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Some new weakly singular Henry-Gronwall type integral inequalities with “maxima” are established in this paper. Applications to
Caputo fractional differential equations with “maxima” are also presented.

1. Introduction

It is well known that Gronwall-Bellman type integral inequal-
ities play a dominant role in the study of quantitative
properties of solutions of differential and integral equations
[1–5]. Usually, the integrals concerning these type inequalities
have regular or continuous kernels, but some problems of
theory and practicality require us to solve integral inequalities
with singular kernels. For example, Henry [6] proposed a
method to find solutions and proved some results concern-
ing linear integral inequalities with weakly singular kernel.
Moreover, Medved’ [7, 8] presented a new approach to
solve integral inequalities of Henry-Gronwall type and their
Bihari version and obtained global solutions of semilinear
evolution equations. Ye and Gao [9] considered the integral
inequalities of Henry-Gronwall type and their applications to
fractional differential equations with delay. Ma and Pečarić
[10] established some weakly singular integral inequalities of
Gronwall-Bellman type and used them in the analysis of var-
ious problems in the theory of certain classes of differential
equations, integral equations, and evolution equations. Shao
andMeng [11] studied a certain class of nonlinear inequalities
of Gronwall-Bellman type, which is used to a qualitative
analysis to certain fractional differential equations. For other
results on the subject we refer to [12–18] and references cited
therein.

Differential equations with “maxima” are a special type
of differential equations that contain the maximum of the
unknown function over a previous interval. Several integral
inequalities have been established in the case when maxima
of the unknown scalar function are involved in the integral;
see [19, 20] and references cited therein.

Recently in [21] some new types of integral inequalities on
time scales with “maxima” are established, which can be used
as a handy tool in the investigation of making estimates for
bounds of solutions of dynamic equations on time scales with
“maxima.” In this paper we establish some Henry-Gronwall
type integral inequalities with “maxima.” The significance of
our work lies in the fact that “maxima” are taken on intervals
[𝛽𝑡, 𝑡] which have nonconstant length, where 0 < 𝛽 < 1.
Most of the papers take the “maxima” on [𝑡 − ℎ, 𝑡], where
ℎ > 0 is a given constant.We apply our results to demonstrate
the bound of solutions and the dependence of solutions
on the orders with initial conditions for Caputo fractional
differential equations with “maxima”

𝐷
𝛼

𝑥 (𝑡) = 𝑓(𝑡, 𝑥 (𝑡) , max
𝑠∈[𝛽𝑡,𝑡]

𝑥 (𝑠)) , 𝑡 ∈ 𝐼 = [𝑡
0
, 𝑇) ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [𝛽𝑡
0
, 𝑡
0
] .

(1)

The paper is organized as follows. In Section 2 we recall
some results from [21] in the special case T = R which
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are used to prove our main results which are presented in
Section 3. In the last Section 4 we give applications of our
results for an initial value problem for a Caputo fractional
differential equation with “maxima.”

2. Preliminaries

For convenience we let throughout 𝑡
0
> 0. The following

results in Lemmas 1 and 3 are obtained by reducing the time
scales T = R, 𝑓(𝑡) = 𝑔(𝑡) ≡ 1, and 𝑎(𝑡) = 𝑏(𝑡) ≡ 0 for all
𝑡 ∈ [𝑡
0
, 𝑇) in Theorems 3.3 and 3.2 ([21], page 8 and page 6),

respectively.

Lemma 1 (see [21]). Let the following conditions be satisfied:

(𝐻
1
) the functions 𝑝 and 𝑞 ∈ 𝐶([𝑡

0
, 𝑇),R

+
);

(𝐻
2
) the function 𝜙 ∈ 𝐶([𝛽𝑡

0
, 𝑇),R

+
) with

max
𝑠∈[𝛽𝑡0 ,𝑡0]

𝜙(𝑠) > 0, where 0 < 𝛽 < 1;
(𝐻
3
) the function 𝑢 ∈ 𝐶([𝛽𝑡

0
, 𝑇),R

+
) and satisfies the

inequalities

𝑢 (𝑡) ≤ 𝜙 (𝑡) + ∫
𝑡

𝑡0

[𝑝 (𝑠) 𝑢 (𝑠) + 𝑞 (𝑠) max
𝜉∈[𝛽𝑠,𝑠]

𝑢 (𝜉)] 𝑑𝑠,

𝑡 ∈ [𝑡
0
, 𝑇] ,

𝑢 (𝑡) ≤ 𝜙 (𝑡) , 𝑡 ∈ [𝛽𝑡
0
, 𝑡
0
] .

(2)

Then

𝑢 (𝑡) ≤ 𝜙 (𝑡) + ℎ (𝑡) exp(∫
𝑡

𝑡0

[𝑝 (𝑠) + 𝑞 (𝑠)] 𝑑𝑠) , 𝑡 ∈ [𝑡
0
, 𝑇)

(3)

holds, where

ℎ (𝑡) = max
𝑠∈[𝛽𝑡0 ,𝑡0]

𝜙 (𝑠) + ∫
𝑡

𝑡0

[𝑝 (𝑠) 𝜙 (𝑠) + 𝑞 (𝑠) max
𝜉∈[𝛽𝑠,𝑠]

𝜙 (𝜉)] 𝑑𝑠,

𝑡 ∈ [𝑡
0
, 𝑇) .

(4)

By splitting the initial function 𝜙 to be two functions, we
deduce the following corollary.

Corollary 2. Let the following conditions be satisfied:

(𝐻
4
) the functions 𝑝, 𝑞, and V ∈ 𝐶([𝑡

0
, 𝑇),R

+
);

(𝐻
5
) the function 𝑤 ∈ 𝐶([𝛽𝑡

0
, 𝑡
0
],R
+
) with

max
𝑠∈[𝛽𝑡0 ,𝑡0]

𝑤(𝑠) > 0 and 𝑤(𝑡
0
) = V(𝑡

0
), where

0 < 𝛽 < 1;
(𝐻
6
) the function 𝑢 ∈ 𝐶([𝛽𝑡

0
, 𝑇),R

+
) and satisfies the

inequalities

𝑢 (𝑡) ≤ V (𝑡) + ∫
𝑡

𝑡0

[𝑝 (𝑠) 𝑢 (𝑠) + 𝑞 (𝑠) max
𝜉∈[𝛽𝑠,𝑠]

𝑢 (𝜉)] 𝑑𝑠,

𝑡 ∈ [𝑡
0
, 𝑇) ,

𝑢 (𝑡) ≤ 𝑤 (𝑡) , 𝑡 ∈ [𝛽𝑡
0
, 𝑡
0
] .

