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With respect to decision making problems under uncertainty, a trapezoidal intuitionistic fuzzy multiattribute decision making
method based on cumulative prospect theory and Dempster-Shafer theory is developed. The proposed method reflects behavioral
characteristics of decision makers, information fuzziness under uncertainty, and uncertain attribute weight information. Firstly,
distance measurement and comparison rule of trapezoidal intuitionistic fuzzy numbers are used to derive value function under
trapezoidal intuitionistic fuzzy environment. Secondly, the value function and decision weight function are used to calculate
prospect values of attributes for each alternative.Then considering uncertain attribute weight information, Dempster-Shafer theory
is used to aggregate prospect values for each alternative, and overall prospect values are obtained and thus the alternatives are sorted
consequently. Finally, an illustrative example shows the feasibility of the proposed method.

1. Introduction

Existing multiattribute decision making methods based on
expected utility theory assume that decisionmakers are com-
pletely rational. However, under risk and uncertainty, due to
the vagueness of the decision making problems and limited
human cognition, the actual decision making behavior is not
entirely rational but bounded rationality [1]. There are much
evidence, such as Allais paradox [2], the certainty effect [3],
showing that, under risk and uncertainty, the expected utility
theory is not valid as a descriptive theory for individual’s deci-
sion making as it ignores the behaviors and cognitive factors
of decision makers. On the basis of surveys and experiments,
Kahneman and Tversky [3] proposed prospect theory which
was further developed into cumulative prospect theory [4].
The prospect theory finds decision making behavior patterns
which are not aware by expected utility theory. Since prospect
theory can better reflect subjective risk attitude/preferences of
the decision maker, it is more realistic to establish a prospect

theory-based decision making method than an expected
utility theory-based decision making method.

Recently, some scholars have incorporated prospect the-
ory into multiattribute decision making. Bleichrodt et al.
[5] studied the multiattribute utility under prospect theory,
but there was no direct link between utilities and choices,
and they did not provide data correlation process for the
prescriptive analysis. In order to solve this problem, Gomes
and Lima [6] proposed a method called TODIM which was
a discrete MADM method used to solve riskless decision
problems based on prospect theory, but its inability to
deal with uncertainty and imprecision decision information
affected its application. Then some scholars have considered
the uncertainty and imprecision decision information, Wang
and Sun [7] proposed a fuzzy multiple criteria decision
making method based on prospect theory; Lahdelma and
Salminen [8] introduced the SMAA-Pmethod that combined
the piecewise linear difference functions of prospect theory
with SMAA; Liu et al. [9] researched the multiattribute
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decision making under risk with interval probability based
on prospect theory and the uncertain linguistic variables;
Krohling and de Souza [10] proposed a novel method based
on prospect theory and fuzzy numbers. Peng et al. [11]
proposed a random multiattribute decision making method
based on prospect theory and trapezoidal fuzzy numbers.

However, the previous researches are inadequate. Due
to the complexity of socioeconomic environment, in many
practical decision making problems, the preferences over
alternatives expressed by decision makers are usually impre-
cise; that is, there may be hesitation about preferences. In
such case, intuitionistic fuzzy set, as an extension of Zadeh’s
fuzzy set [12], introduced by Atanassov [13], can be suitable
and convenient to express the decision makers’ preferences.
Recently, intuitionistic fuzzy set received more and more
attention [14–18]. However, both the fuzzy set and the intu-
itionistic fuzzy set only use discrete domains. Fuzzy numbers
are special cases of fuzzy sets and are of importance for fuzzy
multiattribute decision making problems [19–22]. Nehi and
Maleki [23] introduced the trapezoidal intuitionistic fuzzy
numbers as the extension of triangular intuitionistic fuzzy
numbers. The trapezoidal intuitionistic fuzzy numbers are
the extension of intuitionistic fuzzy sets in another way,
which extends discrete set to continuous set, and they are
the extension of fuzzy numbers [24]. Indeed some authors
have noticed the advantage of trapezoidal intuitionistic fuzzy
numbers in multiattribute decision making [25–28].

Furthermore, multiattribute decision making problems
generally require decision makers to give attribute weight
information. However, due to the complexity of the decision
making environment, time pressure, lack of data, and limited
information processing capability, attribute weight informa-
tion has some uncertainty characteristics. Dempster-Shafer
(D-S) theory [29] is an uncertain reasoning theory. It provides
a unified framework for representing uncertain information
allowing for representing “uncertainty,” “ignorance,” and
other important concepts of cognitive science [30, 31]. So we
can use D-S theory to deal with uncertain attribute weight
information in multicriteria decision making.

Motivated by the advantages of prospect theory, trape-
zoidal intuitionistic fuzzy numbers and D-S theory in mul-
ticriteria decision making, this paper proposes a novel mul-
ticriteria decision making method by combining cumulative
prospect theory, trapezoidal intuitionistic fuzzy numbers,
and D-S theory into multicriteria decision making. The
proposed model has the following characteristics: behaviors
and cognitive factors of decision making under risk are cap-
tured; imprecise and fuzzy information is depicted; uncertain
attributeweight information is considered,which can provide
decision makers with a complete picture of the decision
problem in the uncertain environment.

This paper is organized as follows. In Section 2, we intro-
duce some basic definitions of the trapezoidal intuitionistic
fuzzy numbers, cumulative prospect theory, and D-S theory
and define the gains and losses under trapezoidal intuition-
istic fuzzy environment. In Section 3, a trapezoidal intuition-
istic fuzzy multiattribute decision making method based on
cumulative prospect theory and D-S theory is proposed. In
Section 4, an illustrative example shows the feasibility and

availability of the proposed method. Section 5 presents the
comparison analysis with other correspondingworks. Finally,
some concluding remarks are drawn in Section 6.

2. Preliminaries

In this section, some basic definitions of trapezoidal intu-
itionistic fuzzy numbers, cumulative prospect theory, and D-
S theory are introduced.

