟩

+
2𝛽
𝑛

(1 + 𝛼
𝑛
(] − 𝜌𝛾))

󵄩󵄩󵄩󵄩𝑆𝑥
∗
− 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

+
2𝑎
𝑛

(1 + 𝛼
𝑛
(] − 𝜌𝛾))

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛 (] − 𝜌𝛾))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2
+ 𝛼𝑛 (] − 𝜌𝛾) 𝜃𝑛,

(44)

where

𝜃
𝑛
=

2

(1 + 𝛼
𝑛
(] − 𝜌𝛾)) (] − 𝜌𝛾)

× [ ⟨𝜌𝑉𝑥
∗
− 𝜇𝐹𝑥

∗
, 𝑥𝑛+1 − 𝑥

∗
⟩

+
𝛽
𝑛

𝛼𝑛

𝑀
3
+

𝑎
𝑛

𝛼𝑛

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩] ,

sup
𝑛≥1

{
󵄩󵄩󵄩󵄩𝑆𝑥
∗
− 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩} ≤ 𝑀

3
.

(45)

From condition (ii), by using Step 4, we get

lim sup
𝑛→∞

𝜃
𝑛
≤ 0. (46)

So, it follows from Lemma 7 that the sequence {𝑥𝑛} generated
by (23) converges strongly to 𝑥∗ ∈ Fix(𝑇)which is the unique
solution of the variational inequality (10). This completes the
proof.

Remark 9. In particular, the point 𝑥∗ is the minimum norm
fixed point of 𝑇; namely, 𝑥∗ is the unique solution of the
quadratic minimization problem

𝑥
∗
= argmin
𝑥∈Fix(𝑇)

‖𝑥‖
2
. (47)

Indeed, since the point 𝑥
∗ is the unique solution of the

variational inequality (10), if we take 𝑉 = 0 and 𝐹 = 𝐼, then
we get

⟨⟨𝜇𝑥
∗
, 𝑥
∗
− 𝑥⟩ ≤ 0, ∀𝑥 ∈ Fix (𝑇)⟩ . (48)
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So we have

⟨𝑥
∗
, 𝑥
∗
− 𝑥⟩ = ⟨𝑥

∗
, 𝑥
∗
⟩ − ⟨𝑥

∗
, 𝑥⟩

≤ 0 󳨐⇒
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩

2
≤
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩 ‖𝑥‖ .

(49)

Hence, 𝑥∗ is the unique solution to the quadratic minimiza-
tion problem (47).

Since a nearly nonexpansive mapping can be reduced to
a nonexpansive mapping by taking the sequence {𝑎𝑛} as a
zero sequence, under the appropriate changes on the control
sequences arising from Lemma 7, we can derive main results
of Wang and Xu [15, Theorem 3.1] and Ceng et al. [14,
Theorem 3.1] as the following corollaries.

Corollary 10. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space𝐻. Let 𝑆, 𝑇 : 𝐶 → 𝐶 be nonexpansive map-
pings such that Fix(𝑇) ̸= 0. Let𝑉 : 𝐶 → 𝐻 be a 𝛾-Lip-schitzian
mapping and 𝐹 : 𝐶 → 𝐻 a 𝐿-Lipschitzian and 𝜂-strongly
monotone operator such that these coefficients satisfy 0 < 𝜇 <

2𝜂/𝐿
2, 0 ≤ 𝜌𝛾 < ], where ] = 1 − √1 − 𝜇(2𝜂 − 𝜇𝐿2). For an

arbitrarily initial value 𝑥
1 ∈ 𝐶, consider the sequence {𝑥𝑛} in

𝐶 generated by (11) where {𝛼𝑛} and {𝛽𝑛} are sequences in [0, 1]

satisfying the following conditions:

(i) lim
𝑛→∞

𝛼
𝑛
= 0, and ∑

∞

𝑛=1
𝛼
𝑛
= ∞;

(ii) lim
𝑛→∞

(𝛽
𝑛
/𝛼
𝑛
) = 0;

(iii) ∑∞
𝑛=1

|𝛼
𝑛+1

− 𝛼
𝑛
| < ∞, and ∑

∞

𝑛=1
|𝛽
𝑛+1

− 𝛽
𝑛
| < ∞.

Then, the sequence {𝑥𝑛} converges strongly to 𝑥
∗

∈ Fix(𝑇),
where 𝑥

∗ is the unique solution of the variational inequality
(10). In particular, the point 𝑥∗ is the minimum norm fixed
point of 𝑇; that is, 𝑥∗ is the unique solution of the quadratic
minimization problem (47).

Proof. In the proof of Theorem 8, for all 𝑛 ≥ 1, if we take
the mapping 𝑇 as a nonexpansive mapping, then the desired
conclusion is obtained.