(5)

Then

𝑢 (𝑡) ≤ V (𝑡) + ℎ (𝑡) exp(∫
𝑡

𝑡0

[𝑝 (𝑠) + 𝑞 (𝑠)] 𝑑𝑠) ,

𝑡 ∈ [𝑡
0
, 𝑇)

(6)

holds, where

ℎ (𝑡) = max
𝑠∈[𝛽𝑡0,𝑡0]

𝑤 (𝑠) + ∫
𝑡

𝑡0

[𝑝 (𝑠) V (𝑠) + 𝑞 (𝑠) max
𝜉∈[𝛽𝑠,𝑠]

𝑚 (𝜉)] 𝑑𝑠,

𝑡 ∈ [𝑡
0
, 𝑇) ,

(7)

with

𝑚(𝑡) = {
V (𝑡) , 𝑡 ∈ [𝑡

0
, 𝑇) ,

𝑤 (𝑡) , 𝑡 ∈ [𝛽𝑡
0
, 𝑡
0
] .

(8)

Lemma 3 (see [21]). Let the condition (𝐻
1
) of Lemma 1 be

satisfied. In addition, assume that

(𝐻
7
) the function 𝑘 ∈ 𝐶([𝑡

0
, 𝑇), (0,∞)) is nondecreasing;

(𝐻
8
) the function 𝜙 ∈ 𝐶([𝛽𝑡

0
, 𝑡
0
),R
+
), where 0 < 𝛽 < 1;

(𝐻
9
) the function 𝑢 ∈ 𝐶([𝛽𝑡

0
, 𝑇),R

+
) and satisfies the

inequalities

𝑢 (𝑡) ≤ 𝑘 (𝑡) + ∫
𝑡

𝑡0

[𝑝 (𝑠) 𝑢 (𝑠) + 𝑞 (𝑠) max
𝜉∈[𝛽𝑠,𝑠]

𝑢 (𝜉)] 𝑑𝑠,

𝑡 ∈ [𝑡
0
, 𝑇) ,

𝑢 (𝑡) ≤ 𝜙 (𝑡) , 𝑡 ∈ [𝛽𝑡
0
, 𝑡
0
] .

(9)

Then

𝑢 (𝑡) ≤ 𝑁𝑘 (𝑡) exp(∫
𝑡

𝑡0

[𝑝 (𝑠) + 𝑞 (𝑠)] 𝑑𝑠) , 𝑡 ∈ [𝑡
0
, 𝑇)

(10)

holds, where

𝑁 = max{1,
max
𝑠∈[𝛽𝑡0 ,𝑡0]

𝜙 (𝑠)

𝑘 (𝑡
0
)

} . (11)

The following lemma is a consequence of Jensen’s inequal-
ity which can be found in [22].

Lemma 4 (see [22]). Let 𝑛 ∈ 𝑁, and let 𝑥
1
, . . . , 𝑥

𝑛
be

nonnegative real numbers. Then, for 𝜎 > 1,

(

𝑛

∑
𝑖=1

𝑥
𝑖
)

𝜎

≤ 𝑛
𝜎−1

𝑛

∑
𝑖=1

𝑥
𝜎

𝑖
. (12)

3. Main Results

Theorem5. Suppose that the following conditions are satisfied:

(𝐻
10
) the functions 𝑝 and 𝑟 ∈ 𝐶([𝑡

0
, 𝑇),R

+
);
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(𝐻
11
) the function 𝜙 ∈ 𝐶([𝛽𝑡

0
, 𝑡
0
],R
+
) with

max
𝑠∈[𝛽𝑡0 ,𝑡0]

𝜙(𝑠) > 0, where 0 < 𝛽 < 1;
(𝐻
12
) the function 𝑢 ∈ 𝐶([𝛽𝑡

0
, 𝑇),R

+
) with

𝑢 (𝑡) ≤ 𝑟 (𝑡) + ∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−1

𝑝 (𝑠) max
𝜉∈[𝛽𝑠,𝑠]

𝑢 (𝜉) 𝑑𝑠, 𝑡 ∈ [𝑡
0
, 𝑇) ,

(13)

𝑢 (𝑡) ≤ 𝜙 (𝑡) , 𝑡 ∈ [𝛽𝑡
0
, 𝑡
0
] , (14)

where 𝛼 > 0.
Then the following assertions hold.

(𝑅
1
) Suppose 𝛼 > 1/2; then

𝑢 (𝑡) ≤ 𝑒
𝑡

[𝑐
1
𝑟
2

(𝑡) + ℎ
1
(𝑡) exp(𝐾

1
∫
𝑡

𝑡0

𝑝
2

(𝑠) 𝑑𝑠)]

1/2

,

𝑡 ∈ [𝑡
0
, 𝑇) ,

(15)

where

𝑐
1
= max {2𝑒−2𝑡0 , 𝑒−2𝛽𝑡0} , (16)

𝐾
1
=
Γ (2𝛼 − 1)

4𝛼−1
, (17)

ℎ
1
(𝑡) = 𝑐

1
max
𝑠∈[𝛽𝑡0 ,𝑡0]

𝜙
2

(𝑠) + 𝑐
1
𝐾
1
∫
𝑡

𝑡0

𝑝
2

(𝑠) max
𝜉∈[𝛽𝑠,𝑠]

𝑚
2

1
(𝜉) 𝑑𝑠,

𝑡 ∈ [𝑡
0
, 𝑇) ,

(18)

with

𝑚
1
(𝑡) = {

𝑟 (𝑡) , 𝑡 ∈ [𝑡
0
, 𝑇) ,

𝜙 (𝑡) , 𝑡 ∈ [𝛽𝑡
0
, 𝑡
0
] .