2.1. Trapezoidal Intuitionistic Fuzzy Numbers

Definition 1 (see [13]). Let𝑋 be a universe of discourse.Then
an intuitionistic fuzzy set 𝐴 in𝑋 is given by

𝐴 = {⟨𝑋, 𝜇
𝐴 (𝑥) , ]𝐴 (𝑥) | 𝑥 ∈ 𝑋⟩} , (1)

where 𝜇
𝐴
(𝑥) : 𝑋 → [0, 1], ]

𝐴
(𝑥) : 𝑋 → [0, 1] with the

condition

0 ≤ 𝜇
𝐴 (𝑥) + ]𝐴 (𝑥) ≤ 1, ∀𝑥 ∈ 𝑋. (2)

The numbers 𝜇
𝐴
(𝑥) and V

𝐴
(𝑥) denote the degree of mem-

bership and nonmembership of the element 𝑥 to the set 𝐴,
respectively. In addition, the degree of hesitancy of 𝑥 can be
computed as follows:

𝜋
𝐴 (𝑥) = 1 − 𝜇𝐴 (𝑥) − ]𝐴 (𝑥) , ∀𝑥 ∈ 𝑋. (3)

Obviously, if 𝜋
𝐴
(𝑥) = 0, then the intuitionistic fuzzy set

reduces to a fuzzy set.
A trapezoidal intuitionistic fuzzy number is a special

intuitionistic fuzzy set.

Definition 2 (see [24]). Let 𝐴 be a trapezoidal intuitionistic
fuzzy number on a real number set 𝑅, and its membership is
defined as follows:

𝜇
𝐴 (𝑥) =

{{{{{{

{{{{{{

{

𝑥 − 𝑎

𝑏 − 𝑎
𝜇
𝐴
, 𝑎 ≤ 𝑥 < 𝑏;

𝜇
𝐴
, 𝑏 ≤ 𝑥 ≤ 𝑐;

𝑑 − 𝑥

𝑑 − 𝑐
𝜇
𝐴
, 𝑐 < 𝑥 ≤ 𝑑;

0, otherwise.

(4)

Its nonmembership is defined as follows:

V
𝐴 (𝑥) =

{{{{{{{{

{{{{{{{{

{

𝑏 − 𝑥 + V
𝐴
(𝑥 − 𝑎

1
)

𝑏
2
− 𝑏
1

, 𝑎
1
≤ 𝑥 < 𝑏;

V
𝐴
, 𝑏 ≤ 𝑥 ≤ 𝑐;

𝑥 − 𝑐 + V
𝐴
(𝑑
1
− 𝑥)

𝑑
1
− 𝑐

, 𝑐 < 𝑥 ≤ 𝑑
1
;

0, otherwise,

(5)

where 0 ≤ 𝜇
𝐴
≤ 1, 0 ≤ V

𝐴
≤ 1, 𝜇

𝐴
+ V
𝐴
≤ 1; 𝑎, 𝑏, 𝑐, 𝑑, 𝑎

1
, 𝑑
1
∈

𝑅, 𝐴 = ⟨([𝑎, 𝑏, 𝑐, 𝑑]; 𝜇
𝐴
), ([𝑎
1
, 𝑏, 𝑐, 𝑑

1
]; V
𝐴
)⟩ is called a trape-

zoidal intuitionistic fuzzy number. Generally, in trapezoidal
intuitionistic fuzzy number 𝐴, there are 𝑎 = 𝑎

1
, 𝑑 = 𝑑

1
.

Then trapezoidal intuitionistic fuzzy number𝐴 is denoted by
𝐴 = ([𝑎, 𝑏, 𝑐, 𝑑]; 𝜇

𝐴
, V
𝐴
).
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We call 𝜋
𝐴
= 1 − 𝜇

𝐴
− ]
𝐴
the degree of hesitancy of the

trapezoidal intuitionistic fuzzy number𝐴. Obviously, if 𝑏 = 𝑐
in the trapezoidal intuitionistic fuzzy number𝐴,𝐴 reduces to
a triangular intuitionistic fuzzy number.

Definition 3. Let 𝐴 = ([𝑎
1
, 𝑏
1
, 𝑐
1
, 𝑑
1
]; 𝜇
𝐴
, V
𝐴
), 𝐵 = ([𝑎

2
, 𝑏
2
,

𝑐
2
, 𝑑
2
]; 𝜇
𝐵
, V
𝐵
) be two trapezoidal intuitionistic fuzzy numbers

on a real number set 𝑅; then the Hamming distance between
them is defined as follows:

𝑑 (𝐴, 𝐵) =
1

8
(
󵄨󵄨󵄨󵄨(1 + 𝜇𝐴 − V𝐴) 𝑎1 − (1 + 𝜇𝐵 − V𝐵) 𝑎2

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨(1 + 𝜇𝐴 − V𝐴) 𝑏1 − (1 + 𝜇𝐵 − V𝐵) 𝑏2

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨(1 + 𝜇𝐴 − V𝐴) 𝑐1 − (1 + 𝜇𝐵 − V𝐵) 𝑐2

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨(1 + 𝜇𝐴 − V𝐴) 𝑑1 − (1 + 𝜇𝐵 − V𝐵) 𝑑2

󵄨󵄨󵄨󵄨) .

(6)

For a trapezoidal intuitionistic fuzzy number 𝐴 =

([𝑎, 𝑏, 𝑐, 𝑑]; 𝜇
𝐴
, V
𝐴
), Wang and Zhang [24] defined the

expected value 𝐸, score function 𝑆, and accuracy function𝐻
of trapezoidal intuitionistic fuzzy number as follows:

𝐸 (𝐴) =
1

8
× [(𝑎 + 𝑏 + 𝑐 + 𝑑) × (1 + 𝜇𝐴 − V𝐴)] ;

𝑆 (𝐴) = 𝐸 (𝐴) × (𝜇𝐴 − V𝐴) ;

𝐻 (𝐴) = 𝐸 (𝐴) × (𝜇𝐴 + V𝐴) .