Corollary 11. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻. Let 𝑇 : 𝐶 → 𝐶 be a nonexpansive
mapping such that Fix(𝑇) ̸= 0. Let 𝑉 : 𝐶 → 𝐻 be a 𝛾-
Lipschitzian mapping with 𝐹 : 𝐶 → 𝐻 being a 𝐿-Lipschitzian
and 𝜂-strongly monotone operator such that these coefficients
satisfy 0 < 𝜇 < 2𝜂/𝐿

2, 0 ≤ 𝜌𝛾 < ], where ] =

1 − √1 − 𝜇(2𝜂 − 𝜇𝐿2). For an arbitrarily initial value 𝑥1 ∈

𝐶, con-sider the sequence {𝑥
𝑛
} in 𝐶 generated by (9) where

{𝛼
𝑛
} and {𝛽

𝑛
} are sequences in [0, 1] satisfying the following

conditions:

(i) lim
𝑛→∞

𝛼
𝑛
= 0, and ∑

∞

𝑛=1
𝛼
𝑛
= ∞;

(ii) either∑∞
𝑛=1

|𝛼
𝑛+1

−𝛼
𝑛
| < ∞ or lim

𝑛→∞
(𝛼
𝑛+1

/𝛼
𝑛
) = 0.

Then, the sequence {𝑥
𝑛
} converges strongly to 𝑥

∗
∈ Fix(𝑇),

where 𝑥
∗ is the unique solution of the variational inequality

(10).

Proof. In the proof of Theorem 8, let 𝑆 = 𝐼 where 𝐼 is the
identity mapping and 𝑇 a nonexpansive mapping. Then, the
proof is clear.

Let {𝑇
𝑛
} be a sequence of mappings from𝐶 into𝐻 and let

{𝑎
𝑛

𝑚
} be a sequence in [0,∞) with lim

𝑚→∞
𝑎
𝑛

𝑚
= 0, for each

𝑛 ≥ 1. Then, {𝑇
𝑛
} is called a sequence of nearly nonexpansive

mappings with respect to a sequence {𝑎𝑛
𝑚
} if

󵄩󵄩󵄩󵄩𝑇
𝑚

𝑛
𝑥 − 𝑇
𝑚

𝑛
𝑦
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 + 𝑎
𝑛

𝑚
,

∀𝑥, 𝑦 ∈ 𝐶, 𝑛,𝑚 ≥ 1.

(50)

Considering Remarks 1 and 2, it is too easy to see that
the sequence {𝑇𝑛} defined by (50) is different from the
sequence defined by (12) of Wong et al. [16]. The iter-
ative scheme defined by (23) can be modified for the
sequence of nearly nonexpansive mappings defined by (50).
Accordingly, the problem written in the following remark
arises.

Remark 12. For a sequence of nearly nonexpansive mappings
(50) with a nonempty common fixed points set, it is an
open problem whether or not an iteration process generated
by this sequence will converge strongly to a common fixed
point.

Example 13. Let𝐻 = R and𝐶 = [0, 1]. Let 𝑆 = 𝐼,𝑉𝑥 = 3𝑥+1,
𝐹𝑥 = 4𝑥, and

𝑇𝑥 =

{{{

{{{

{

1

2
, if 𝑥 ∈ [0,

1

2
]

0, if 𝑥 ∉ (
1

2
, 1]

(51)

for all 𝑥 ∈ 𝐶. It is clear that 𝑆 is nonexpansive, 𝑉 is 𝛾-
Lipschitzian with 𝛾 = 3, 𝐹 is 𝐿-Lipschitzian and 𝜂-strongly
monotone operator with 𝐿 = 𝜂 = 4, and 𝑇 is a nearly
nonexpansive mapping with respect to the sequence {𝑎𝑛} =

{1/2𝑛
2
}. Define sequences {𝛼

𝑛
} and {𝛽

𝑛
} in [0, 1] by 𝛼

𝑛
=

1/(𝑛 + 1) and 𝛽
𝑛 = 1/(𝑛

2
+ 1), and take 𝜇 = 1/4, 𝜌 = 1/5,

and ] = 1. It is easy to see that all the conditions of Theorem 8
are satisfied. So, the sequence {𝑥𝑛} generated by the iterative
scheme (23) becomes

𝑥
𝑛+1

=
3𝑥 + 1

5 (𝑛 + 1)
−

𝑥

2 (𝑛 + 1)
+
1

2
, ∀𝑥 ∈ 𝐶, 𝑛 ≥ 2, (52)

and it converges strongly to 𝑥
∗

= 1/2 which is the unique
fixed point of 𝑇 and the unique solution of the variational
inequality (10) over 𝐹(𝑇). The first ten values of iterative
scheme (52) for the different initial values 𝑥

1
= 0.1, 𝑥

1
= 0.5,

and 𝑥
1
= 0.8 are as in Table 1.
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Table 1: The numerical results are obtained by using FORTRAN90
Programming Language.

𝑥
1

1.000000𝐸 − 01 5.000000𝐸 − 01 8.000000𝐸 − 01

𝑥
2

5.700000𝐸 − 01 5.833333𝐸 − 01 2.266667𝐸 − 01

𝑥
3

5.642500𝐸 − 01 5.645834𝐸 − 01 5.700000𝐸 − 01

𝑥
4

5.512850𝐸 − 01 5.512916𝐸 − 01 5.514000𝐸 − 01

𝑥
5

5.425214𝐸 − 01 5.425215𝐸 − 01 5.425233𝐸 − 01

𝑥
6

5.363218𝐸 − 01 5.363218𝐸 − 01 5.363218𝐸 − 01

𝑥
7

5.317040𝐸 − 01 5.317040𝐸 − 01 5.317040𝐸 − 01

...
...

...
...

𝑥
10

5.229571𝐸 − 01 5.229571𝐸 − 01 5.229571𝐸 − 01

...
...

...
...
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