(19)

Moreover, if 𝑟 ∈ 𝐶([𝑡
0
, 𝑇), (0,∞)) is a nondecreasing

function, then

𝑢 (𝑡) ≤ √𝑐
1
𝑁
1
𝑟 (𝑡) exp(𝑡 + 1

2
𝐾
1
∫
𝑡

𝑡0

𝑝
2

(𝑠) 𝑑𝑠) ,

𝑡 ∈ [𝑡
0
, 𝑇) ,

(20)

where

𝑁
1
= max{1,

max
𝑠∈[𝛽𝑡0 ,𝑡0]

𝜙
2

(𝑠)

𝑟2 (𝑡
0
)

} . (21)

(𝑅
2
) Suppose 0 < 𝛼 ≤ 1/2; then

𝑢 (𝑡) ≤ 𝑒
𝑡

[𝑐
2
𝑟
𝑏

(𝑡) + ℎ
2
(𝑡) exp(2𝑏−1𝐾𝑏

2
∫
𝑡

𝑡0

𝑝
𝑏

(𝑠) 𝑑𝑠)]

1/𝑏

,

𝑡 ∈ [𝑡
0
, 𝑇) ,

(22)

where

𝑎 = 𝛼 + 1, (23)

𝑏 = 1 +
1

𝛼
, (24)

𝑐
2
= max {2𝑏−1𝑒−𝑏𝑡0 , 𝑒−𝑏𝛽𝑡0} , (25)

𝐾
2
= (

Γ (𝛼
2

)

𝑎𝛼
2
)

1/𝑎

, (26)

ℎ
2
(𝑡) = 𝑐

2
max
𝑠∈[𝛽𝑡0 ,𝑡0]

𝜙
𝑏

(𝑠)

+ 2
𝑏−1

𝑐
2
𝐾
𝑏

2
∫
𝑡

𝑡0

𝑝
𝑏

(𝑠) max
𝜉∈[𝛽𝑠,𝑠]

𝑚
𝑏

1
(𝜉) 𝑑𝑠,

𝑡 ∈ [𝑡
0
, 𝑇) .

(27)

Moreover, if 𝑟 ∈ 𝐶([𝑡
0
, 𝑇), (0,∞)) is a nondecreasing

function, then

𝑢 (𝑡) ≤ (𝑐
2
𝑁
2
)
1/𝑏

𝑟 (𝑡) exp(𝑡 + 2
𝑏−1

𝑏
𝐾
𝑏

2
∫
𝑡

𝑡0

𝑝
𝑏

(𝑠) 𝑑𝑠) ,

𝑡 ∈ [𝑡
0
, 𝑇) ,

(28)

where

𝑁
2
= max{1,

max
𝑠∈[𝛽𝑡0 ,𝑡0]

𝜙
𝑏

(𝑠)

𝑟𝑏 (𝑡
0
)

} . (29)

Proof. Consider (𝑅
1
) 𝛼 > 1/2. Using the Cauchy-Schwarz

inequality with (13), we get for 𝑡 ∈ [𝑡
0
, 𝑇)

𝑢 (𝑡) ≤ 𝑟 (𝑡) + ∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−1

𝑒
𝑠

𝑝 (𝑠) 𝑒
−𝑠 max
𝜉∈[𝛽𝑠,𝑠]

𝑢 (𝜉) 𝑑𝑠

≤ 𝑟 (𝑡) + [∫
𝑡

𝑡0

(𝑡 − 𝑠)
2𝛼−2

𝑒
2𝑠

𝑑𝑠]

1/2

× [∫
𝑡

𝑡0

𝑝
2

(𝑠) 𝑒
−2𝑠

( max
𝜉∈[𝛽𝑠,𝑠]

𝑢(𝜉))

2

𝑑𝑠]

1/2

.

(30)

The first integral of (30) implies the estimate

∫
𝑡

𝑡0

(𝑡 − 𝑠)
2𝛼−2

𝑒
2𝑠

𝑑𝑠 = ∫
𝑡−𝑡0

0

𝜏
2𝛼−2

𝑒
2(𝑡−𝜏)

𝑑𝜏

≤ 𝑒
2𝑡

∫
𝑡

0

𝜏
2𝛼−2

𝑒
−2𝜏

𝑑𝜏

=
2𝑒
2𝑡

4𝛼
∫
2𝑡

0

𝜎
2𝛼−2

𝑒
−𝜎

𝑑𝜎

<
2𝑒
2𝑡

4𝛼
Γ (2𝛼 − 1) .

(31)
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Therefore, from (30) and (31), we obtain

𝑢 (𝑡) ≤ 𝑟 (𝑡) + [
2𝑒
2𝑡

4𝛼
Γ (2𝛼 − 1)]

1/2

× [∫
𝑡

𝑡0

𝑝
2

(𝑠)𝑒
−2𝑠

( max
𝜉∈[𝛽𝑠,𝑠]

𝑢 (𝜉))

2

𝑑𝑠]

1/2

.

(32)

Applying Lemma 4 with 𝑛 = 2, 𝜎 = 2, we get

𝑢
2

(𝑡) ≤ 2𝑟
2

(𝑡)

+
𝑒
2𝑡

4𝛼−1
Γ (2𝛼 − 1) ∫

𝑡

𝑡0

𝑝
2

(𝑠) 𝑒
−2𝑠

( max
𝜉∈[𝛽𝑠,𝑠]

𝑢(𝜉))

2

𝑑𝑠,

𝑡 ∈ [𝑡
0
, 𝑇) .