(7)

According to the expected value 𝐸, score function 𝑆,
and accuracy function 𝐻, the comparison rule between two
trapezoidal intuitionistic fuzzy numbers 𝐴 = ([𝑎

1
, 𝑏
1
, 𝑐
1
, 𝑑
1
];

𝜇
𝐴
, V
𝐴
) and 𝐵 = ([𝑎

2
, 𝑏
2
, 𝑐
2
, 𝑑
2
]; 𝜇
𝐵
, V
𝐵
) can be defined as

follows:

if 𝑆(𝐴) > 𝑆(𝐵), then 𝐴 > 𝐵;
if 𝑆(𝐴) = 𝑆(𝐵), then consider the following:

(1) if𝐻(𝐴) > 𝐻(𝐵), then 𝐴 > 𝐵;
(2) if𝐻(𝐴) = 𝐻(𝐵), then 𝐴 = 𝐵.

2.2. Cumulative Prospect Theory. The prospect, denoted
by 𝑓 = (𝑥

1
, 𝑝
1
; 𝑥
2
, 𝑝
2
; . . . ; 𝑥

𝑛
, 𝑝
𝑛
), is the basic research unit in

prospect theory which yields outcome 𝑥
𝑖
with probability 𝑝

𝑖

[3]. Cumulative prospect theory, a development of prospect
theory, has emerged as one of themost prominent alternatives
to the expected utility theory [32].

Value function together with decision weight function
determines the prospect value in cumulative prospect theory.

Cumulative prospect theory defines the value associated
with gains or losses from a reference point rather than
the absolute amount of wealth. Tversky and Kahneman [4]
proposed a value function that can well meet the reversing of
risk aversion/risk seeking in case of gains or losses, which is
defined as follows:

V (Δ𝑥
𝑖
) = {

(Δ𝑥
𝑖
)
𝛼

Δ𝑥 ≥ 0

−𝜆(−Δ𝑥
𝑖
)
𝛽
Δ𝑥 ≤ 0,

(8)

where Δ𝑥
𝑖
is the difference between outcome 𝑥

𝑖
and the

reference point 𝑥
0
; there is a gain if 𝑥

𝑖
is larger than 𝑥

0

and a loss if 𝑥
𝑖
is smaller than 𝑥

0
; the coefficients 𝛼 and 𝛽

indicate the curvature of the value function for gains and
losses, respectively; the coefficient 𝜆 indicates that the loss
area is steeper than gains region in value function.

If the outcome 𝑥
𝑖
and reference point 𝑥

0
are expressed

with trapezoidal intuitionistic fuzzy numbers, then Δ𝑥
𝑖
can

be calculated by the following formula:

Δ𝑥
𝑖
= {
𝑑 (𝑥
𝑖
, 𝑥
0
) 𝑥

𝑖
≥ 𝑥
0
;

−𝑑 (𝑥
𝑖
, 𝑥
0
) 𝑥
𝑖
< 𝑥
0
.

(9)

In cumulative prospect theory, prospect value of a
prospect 𝑓 is determined by both value function V and
decision weight function 𝜋. Prospect value of the prospect 𝑓
can be calculated by the following formulas:

𝑉 (𝑓) = 𝑉 (𝑓
+
) + 𝑉 (𝑓

−
) , (10)

𝑉 (𝑓
+
) =

𝑛

∑

𝑖=𝑘+1

𝜋
(𝑖)

+V (Δ𝑥
(𝑖)
) , (11)

𝑉 (𝑓
−
) =

𝑘

∑

𝑖=1

𝜋
(𝑖)

−V (Δ𝑥
(𝑖)
) , (12)

where (𝑖) indicates a permutation on {1, 2, . . . , 𝑛} such that
Δ𝑥
(1)
≤ Δ𝑥
(2)
≤ ⋅ ⋅ ⋅ ≤ Δ𝑥

(𝑘)
≤ 0 ≤ Δ𝑥

(𝑘+1)
≤ ⋅ ⋅ ⋅ ≤ Δ𝑥

(𝑛)
;

decision weight function 𝜋 can be calculated by capacity
function 𝑤:

𝜋
(1)

−
= 𝑤
−
(𝑝
(1)
) ,

𝜋
(𝑛)

+
= 𝑤
+
(𝑝
(𝑛)
) ,

𝜋
(𝑖)

+
= 𝑤
+
(𝑝
(𝑖)
+ ⋅ ⋅ ⋅ + 𝑝

(𝑛)
) − 𝑤
+
(𝑝
(𝑖+1)

+ ⋅ ⋅ ⋅ + 𝑝
(𝑛)
) ,

𝑘 < 𝑖 ≤ 𝑛 − 1,

𝜋
(𝑖)

−
= 𝑤
−
(𝑝
(1)
+ ⋅ ⋅ ⋅ + 𝑝

(𝑖)
) − 𝑤
−
(𝑝
(1)
+ ⋅ ⋅ ⋅ + 𝑝

(𝑖−1)
) ,

2 ≤ 𝑖 ≤ 𝑘.

(13)

For prospects under risk, Prelec [33] gave 𝑤+and 𝑤−as
follows:

𝑤
+
(

𝑛

∑

𝑗=𝑖

𝑝
(𝑗)
) = exp(−𝛾+(− ln(

𝑛

∑

𝑗=𝑖

𝑝
(𝑗)
))

𝜑

) ,

𝑤
−
(

𝑖

∑

𝑗=1

𝑝
(𝑗)
) = exp(−𝛾−(− ln(

𝑛

∑

𝑗=𝑖

𝑝
(𝑗)
))

𝜑

) ,

(14)

where 𝛾+, 𝛾−, and 𝜑 are model parameters.

2.3. D-S Theory. In the decision making methods based
on evidence theory, the decision makers’ preferences are
expressed by mass function.Mass function can well describe
the concept of “incomplete information,” “inaccurate infor-
mation,” and “information uncertain.” Mass function is built
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on the basis of the recognition framework. Assuming there is
a judgment issue, withΘ representing all the possible answers
to the question and all elements in the complete collection
Θ being independent, then we call the complete set Θ a
recognition framework. Then, according to Shafer [29], we
introduce another important concept in theD-S theory: basic
probability distribution function.

Definition 4. Let Θ be recognition framework. If the set
function𝑚 : 2Θ → [0, 1] satisfies

𝑚(0) = 0,

∑

𝐴⊆Θ

𝑚(𝐴) = 1,
(15)

then we call 𝑚(𝐴) basic probability distribution function on
recognition framework Θ.
𝑚(𝐴) represents decision maker’s exact trust degree for

proposition 𝐴. For the empty set, the exact trust degree for
proposition 𝐴 is 0. If the decision maker fully trusts on
proposition 𝐴, then 𝑚(𝐴) = 1. If the exact trust degree is
greater than 0, we call the element a focal element.

If we use D-S theory in the decision making process,
the evidence should be integrated. In literature, there are
many operators for information aggregation. The ordered
weighted averaging (OWA) operator [34] is a very common
operator which provides a wide range of the parametric
aggregation operators including the maximum, minimum,
and arithmetic average. In view of the advantages of D-
S theoretical framework and OWA operator in uncertain
information processing, Yager [35] developed a more general
aggregation operator.

Definition 5. Orderedweighted average operator based onD-
S theory, denoted by DS-OWA, can be defined as

DS −OWA (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) =

𝑟

∑

𝑘=1

𝑞𝑘

∑

𝑗𝑘=1

𝑚(𝐵
𝑘
) 𝑤
𝑗𝑘
𝑏
𝑗𝑘
, (16)

where 𝑤
𝑗𝑘
is the weight vector associated with the 𝑘th focal

element, satisfying 𝑤
𝑗𝑘
∈ [0, 1], ∑𝑞𝑘

𝑗𝑘=1
𝑤
𝑗𝑘
= 1; 𝑏

𝑗𝑘
is the 𝑗

𝑘
th

largest number of the 𝑎
𝑖𝑘
; 𝑎
𝑖
is parameter variable, 𝑚(𝐵

𝑘
) is a

basic probability assignment, 𝑞
𝑘
is the cardinal number of the

𝑘th focal element, and 𝑟 is the sum of focal elements.

3. Multiattribute Decision Making Method
Based on Cumulative Prospect Theory

For a multiattribute decision making problem under risk and
uncertainty, let 𝐴 = {𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑚
} be a set of alternatives

and𝐶 = {𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
} 𝑛 decision attributes; for each attribute

𝑐
𝑗
, there are 𝑙

𝑗
possible natural states {𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑙𝑗
} with

probability 𝑝
𝑗𝑡
, and the preference value of attribute 𝑐

𝑗
on

alternative 𝐴
𝑖
is 𝑥
𝑖𝑗𝑡

which is expressed in the form of
trapezoidal intuitionistic fuzzy numbers. Different attributes
have different reference points. For attribute 𝑐

𝑗
, reference

point is denoted by 𝑟
𝑗0
.

With these notations, we introduce our novel trapezoidal
intuitionistic fuzzy multiattribute decision making method
based on cumulative prospect theory and D-S theory as
follows.

Step 1. Obtain decision matrix 𝐷 = (𝑥
𝑖𝑗
)
𝑚×𝑛

, where 𝑥
𝑖𝑗
=

(𝑥
𝑖𝑗1
, 𝑝
𝑗1
; 𝑥
𝑖𝑗2
, 𝑝
𝑗2
; . . . ; 𝑥

𝑖𝑙𝑗
, 𝑝
𝑗𝑙𝑗
) is the trapezoidal intuition-

istic fuzzy prospect of attribute 𝑐
𝑗
on alternative 𝐴

𝑖
. To

eliminate the impact of different dimensions of decision
information, decision matrix should be normalized. If 𝑥

𝑖𝑗𝑡
=

([𝑎
1

𝑖𝑗𝑡
, 𝑎
2

𝑖𝑗𝑡
, 𝑎
3

𝑖𝑗𝑡
, 𝑎
4

𝑖𝑗𝑡
]; 𝜇
𝑖𝑗𝑡
, V
𝑖𝑗𝑡
), then in the normalized decision

matrix 𝐷󸀠 = (𝑥󸀠
𝑖𝑗
)
𝑚×𝑛
, 𝑥
󸀠

𝑖𝑗
= (𝑥
󸀠

𝑖𝑗1
, 𝑝
𝑗1
; 𝑥
󸀠

𝑖𝑗2
, 𝑝
𝑗2
; . . . ; 𝑥

󸀠

𝑖𝑙𝑗
, 𝑝
𝑗𝑙𝑗
)

where 𝑥󸀠
𝑖𝑗𝑡

= ([𝑏
1

𝑖𝑗𝑡
, 𝑏
2

𝑖𝑗𝑡
, 𝑏
3

𝑖𝑗𝑡
, 𝑏
4

𝑖𝑗𝑡
]; 𝜇
𝑖𝑗𝑡
, V
𝑖𝑗𝑡
), for the cost

attributes

𝑏
𝑞

𝑖𝑗𝑡
=

max
𝑖,𝑡
(𝑎
4

𝑖𝑗𝑡
) − 𝑎
5−𝑞

𝑖𝑗𝑡

max
𝑖,𝑡
(𝑎
4

𝑖𝑗𝑡
) −min

𝑖,𝑡
(𝑎
1

𝑖𝑗𝑡
)

, 𝑞 = 1, 2, 3, 4; (17)

for the benefit attributes

𝑏
𝑞

𝑖𝑗𝑡
=

𝑎
𝑞

𝑖𝑗𝑡
−min

𝑖,𝑡
(𝑎
1

𝑖𝑗𝑡
)

max
𝑖,𝑡
(𝑎
4

𝑖𝑗𝑡
) −min

𝑖,𝑡
(𝑎
1

𝑖𝑗𝑡
)

, 𝑞 = 1, 2, 3, 4. (18)

Step 2. Selection of reference point 𝑟
𝑗0
: for attribute 𝑐

𝑗
, the

decision maker determines the reference point according to
his/her risk appetite and mental state. Generally, the status
quo, the goals, and aspirations or the minimum requirement
can be selected as a reference point [36]. Similarly, the
reference point 𝑟

𝑗0
should be converted into a normalized

value 𝑟󸀠
𝑗0

according to formula (17) or (18) to eliminate the
impact of different dimensions of decision information.