(33)

Now, taking V(𝑡) = [𝑒
−𝑡

𝑢(𝑡)]
2, we have

V (𝑡) ≤ 2𝑒
−2𝑡

𝑟
2

(𝑡) +
Γ (2𝛼 − 1)

4𝛼−1

× ∫
𝑡

𝑡0

𝑝
2

(𝑠) 𝑒
−2𝑠

( max
𝜉∈[𝛽𝑠,𝑠]

𝑢(𝜉))

2

𝑑𝑠

≤ 2𝑒
−2𝑡0𝑟
2

(𝑡) +
Γ (2𝛼 − 1)

4𝛼−1

× ∫
𝑡

𝑡0

𝑝
2

(𝑠) max
𝜉∈[𝛽𝑠,𝑠]

(𝑒
−2𝜉

𝑢
2

(𝜉)) 𝑑𝑠

≤ 𝑐
1
𝑟
2

(𝑡) + 𝐾
1
∫
𝑡

𝑡0

𝑝
2

(𝑠) max
𝜉∈[𝛽𝑠,𝑠]

V (𝜉) 𝑑𝑠,

𝑡 ∈ [𝑡
0
, 𝑇) ,

(34)

and, for 𝑡 ∈ [𝛽𝑡
0
, 𝑡
0
],

V (𝑡) ≤ 𝑒
−2𝑡

𝜙
2

(𝑡) ≤ 𝑒
−2𝛽𝑡0𝜙

2

(𝑡) ≤ 𝑐
1
𝜙
2

(𝑡) , (35)

where 𝑐
1
and𝐾

1
are defined by (16) and (17), respectively.

Applying Corollary 2 for (34) and (35), we obtain

V (𝑡) ≤ 𝑐
1
𝑟
2

(𝑡) + ℎ
1
(𝑡) exp(𝐾

1
∫
𝑡

𝑡0

𝑝
2

(𝑠) 𝑑𝑠) ,

𝑡 ∈ [𝑡
0
, 𝑇) ,

(36)

where ℎ
1
is defined by (18). Therefore, we get the required

inequality in (15).
Moreover, if 𝑟 ∈ 𝐶([𝑡

0
, 𝑇), (0,∞)) is a nondecreasing

function, then, by applying Lemma 3 for (34) and (35), we
obtain the estimate

V (𝑡) ≤ 𝑐
1
𝑁
1
𝑟
2

(𝑡) exp(𝐾
1
∫
𝑡

𝑡0

𝑝
2

(𝑠) 𝑑𝑠) , 𝑡 ∈ [𝑡
0
, 𝑇) ,

(37)

where 𝑁
1
is defined by (21). Thus, we get the desired

inequality in (20). This completes the proof of the first part.

Consider (𝑅
2
) 0 < 𝛼 ≤ 1/2. Let 𝑎, 𝑏 be defined by (23)

and (24), respectively. It is obvious that (1/𝑎) + (1/𝑏) = 1.
Using the Hölder inequality in (13), for 𝑡 ∈ [𝑡

0
, 𝑇), we have

𝑢 (𝑡) ≤ 𝑟 (𝑡) + ∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−1

𝑒
𝑠

𝑝 (𝑠) 𝑒
−𝑠 max
𝜉∈[𝛽𝑠,𝑠]

𝑢 (𝜉) 𝑑𝑠

≤ 𝑟 (𝑡) + [∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝑎(𝛼−1)

𝑒
𝑎𝑠

𝑑𝑠]

1/𝑎

× [∫
𝑡

𝑡0

𝑝
𝑏

(𝑠)𝑒
−𝑏𝑠

( max
𝜉∈[𝛽𝑠,𝑠]

𝑢(𝜉))

𝑏

𝑑𝑠]

1/𝑏

.

(38)

Repeating the process to get (31), the first integral of (38)
implies the estimate

∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝑎(𝛼−1)

𝑒
𝑎𝑠

𝑑𝑠 <
𝑒
𝑎𝑡

𝑎1−𝑎(1−𝛼)
Γ (1 − 𝑎 (1 − 𝛼)) . (39)

Obviously, 1 − 𝑎(1 − 𝛼) = 𝛼
2

> 0 and Γ(1 − 𝑎(1 − 𝛼)) ∈ R.
From (38) and (39), it follows that

𝑢 (𝑡) ≤ 𝑟 (𝑡) + 𝐾
2
𝑒
𝑡

[∫
𝑡

𝑡0

𝑝
𝑏

(𝑠)𝑒
−𝑏𝑠

( max
𝜉∈[𝛽𝑠,𝑠]

𝑢(𝜉))

𝑏

𝑑𝑠]

1/𝑏

,

(40)

where 𝐾
2
is defined by (26). Applying Lemma 4 with 𝑛 = 2,

𝜎 = 𝑏, we have

𝑢
𝑏

(𝑡)

≤ 2
𝑏−1

[𝑟
𝑏

(𝑡) + 𝐾
𝑏

2
𝑒
𝑏𝑡

∫
𝑡

𝑡0

𝑝
𝑏

(𝑠) 𝑒
−𝑏𝑠

( max
𝜉∈[𝛽𝑠,𝑠]

𝑢 (𝜉))

𝑏

𝑑𝑠] ,

𝑡 ∈ [𝑡
0
, 𝑇) .

(41)

By setting V(𝑡) = [𝑒
−𝑡

𝑢(𝑡)]
𝑏, we get

V (𝑡) ≤ 𝑐
2
𝑟
𝑏

(𝑡) + 2
𝑏−1

𝐾
𝑏

2
∫
𝑡

𝑡0

𝑝
𝑏

(𝑠) max
𝜉∈[𝛽𝑠,𝑠]

V (𝜉) 𝑑𝑠,

𝑡 ∈ [𝑡
0
, 𝑇) ,

(42)

and, for 𝑡 ∈ [𝛽𝑡
0
, 𝑡
0
],

V (𝑡) ≤ 𝑒
−𝑏𝛽𝑡0𝜙

𝑏

(𝑡) ≤ 𝑐
2
𝜙
𝑏

(𝑡) , (43)

where 𝑐
2

is defined by (25). Consequently, applying
Corollary 2 with (42) and (43), we have

V (𝑡) ≤ 𝑐
2
𝑟
𝑏

(𝑡) + ℎ
2
(𝑡) exp(2𝑏−1𝐾𝑏

2
∫
𝑡

𝑡0

𝑝
𝑏

(𝑠) 𝑑𝑠) ,

𝑡 ∈ [𝑡
0
, 𝑇) ,

(44)

where ℎ
2
is defined by (27). Therefore, the desired inequality

(22) is established.