Step 3. For each trapezoidal intuitionistic fuzzy prospect 𝑥󸀠
𝑖𝑗
,

calculate its value function by the following formula:

𝑧
𝑖𝑗𝑡
= V (Δ𝑥󸀠

𝑖𝑗𝑡
) , (19)

where V(𝑥) is the value function in formula (8) and Δ𝑥󸀠
𝑖𝑗𝑡

is
the difference between outcome 𝑥󸀠

𝑖𝑗𝑡
and the reference point

𝑟
󸀠

𝑗0
:

Δ𝑥
󸀠

𝑖𝑗𝑡
= {
𝑑 (𝑥
󸀠

𝑖𝑗𝑡
, 𝑟
𝑗0
) 𝑥

󸀠

𝑖𝑗𝑡
≥ 𝑟
󸀠

𝑗0
;

−𝑑 (𝑥
󸀠

𝑖𝑗𝑡
, 𝑟
𝑗0
) 𝑥
󸀠

𝑖𝑗𝑡
< 𝑟
󸀠

𝑗0
.

(20)

Step 4. For each trapezoidal intuitionistic fuzzy prospect 𝑥󸀠
𝑖𝑗
,

calculate its prospect value by formulas (10)∼(14); then the
normalized decision matrix 𝐷󸀠 = (𝑥󸀠

𝑖𝑗
)
𝑚×𝑛

is converted into
prospect value matrix 𝑃 = (𝑧

𝑖𝑗
)
𝑚×𝑛

.

Step 5. The determination of attribute weight information by
mass function: firstly, compose Θ = {𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛
} as a frame

of discernment. Then decision makers give attribute weight
information according to their experience, knowledge, and
observations. It is worth mentioning that, due to the com-
plexity of the decision making environment, time pressure,
lack of data, limited information processing capability, and
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decision makers may usually consider one or more attributes
at the same point which compose collections of elements and
assign a number to each evidence representing the support
degree of the collection [29]. Assuming that decision makers
givemass function for 𝑘 collections of elements after the value
judgments, {𝐵

1
, 𝐵
2
, . . . , 𝐵

𝑙
} are focal elements in evidence

belief structure, probabilities assigned to each focal element
are𝑚(𝐵

𝑘
), and the number of elements in each focal element

is 𝑞
𝑘
.

Step 6. For different focal element 𝐵
𝑘
, determine the weight-

ing vector 𝑤 for OWA operator. Decision makers may use
different weight determination methods according to their
interests.

Step 7. For each alternative 𝐴
𝑖
, aggregate the prospect value

𝑧
𝑖𝑗

into an overall prospect value 𝑧
𝑖
by using DS-OWA

operator in Definition 5.

Step 8. Rank the alternatives according to the size of overall
prospects. The alternative with the biggest 𝑧

𝑖
can be consid-

ered as the best alternative.

4. Illustrative Example

Now suppose that a venture capital company wants to select
the most appropriate alternative to investment. After pree-
valuation, three alternatives 𝐴

1
, 𝐴
2
, and 𝐴

3
have remained

as alternatives for further selection. The four possible alter-
natives can be evaluated under four criteria: (1) growth
𝑐
1
, (2) economic benefits 𝑐

2
, (3) social benefits 𝑐

3
, and (4)

environmental impact 𝑐
4
. For attributes 𝑐

1
and 𝑐
2
, there are

four possible natural states {𝑠
1
, 𝑠
2
, 𝑠
3
, 𝑠
4
}, representing “very

good,” “good,” “general,” and “bad,” respectively. For attributes
𝑐
3
and 𝑐
4
, there are three possible states {𝑠

1
, 𝑠
2
, 𝑠
3
} representing

“very good,” “good,” and “general.”
According to the proposed novel trapezoidal intuitionis-

tic fuzzy multiattribute decision making method, the proce-
dure for alternative selection mainly contains the following
steps.

(1) In order to evaluate three alternatives, based on his
own experience and statistics, the decision maker
firstly gives the reference value 𝑥

𝑖𝑗
of attribute 𝑐

𝑗
on

alternative 𝐴
𝑖
, as shown in Tables 1, 2, 3, and 4.

Suppose the probability of each natural state can be
forecasted as𝑝

𝑗𝑡
; then according to the reference value

𝑥
𝑖𝑗
and probability 𝑝

𝑗𝑡
, we can obtain the trapezoidal

intuitionistic fuzzy prospect 𝑥
𝑖𝑗
= (𝑥

𝑖𝑗1
, 𝑝
𝑗1
; 𝑥
𝑖𝑗2
,

𝑝
𝑗2
; . . . ; 𝑥

𝑖𝑙𝑗
, 𝑝
𝑗𝑙𝑗
); thus, the decision matrix 𝐷 =

(𝑥
𝑖𝑗
)
𝑚×𝑛

can be obtained. To eliminate the impact
of the different dimensions of decision information,
formulas (18), for attributes 𝑐