Abstract and Applied Analysis 5

Furthermore, if 𝑟 ∈ 𝐶([𝑡
0
, 𝑇), (0,∞)) is a nondecreasing

function, then by applying Lemma 3 for (42) and (43) we
deduce that

V (𝑡) ≤ 𝑐
2
𝑁
2
𝑟
𝑏

(𝑡) exp(2𝑏−1𝐾𝑏
2
∫
𝑡

𝑡0

𝑝
𝑏

(𝑠) 𝑑𝑠) ,

𝑡 ∈ [𝑡
0
, 𝑇) .

(45)

Thus, inequality (28) is proved.This completes the proof.

Theorem 6. Assume that

(𝐻
13
) the conditions (𝐻

10
), (𝐻
11
) of Theorem 5 are satisfied;

(𝐻
14
) the function 𝑞 ∈ 𝐶([𝑡

0
, 𝑇),R

+
);

(𝐻
15
) the function 𝑢 ∈ 𝐶([𝛽𝑡

0
, 𝑇),R

+
) with

𝑢 (𝑡)

≤ 𝑟 (𝑡) + ∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−1

[𝑝 (𝑠) 𝑢 (𝑠) + 𝑞 (𝑠) max
𝜉∈[𝛽𝑠,𝑠]

𝑢 (𝜉)] 𝑑𝑠,

𝑡 ∈ [𝑡
0
, 𝑇) ,

(46)

𝑢 (𝑡) ≤ 𝜙 (𝑡) , 𝑡 ∈ [𝛽𝑡
0
, 𝑡
0
] , (47)

where 𝛼 > 0.
Then the following assertions hold.

(𝑅
3
) Suppose 𝛼 > 1/2; then

𝑢 (𝑡)

≤ 𝑒
𝑡

[𝑐
3
𝑟
2

(𝑡) + ℎ
3
(𝑡) exp(𝐾

3
∫
𝑡

𝑡0

[𝑝
2

(𝑠) + 𝑞
2

(𝑠)] 𝑑𝑠)]

1/2

,

𝑡 ∈ [𝑡
0
, 𝑇) ,

(48)

where

𝑐
3
= max {3𝑒−2𝑡0 , 𝑒−2𝛽𝑡0} , (49)

𝐾
3
=

6

4𝛼
Γ (2𝛼 − 1) , (50)

ℎ
3
(𝑡) = 𝑐

3
max
𝑠∈[𝛽𝑡0 ,𝑡0]

𝜙
2

(𝑠) + 𝑐
3
𝐾
3

× ∫
𝑡

𝑡0

[𝑝
2

(𝑠) 𝑟
2

(𝑠) + 𝑞
2

(𝑠) max
𝜉∈[𝛽𝑠,𝑠]

𝑚
2

1
(𝜉)] 𝑑𝑠,

𝑡 ∈ [𝑡
0
, 𝑇) ,

(51)

with𝑚
1
being defined by (19).

Furthermore, if 𝑟 ∈ 𝐶([𝑡
0
, 𝑇), (0,∞)) is a nondecreas-

ing function, then

𝑢 (𝑡) ≤ √𝑐
3
𝑁
1
𝑟 (𝑡) exp(𝑡 + 1

2
𝐾
3
∫
𝑡

𝑡0

[𝑝
2

(𝑠) + 𝑞
2

(𝑠)] 𝑑𝑠) ,

𝑡 ∈ [𝑡
0
, 𝑇) ,

(52)

where𝑁
1
is defined by (21).

(𝑅
4
) Suppose 0 < 𝛼 ≤ 1/2; then

𝑢 (𝑡) ≤ 𝑒
𝑡

[𝑐
4
𝑟
𝑏

(𝑡)

+ ℎ
4
(𝑡) exp(3𝑏−1𝐾𝑏

2
∫
𝑡

𝑡0

[𝑝
𝑏

(𝑠) + 𝑞
𝑏

(𝑠)] 𝑑𝑠)]

1/𝑏

,

𝑡 ∈ [𝑡
0
, 𝑇) ,

(53)

where 𝑎, 𝑏, and 𝐾
2
are defined by (23), (24), and (26),

respectively,

𝑐
4
= max {3𝑏−1𝑒−𝑏𝑡0 , 𝑒−𝑏𝛽𝑡0} , (54)

ℎ
4
(𝑡) = 𝑐

4
max
𝑠∈[𝛽𝑡0,𝑡0]

𝜙
𝑏

(𝑠) + 𝑐
4
3
𝑏−1

𝐾
𝑏

2

× ∫
𝑡

𝑡0

[𝑝
𝑏

(𝑠) 𝑟
𝑏

(𝑠) + 𝑞
𝑏

(𝑠) max
𝜉∈[𝛽𝑠,𝑠]

𝑚
𝑏

1
(𝜉)] 𝑑𝑠,

𝑡 ∈ [𝑡
0
, 𝑇) .

(55)

Furthermore, if 𝑟 ∈ 𝐶([𝑡
0
, 𝑇), (0,∞)) is a nondecreas-

ing function, then

𝑢 (𝑡)

≤ (𝑐
4
𝑁
2
)
1/𝑏

𝑟 (𝑡) exp(𝑡 + 3
𝑏−1

𝑏
𝐾
𝑏

2
∫
𝑡

𝑡0

[𝑝
𝑏

(𝑠) + 𝑞
𝑏

(𝑠)] 𝑑𝑠) ,

𝑡 ∈ [𝑡
0
, 𝑇) ,

(56)

where𝑁
2
is defined by (29).