1
, 𝑐
2
, and 𝑐

3
, and (17) for

attribute 𝑐
4
are used to convert the decision matrix

𝐷 = (𝑥
𝑖𝑗
)
𝑚×𝑛

into the normalized decision matrix
𝐷
󸀠
= (𝑥
󸀠

𝑖𝑗
)
𝑚×𝑛

.
(2) In order to obtain prospect value of attribute 𝑐

𝑗
on

each alternative, the decision maker determines the
reference point 𝑟

𝑗0
according to his/her risk appetite

and mental state. Suppose the given reference points
are as follows: 𝑟

10
= ([2, 3, 4, 6]; 0.6, 0.2); 𝑟

20
= ([2, 3,

5, 6]; 0.7, 0.2); 𝑟
30
= ([2, 3, 4, 5]; 0.6, 0.2); 𝑟

40
= ([2, 3,

4, 6]; 0.7, 0.1). Similarly, the reference point 𝑟
𝑗0
is con-

verted to normalized value 𝑟󸀠
𝑗0
according to formula

(17) or (18).
(3) For each trapezoidal intuitionistic fuzzy prospect 𝑥󸀠

𝑖𝑗
,

calculate its value function 𝑧
𝑖𝑗𝑡

by formulas (8), (19),
and (20), where in formula (8), in view of Tversky
and Kahneman [4], the coefficients 𝛼 = 𝛽 =

0.88, 𝜆 = 2.25. And then, according to formulas
(10)∼(14), calculate prospect value 𝑧

𝑖𝑗
of prospect 𝑥󸀠

𝑖𝑗
,

where in formula (14), in view of Goda and Hong
[37], the coefficients 𝛾+ = 𝛾

−
= 0.8, 𝜑 = 1.0.

Thus the normalized decision matrix 𝐷󸀠 = (𝑥󸀠
𝑖𝑗
)
𝑚×𝑛

is converted to prospect value matrix 𝑃 = (𝑧
𝑖𝑗
)
𝑚×𝑛

as
shown in Table 5.

(4) In order to determine evidence belief structure, deci-
sion makers discuss the importance of each attribute
and finally give the belief structure on discernment
frame Θ = {𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛
} according to their experi-

ence, knowledge, and observations as follows:

𝑚{𝐵
1
} = 𝑚 {𝑐

1
, 𝑐
3
} = 0.5;

𝑚 {𝐵
2
} = 𝑚 {𝑐

2
, 𝑐
3
} = 0.2;

𝑚 {𝐵
3
} = 𝑚 {𝑐

1
, 𝑐
4
} = 0.3.

(21)

(5) Here we use the normal distribution method [38] to
determine the weighting vector 𝑤 for OWA operator
with two arguments:

𝑤
2
= (0.7, 0.3) . (22)

(6) For each alternative 𝐴
𝑖
, aggregate the prospect value

𝑧
𝑖𝑗
into an overall prospect value 𝑧

𝑖
by using DS-OWA

operator in Definition 5, and we get

𝑧
1
= 0.0199, 𝑧

2
= 0.0278, 𝑧

3
= 0.0640. (23)

Rank the alternatives according to the size of overall prospect
values:

𝐴
3
≻ 𝐴
2
≻ 𝐴
1
. (24)

The alternative 𝐴
3
has the biggest 𝑧

𝑖
, so the best alterna-

tive is 𝐴
3
.

5. Comparison Analysis with Other
Corresponding Works

Compared with other corresponding works, the advantages
of our proposed method in this paper are summarized as
follows.

(1) The existing multiattribute decision making methods
based on expected utility theory ignore the decision
maker’s risk psychological factors, while our proposed
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Table 1: Prospect information for attribute 𝑐
1
.

𝑠
1

𝑠
2

𝑠
3

𝑠
4

0.1 0.3 0.4 0.2
𝐴
1

([3, 5, 6, 8]; 0.8, 0.1) ([2, 3, 4, 5]; 0.7, 0.2) ([2, 3, 4, 5]; 0.8, 0.1) ([2, 3, 4, 5]; 0.6, 0.2)

𝐴
2

([4, 5, 6, 7]; 0.7, 0.2) ([2, 3, 4, 5]; 0.5, 0.3) ([1, 2, 4, 6]; 0.7, 0.2) ([1, 2, 3, 5]; 0.5, 0.1)

𝐴
3

([1, 2, 3, 4]; 0.6, 0.2) ([3, 4, 5, 6]; 0.6, 0.2) ([2, 3, 4, 5]; 0.7, 0.1) ([2, 3, 5, 6]; 0.6, 0.2)

Table 2: Prospect information for attribute 𝑐
2
.

𝑠
1

𝑠
2

𝑠
3

𝑠
4

0.2 0.3 0.2 0.3
𝐴
1

([4, 5, 6, 8]; 0.5, 0.1) ([3, 4, 5, 6]; 0.6, 0.3) ([3, 4, 5, 6]; 0.8, 0.1) ([1, 2, 3, 4]; 0.6, 0.3)

𝐴
2

([3, 4, 6, 7]; 0.7, 0.1) ([3, 4, 5, 6]; 0.7, 0.2) ([1, 2, 3, 4]; 0.6, 0.1) ([2, 3, 4, 5]; 0.6, 0.3)

𝐴
3

([4, 5, 6, 7]; 0.6, 0.1) ([2, 3, 5, 7]; 0.7, 0.2) ([1, 2, 3, 4]; 0.7, 0.2) ([2, 3, 4, 5]; 0.7, 0.1)

Table 3: Prospect information for attribute 𝑐
3
.

𝑠
1

𝑠
2

𝑠
3

0.3 0.3 0.4
𝐴
1
([2, 3, 4, 6]; 0.7, 0.1) ([2, 4, 5, 6]; 0.6, 0.3) ([2, 3, 4, 5]; 0.5, 0.4)

𝐴
2
([3, 4, 5, 6]; 0.6, 0.2) ([4, 5, 6, 7]; 0.5, 0.2) ([1, 2, 4, 5]; 0.6, 0.2)

𝐴
3
([2, 3, 4, 5]; 0.6, 0.1) ([2, 3, 4, 5]; 0.8, 0.1) ([1, 2, 3, 4]; 0.7, 0.2)

Table 4: Prospect information for attribute 𝑐
4
.