Proof. Consider (𝑅
3
) 𝛼 > 1/2. By using the Cauchy-Schwarz

inequality in (46), for 𝑡 ∈ [𝑡
0
, 𝑇), we have

𝑢 (𝑡) ≤ 𝑟 (𝑡) + ∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−1

𝑒
𝑠

𝑝 (𝑠) 𝑒
−𝑠

𝑢 (𝑠) 𝑑𝑠

+ ∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−1

𝑒
𝑠

𝑞 (𝑠) 𝑒
−𝑠 max
𝜉∈[𝛽𝑠,𝑠]

𝑢 (𝜉) 𝑑𝑠

≤ 𝑟 (𝑡) + [∫
𝑡

𝑡0

(𝑡 − 𝑠)
2𝛼−2

𝑒
2𝑠

𝑑𝑠]

1/2
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× [∫
𝑡

𝑡0

𝑝
2

(𝑠)𝑒
−2𝑠

𝑢
2

(𝑠)𝑑𝑠]

1/2

+ [∫
𝑡

𝑡0

(𝑡 − 𝑠)
2𝛼−2

𝑒
2𝑠

𝑑𝑠]

1/2

× [∫
𝑡

𝑡0

𝑞
2

(𝑠)𝑒
−2𝑠

( max
𝜉∈[𝛽𝑠,𝑠]

𝑢(𝜉))

2

𝑑𝑠]

1/2

≤ 𝑟 (𝑡) + [
2𝑒
2𝑡

4𝛼
Γ(2𝛼 − 1)]

1/2

×
{

{

{

[∫
𝑡

𝑡0

𝑝
2

(𝑠)𝑒
−2𝑠

𝑢
2

(𝑠)𝑑𝑠]

1/2

+[∫
𝑡

𝑡0

𝑞
2

(𝑠)𝑒
−2𝑠

( max
𝜉∈[𝛽𝑠,𝑠]

𝑢(𝜉))

2

𝑑𝑠]

1/2

}

}

}

.

(57)

Applying Lemma 4 with 𝑛 = 3, 𝜎 = 2, we get

𝑢
2

(𝑡) ≤ 3𝑟
2

(𝑡) +
6𝑒
2𝑡

4𝛼
Γ (2𝛼 − 1)

× [∫
𝑡

𝑡0

𝑝
2

(𝑠) 𝑒
−2𝑠

𝑢
2

(𝑠) 𝑑𝑠

+∫
𝑡

𝑡0

𝑞
2

(𝑠) 𝑒
−2𝑠

( max
𝜉∈[𝛽𝑠,𝑠]

𝑢 (𝜉))

2

𝑑𝑠] ,

𝑡 ∈ [𝑡
0
, 𝑇) .

(58)

Taking V(𝑡) = [𝑒
−𝑡

𝑢(𝑡)]
2, we have

V (𝑡) ≤ 𝑐
3
𝑟
2

(𝑡) + 𝐾
3
∫
𝑡

𝑡0

𝑝
2

(𝑠) V (𝑠) 𝑑𝑠

+ 𝐾
3
∫
𝑡

𝑡0

𝑞
2

(𝑠) max
𝜉∈[𝛽𝑠,𝑠]

V (𝜉) 𝑑𝑠, 𝑡 ∈ [𝑡
0
, 𝑇) ,

(59)

V (𝑡) ≤ 𝑐
3
𝜙
2

(𝑡) , 𝑡 ∈ [𝛽𝑡
0
, 𝑡
0
] , (60)

where 𝑐
3
and 𝐾

3
are defined by (49) and (50), respectively.

Using Corollary 2 for (59) and (60), it follows that

V (𝑡) ≤ 𝑐
3
𝑟
2

(𝑡) + ℎ
3
(𝑡) exp(𝐾

3
∫
𝑡

𝑡0

[𝑝
2

(𝑠) + 𝑞
2

(𝑠)] 𝑑𝑠) ,

𝑡 ∈ [𝑡
0
, 𝑇) ,

(61)

where ℎ
3
is defined by (51). Thus, we get the result in (48).

If 𝑟 ∈ 𝐶([𝑡
0
, 𝑇), (0,∞)) is a nondecreasing function, then

Lemma 3 with (59) and (60) implies the estimate

V (𝑡) ≤ 𝑐
3
𝑁
1
𝑟
2

(𝑡) exp(𝐾
3
∫
𝑡

𝑡0

[𝑝
2

(𝑠) + 𝑞
2

(𝑠)] 𝑑𝑠) ,

𝑡 ∈ [𝑡
0
, 𝑇) ,

(62)

where𝑁
1
is defined by (21).Thus, the required inequality (52)

is established. This completes the proof of the first part.
Consider (𝑅

4
) 0 < 𝛼 ≤ 1/2. Let 𝑎, 𝑏 be defined by (23)

and (24), respectively. Applying theHölder inequality in (46),
we have that for 𝑡 ∈ [𝑡

0
, 𝑇)

𝑢 (𝑡) ≤ 𝑟 (𝑡) + [∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝑎(𝛼−1)

𝑒
𝑎𝑠

𝑑𝑠]

1/𝑎

× [∫
𝑡

𝑡0

𝑝
𝑏

(𝑠)𝑒
−𝑏𝑠

𝑢
𝑏

(𝑠)𝑑𝑠]

1/𝑏

+ [∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝑎(𝛼−1)

𝑒
𝑎𝑠

𝑑𝑠]

1/𝑎

× [∫
𝑡

𝑡0

𝑞
𝑏

(𝑠)𝑒
−𝑏𝑠

( max
𝜉∈[𝛽𝑠,𝑠]

𝑢(𝜉))

𝑏

𝑑𝑠]

1/𝑏

≤ 𝑟 (𝑡) + 𝐾
2
𝑒
𝑡
{

{

{

[∫
𝑡

𝑡0

𝑝
𝑏

(𝑠) 𝑒
−𝑏𝑠

𝑢
𝑏

(𝑠) 𝑑𝑠]

1/𝑏

+[∫
𝑡

𝑡0

𝑞
𝑏

(𝑠)𝑒
−𝑏𝑠

( max
𝜉∈[𝛽𝑠,𝑠]

𝑢(𝜉))

𝑏

𝑑𝑠]

1/𝑏

}

}

}

,

(63)

where 𝐾
2
is defined by (26). By using Lemma 4 with 𝑛 = 3,

𝜎 = 𝑏, we obtain the estimate

𝑢
𝑏

(𝑡) ≤ 3
𝑏−1

𝑟
𝑏

(𝑡) + 3
𝑏−1

𝐾
𝑏

2
𝑒
𝑏𝑡

× [∫
𝑡

𝑡0

𝑝
𝑏

(𝑠) 𝑒
−𝑏𝑠

𝑢
𝑏

(𝑠) 𝑑𝑠

+∫
𝑡

𝑡0

𝑞
𝑏

(𝑠) 𝑒
−𝑏𝑠

( max
𝜉∈[𝛽𝑠,𝑠]

𝑢(𝜉))

𝑏

𝑑𝑠] ,

𝑡 ∈ [𝑡
0
, 𝑇) .