𝑠
1

𝑠
2

𝑠
3

0.2 0.5 0.3
𝐴
1
([3, 4, 5, 6]; 0.5, 0.1) ([1, 2, 3, 4]; 0.7, 0.1) ([3, 4, 5, 7]; 0.7, 0.2)

𝐴
2
([2, 4, 5, 6]; 0.7, 0.2) ([2, 3, 4, 5]; 0.6, 0.1) ([1, 2, 3, 5]; 0.4, 0.3)

𝐴
3
([4, 5, 6, 7]; 0.5, 0.4) ([3, 4, 5, 6]; 0.4, 0.3) ([2, 3, 4, 5]; 0.8, 0.1)

Table 5: Prospect value matrix 𝑃 = (𝑧
𝑖𝑗
)
𝑚×𝑛

.

𝑐
1

𝑐
2

𝑐
3

𝑐
4

𝐴
1

0.060 −0.171 −0.111 −0.123
𝐴
2

−0.063 −0.134 0.045 −0.212
𝐴
3

0.006 −0.038 −0.105 −0.444

method based on cumulative prospect theory in this
paper can reflect well the subjective risk attitude/pref-
erences of the decision maker. The proposed method
fully takes into account the bounded rationality of
the decision maker in decision making under uncer-
tainty.

(2) The existing multiattribute decision making methods
based on prospect theory in literature [6–11] only use
crisp values, fuzzy numbers, and linguistic variables
to express decision information while our proposed
method in this paper uses trapezoidal intuitionistic
fuzzy numbers to depict uncertain and fuzzy informa-
tion. Comparedwith crisp values, fuzzy numbers, and
linguistic variables, trapezoidal intuitionistic fuzzy
numbers in this paper can accurately describe the
imprecise and vague preferences in decision making
under uncertainty.

(3) Compared with multiattribute decision making
methods based on trapezoidal intuitionistic fuzzy
numbers in the literature [25–28], our proposed
method in this paper noticed the uncertainty existing
in the knowledge of attributes and used D-S theory to
deal with the uncertain attribute weight information
in multicriteria decision making.

(4) Compared with other corresponding works, this
paper combines prospect theory, trapezoidal intu-
itionistic fuzzy numbers, and D-S theory to multicri-
teria decision making and provides decision makers
with a complete view of the decision problem in the
uncertain environment.

6. Conclusions

The prospect theory finds decision making behavior patterns
constituting violations of the expected utility theory. Since the
prospect theory can better reflect subjective risk preferences
of the decision makers, the prospect theory-based decision
making method is of more practical value than expected
utility theory-based method. For risky decision making
problemswhere attribute values are in the formof trapezoidal
intuitionistic fuzzy numbers and where attribute weights
are uncertain, this paper proposes a trapezoidal intuitionis-
tic fuzzy multiattribute decision making method based on
cumulative prospect theory and D-S theory and gives the
specific steps of the proposed method. On the one hand, the
proposed method reflects the psychological and behavioral
characteristics of decision makers; on the other hand, the
proposed method reflects the information fuzziness under
uncertainty and the uncertain attribute weight information
which is more in line with realistic decisions making. The
proposed method provides a guideline for the multiattribute
decision making under risk and uncertainty.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.



Journal of Applied Mathematics 7

Acknowledgments

This research work was supported by the National Natural
Sciences Foundation of China (nos. 71221061, 71401184),
China Postdoctoral Science Foundation (no. 2014M552169),
and Central South University Business Management Post-
doctoral Research Station.

References

[1] H. A. Simon, “A behavioral model of rational choice,”Quarterly
Journal of Economics, vol. 69, no. 1, pp. 99–118, 1955.

[2] M. Allais, “Le comportement de l’homme rationnel devant le
risque,” Econometrica. Journal of the Econometric Society, vol.
21, pp. 503–546, 1953.

[3] D. Kahneman and A. Tversky, “Prospect theory: an analysis of
decision under risk,” Econometrica, vol. 47, no. 2, pp. 263–292,
1979.

[4] A. Tversky and D. Kahneman, “Advances in prospect theory:
cumulative representation of uncertainty,” Journal of Risk and
Uncertainty, vol. 5, no. 4, pp. 297–323, 1992.

[5] H. Bleichrodt, U. Schmidt, and H. Zank, “Additive utility in
prospect theory,” Management Science, vol. 55, no. 5, pp. 863–
873, 2009.

[6] L. F. A. M. Gomes and M. M. P. P. Lima, “TODIM: basics
and application to multicriteria ranking of projects with envi-
ronmental impacts,” Foundations of Computing and Decision
Sciences, vol. 16, no. 4, pp. 113–127, 1992.

[7] J. Wang and T. Sun, “Fuzzy multiple criteria decision making
method based on prospect theory,” in Proceeding of the Inter-
national Conference on Information Management, Innovation
Management and Industrial Engineering (ICIII '08), vol. 1, pp.
288–291, Taipei, Taiwan, December 2008.

[8] R. Lahdelma and P. Salminen, “Prospect theory and stochastic
multicriteria acceptability analysis (SMAA),”Omega, vol. 37, no.
5, pp. 961–971, 2009.

[9] P. Liu, F. Jin, X. Zhang, Y. Su, and M. Wang, “Research on the
multi-attribute decision-making under risk with interval prob-
ability based on prospect theory and the uncertain linguistic
variables,” Knowledge-Based Systems, vol. 24, no. 4, pp. 554–561,
2011.

[10] R. A. Krohling and T. T. M. de Souza, “Combining prospect
theory and fuzzy numbers to multi-criteria decision making,”
Expert Systems with Applications, vol. 39, no. 13, pp. 11487–11493,
2012.

[11] L. Y. Peng, P. Liu, Z. Liu, and Y. Su, “Research on the
random multi-attribute decision-making methods with trape-
zoidal fuzzy probability based on prospect theory,” Journal of
Intelligent & Fuzzy Systems, vol. 26, pp. 2131–2141, 2014.