(64)

Substituting V(𝑡) = [𝑒
−𝑡

𝑢(𝑡)]
𝑏, we get

V (𝑡) ≤ 𝑐
4
𝑟
𝑏

(𝑡) + 3
𝑏−1

𝐾
𝑏

2

× [∫
𝑡

𝑡0

𝑝
𝑏

(𝑠) V (𝑠) 𝑑𝑠

+∫
𝑡

𝑡0

𝑞
𝑏

(𝑠) max
𝜉∈[𝛽𝑠,𝑠]

V (𝜉) 𝑑𝑠] , 𝑡 ∈ [𝑡
0
, 𝑇) ,

(65)
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and, for 𝑡 ∈ [𝛽𝑡
0
, 𝑡
0
],

V (𝑡) ≤ 𝑐
4
𝜙
𝑏

(𝑡) , (66)

where 𝑐
4
is defined by (54). An application of Corollary 2 to

(65) and (66) gives

V (𝑡) ≤ 𝑐
4
𝑟
𝑏

(𝑡) + ℎ
4
(𝑡)

× exp(3𝑏−1𝐾𝑏
2
∫
𝑡

𝑡0

[𝑝
𝑏

(𝑠) + 𝑞
𝑏

(𝑠)] 𝑑𝑠) ,

𝑡 ∈ [𝑡
0
, 𝑇) ,

(67)

where ℎ
4
is defined by (55). Therefore, we deduce inequality

(53).
As a special case, if 𝑟 ∈ 𝐶([𝑡

0
, 𝑇), (0,∞)) is a nondecreas-

ing function, then, by Lemma 3 with (65) and (66), we get

V (𝑡) ≤ 𝑐
4
𝑁
2
𝑟
𝑏

(𝑡)

× exp(3𝑏−1𝐾𝑏
2
∫
𝑡

𝑡0

[𝑝
𝑏

(𝑠) + 𝑞
𝑏

(𝑠)] 𝑑𝑠) ,

𝑡 ∈ [𝑡
0
, 𝑇) .

(68)

Therefore, the desired inequality (56) is established. This
completes the proof of Theorem 6.

4. Applications to Fractional Differential
Equations with ‘‘Maxima’’

In this section, we apply our results to demonstrate the bound
of solutions and the dependence of solutions on the orders
with initial conditions for Caputo fractional differential equa-
tions with “maxima.” We consider the following fractional
differential equations (FDEs) with “maxima”

𝐷
𝛼

𝑥 (𝑡) = 𝑓(𝑡, 𝑥 (𝑡) , max
𝑠∈[𝛽𝑡,𝑡]

𝑥 (𝑠)) , 𝑡 ∈ 𝐼 = [𝑡
0
, 𝑇) , (69)

and initial condition

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [𝛽𝑡
0
, 𝑡
0
] , (70)

where𝐷𝛼 represents the Caputo fractional derivative of order
𝛼 (𝛼 > 0), 𝑓 ∈ 𝐶(𝐼 × R × R,R), 𝜙 is a given continuously
differentiable function on [𝛽𝑡

0
, 𝑡
0
] up to order 𝑛 (𝑛 = −[−𝛼]),

and 0 < 𝛽 < 1. We denote 𝜙(𝑘)(𝑡
0
) = 𝜌
𝑘
, 𝑘 = 0, 1, 2, . . . , 𝑛 − 1.

For more details on fractional differential equations, see [23,
24].

Theorem 7. Assume that

(𝐻
16
) there exist functions𝑦, 𝑧 ∈ 𝐶(𝐼,R

+
) such that, for 𝑡 ∈ 𝐼,

𝑢
1
, 𝑢
2
∈ R,

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑢1, 𝑢2)
󵄨󵄨󵄨󵄨 ≤ 𝑦 (𝑡)

󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨 + 𝑧 (𝑡)

󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨 . (71)

If 𝑥 is solution of the initial value problem (69)-(70), then the
following estimates hold.

(𝑅
5
) Suppose 1/2 < 𝛼 ≤ 1. Then

|𝑥 (𝑡)| ≤ √𝑐
3
𝑀 exp(𝑡 +

𝐾
3

2Γ2 (𝛼)
∫
𝑡

𝑡0

[𝑦
2

(𝑠) + 𝑧
2

(𝑠)] 𝑑𝑠) ,

𝑡 ∈ 𝐼.

(72)

(𝑅
6
) Suppose 0 < 𝛼 ≤ 1/2. Then

|𝑥 (𝑡)| ≤ (𝑐
4
)
1/𝑏

𝑀 exp(𝑡 +
3
𝑏−1

𝐾
𝑏

2

𝑏Γ𝑏 (𝛼)
∫
𝑡

𝑡0

[𝑦
𝑏

(𝑠) + 𝑧
𝑏

(𝑠)] 𝑑𝑠) ,

𝑡 ∈ 𝐼.

(73)

(𝑅
7
) Suppose 𝛼 > 1. Then

|𝑥 (𝑡)| ≤ √𝑐
3
(𝑀 +

𝑛−1

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜌
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑗!
(𝑡 − 𝑡
0
)
𝑗

)

× exp(𝑡 +
𝐾
3

2Γ2 (𝛼)
∫
𝑡

𝑡0

[𝑦
2

(𝑠) + 𝑧
2

(𝑠)] 𝑑𝑠) ,

𝑡 ∈ 𝐼,

(74)

where

𝑀 = max
𝑡∈[𝛽𝑡0 ,𝑡0]

󵄨󵄨󵄨󵄨𝜙 (𝑡)
󵄨󵄨󵄨󵄨 > 0 (75)

and 𝑏, 𝑐
3
, 𝑐
4
, 𝐾
2
, and 𝐾

3
are defined as in Theorems 5 and 6.