[12] L. A. Zadeh, “Fuzzy sets,” Information and Computation, vol. 8,
pp. 338–353, 1965.

[13] K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and
Systems, vol. 20, no. 1, pp. 87–96, 1986.

[14] G. Beliakov, M. Pagola, and T.Wilkin, “Vector valued similarity
measures for Atanassov’s intuitionistic fuzzy sets,” Information
Sciences, vol. 280, pp. 352–367, 2014.

[15] Y. D. He, H. Chen, L. Zhou, J. Liu, and Z. Tao, “Intuitionistic
fuzzy geometric interaction averaging operators and their appli-
cation to multi-criteria decision making,” Information Sciences,
vol. 259, pp. 142–159, 2014.

[16] Y. D. He, H. Chen, L. G. Zhou, B. Han, Q. Y. Zhao, and J.
P. Liu, “Generalized intuitionistic fuzzy geometric interaction
operators and their application to decision making,” Expert
Systems with Applications, vol. 41, no. 5, pp. 2484–2495, 2014.

[17] S. P.Wan andD. F. Li, “Atanassov’s intuitionistic fuzzy program-
ming method for heterogeneous multiattribute group decision
making with Atanassov’s intuitionistic fuzzy truth degrees,”
IEEE Transaction of Fuzzy Systems, vol. 22, pp. 300–312, 2014.

[18] L. Y. Zhang, T. Li, and X. H. Xu, “Consensus model for
multiple criteria group decision making under intuitionistic
fuzzy environment,” Knowledge-Based Systems, vol. 57, pp. 127–
135, 2014.

[19] D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and
Applications, Academic Press, New York, NY, USA, 1980.

[20] S. Abbasbandy and T. Hajjari, “A new approach for ranking of
trapezoidal fuzzy numbers,” Computers and Mathematics with
Applications, vol. 57, no. 3, pp. 413–419, 2009.

[21] B. Asady and A. Zendehnam, “Ranking fuzzy numbers by
distance minimization,” Applied Mathematical Modelling, vol.
31, no. 11, pp. 2589–2598, 2007.

[22] A. Hadi-Vencheh and M. Allame, “On the relation between a
fuzzy number and its centroid,” Computers and Mathematics
with Applications, vol. 59, no. 11, pp. 3578–3582, 2010.

[23] H.M. Nehi andH. R.Maleki, “Intuitionistic fuzzy numbers and
its applications in fuzzy optimization problem,” in Proceedings
of the 9th WSEAS International Conference on Systems, pp. 1–5,
Athens, Greece, 2005.

[24] J. Q. Wang and Z. Zhang, “Aggregation operators on intu-
itionistic trapezoidal fuzzy number and its application to
multi-criteria decision making problems,” Journal of Systems
Engineering and Electronics, vol. 20, no. 2, pp. 321–326, 2009.

[25] J. Ye, “Expected value method for intuitionistic trapezoidal
fuzzy multicriteria decision-making problems,” Expert Systems
with Applications, vol. 38, no. 9, pp. 11730–11734, 2011.

[26] S. Wan, “Power average operators of trapezoidal intuitionistic
fuzzy numbers and application to multi-attribute group deci-
sion making,” Applied Mathematical Modelling: Simulation and
Computation for Engineering and Environmental Systems, vol.
37, no. 6, pp. 4112–4126, 2013.

[27] J. Wu and Q. W. Cao, “Same families of geometric aggrega-
tion operators with intuitionistic trapezoidal fuzzy numbers,”
Applied Mathematical Modelling, vol. 37, no. 1-2, pp. 318–327,
2013.

[28] X. H. Li and X. H. Chen, “Extension of the TOPSIS method
based on prospect theory and trapezoidal intuitionistic fuzzy
numbers for group decisionmaking,” Journal of Systems Science
and Systems Engineering, vol. 23, no. 2, pp. 231–247, 2014.

[29] G. Shafer, A Mathematical Theory of Evidence, Princeton Uni-
versity Press, Princeton, NJ, USA, 1976.

[30] G. Wei, X. Zhao, and R. Lin, “Some hybrid aggregating opera-
tors in linguistic decision making with Dempster-Shafer belief
structure,” Computers and Industrial Engineering, vol. 65, no. 4,
pp. 646–651, 2013.

[31] W. Yang and Y. F. Pang, “The quasi-arithmetic triangular fuzzy
OWA operator based on Dempster-Shafer theory,” Journal of
Intelligent & Fuzzy Systems, vol. 26, pp. 1123–1135, 2014.

[32] U. Schmidt and H. Zank, “Risk aversion in cumulative prospect
theory,”Management Science, vol. 54, no. 1, pp. 208–216, 2008.

[33] D. Prelec, “The probability weighting function,” Econometrica,
vol. 66, no. 3, pp. 497–527, 1998.



8 Journal of Applied Mathematics

[34] R. R. Yager, “On ordered weighted averaging aggregation op-
erators in multicriteria decisionmaking,” IEEE Transactions on
Systems, Man, and Cybernetics, vol. 18, no. 1, pp. 183–190, 1988.

[35] R. R. Yager, “Decision making under Dempster—Shafer uncer-
tainties,” Studies in Fuzziness and Soft Computing, vol. 219, pp.
619–632, 2008.

[36] G. J. Koop and J. G. Johnson, “The use of multiple reference
points in risky decision making,” Journal of Behavioral Decision
Making, vol. 25, no. 1, pp. 49–62, 2012.

[37] K. Goda and H. P. Hong, “Application of cumulative prospect
theory: implied seismic design preference,” Structural Safety,
vol. 30, no. 6, pp. 506–516, 2008.

[38] Z. S. Xu, “An overview of methods for determining OWA
weights,” International Journal of Intelligent Systems, vol. 20, no.
8, pp. 843–865, 2005.