Proof. The solution 𝑥 of the initial value problem (69)-(70)
satisfies the following equations (see [23]):

𝑥 (𝑡) =

𝑛−1

∑
𝑗=0

𝜌
𝑗

𝑗!
(𝑡 − 𝑡
0
)
𝑗

+
1

Γ (𝛼)

× ∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−1

𝑓(𝑠, 𝑥 (𝑠) , max
𝜉∈[𝛽𝑠,𝑠]

𝑥 (𝜉)) 𝑑𝑠,

𝑡 ∈ 𝐼,

(76)

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [𝛽𝑡
0
, 𝑡
0
] . (77)

For 0 < 𝛼 ≤ 1, by using the assumption (𝐻
16
), it follows that

|𝑥 (𝑡)|

≤ 𝑀 +
1

Γ (𝛼)

× ∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−1

(𝑦 (𝑠) |𝑥 (𝑠)| + 𝑧 (𝑠) max
𝜉∈[𝛽𝑠,𝑠]

󵄨󵄨󵄨󵄨𝑥 (𝜉)
󵄨󵄨󵄨󵄨) 𝑑𝑠,

𝑡 ∈ 𝐼,

|𝑥 (𝑡)| ≤ 𝑀, 𝑡 ∈ [𝛽𝑡
0
, 𝑡
0
] .

(78)
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Hence, Theorem 6 yields the estimate inequalities (72) and
(73).

For 𝛼 > 1, by using the assumption (𝐻
16
) in (76), we have

|𝑥 (𝑡)| ≤ 𝑀 +

𝑛−1

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜌
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑗!
(𝑡 − 𝑡
0
)
𝑗

+
1

Γ (𝛼)
∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−1

× (𝑦 (𝑠) |𝑥 (𝑠)| + 𝑧 (𝑠) max
𝜉∈[𝛽𝑠,𝑠]

󵄨󵄨󵄨󵄨𝑥 (𝜉)
󵄨󵄨󵄨󵄨) 𝑑𝑠,

𝑡 ∈ 𝐼,

|𝑥 (𝑡)| ≤ 𝑀, 𝑡 ∈ [𝛽𝑡
0
, 𝑡
0
] .

(79)

Since ∑
𝑛−1

𝑗=1
(|𝜌
𝑗
|/𝑗!)(𝑡 − 𝑡

0
)
𝑗 is a nondecreasing function,

Theorem 6 yields the estimate inequality (74).This completes
the proof.

Theorem 8. Let 𝛼 > 0 and 𝛿 > 0 such that 0 ≤ 𝑛−1 < 𝛼−𝛿 <

𝛼 ≤ 𝑛. Also let 𝑓 : 𝐼 × R × R → R be a continuous function
satisfying the following assumption:

(𝐻
17
) there exist constants 𝐿

1
, 𝐿
2
> 0 such that |𝑓(𝑡, 𝑢

1
, 𝑢
2
)−

𝑓(𝑡, V
1
, V
2
)| ≤ 𝐿

1
|𝑢
1
− V
1
| + 𝐿
2
|𝑢
2
− V
2
|, for each 𝑡 ∈ 𝐼

and 𝑢
1
, 𝑢
2
, V
1
, V
2
∈ R.

If𝑥 and𝑦 are the solutions of the initial value problem (69)-
(70) and

𝐷
𝛼−𝛿

𝑦 (𝑡) = 𝑓(𝑡, 𝑦 (𝑡) , max
𝑠∈[𝛽t,𝑡]

𝑦 (𝑠)) , 𝑡 ∈ 𝐼, (80)

with initial condition

𝑦 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [𝛽𝑡
0
, 𝑡
0
] , (81)

respectively, where 𝜙 is a given continuous function on [𝛽𝑡
0
, 𝑡
0
]

such that 𝜙(𝑡) ̸≡ 𝜙(𝑡) for all 𝑡 ∈ [𝛽𝑡
0
, 𝑡
0
) up to order 𝑛 (𝑛 =

−[−(𝛼 − 𝛿)]). we denote 𝜙
(𝑘)

(𝑡
0
) = 𝜌

𝑘
, 𝑘 = 0, 1, 2, . . . , 𝑛 − 1.

Then the following estimates hold for 𝑡
0
< 𝑡 ≤ ℎ < 𝑇.

(𝑅
8
) Suppose 𝛼 − 𝛿 > 1/2. Then for 𝑡 ∈ 𝐼

󵄨󵄨󵄨󵄨𝑦 (𝑡) − 𝑥 (𝑡)
󵄨󵄨󵄨󵄨

≤ 𝑒
𝑡

[𝑐
5
𝐴
2

(𝑡) + ℎ
5
(𝑡)

× exp(
6Γ (2𝛼 − 2𝛿 − 1) (𝐿

2

1
+ 𝐿
2

2
) (𝑡 − 𝑡

0
)

4𝛼−𝛿Γ2 (𝛼)
)]

1/2

.

(82)

(𝑅
9
) Suppose 0 < 𝛼 − 𝛿 ≤ 1/2. Then for 𝑡 ∈ 𝐼

󵄨󵄨󵄨󵄨𝑦 (𝑡) − 𝑥 (𝑡)
󵄨󵄨󵄨󵄨

≤ 𝑒
𝑡 [

[

𝑐
6
𝐴
𝑏

(𝑡) + ℎ
6
(𝑡)

× exp(
[3Γ ((𝛼 − 𝛿)

2

)]
1/(𝛼−𝛿)

(𝐿
𝑏

1
+ 𝐿
𝑏

2
) (𝑡 − 𝑡

0
)

(𝛼 − 𝛿 + 1)
𝛼−𝛿

Γ𝑏 (𝛼)
)]

]

1/𝑏

,

(83)

where

𝐴 (𝑡) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛−1

∑
𝑗=0

(𝜌
𝑗
− 𝜌
𝑗
) (𝑡 − 𝑡

0
)
𝑗

𝑗!

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑡 − 𝑡
0
)
𝛼−𝛿

Γ (𝛼 − 𝛿 + 1)
−

(𝑡 − 𝑡
0
)
𝛼−𝛿

(𝛼 − 𝛿) Γ (𝛼)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑡 − 𝑡
0
)
𝛼−𝛿

(𝛼 − 𝛿) Γ (𝛼)
−
(𝑡 − 𝑡
0
)
𝛼

Γ (𝛼 + 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 = sup
𝑡0≤𝑡≤ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑡, 𝑦 (𝑡) , max

𝑠∈[𝛽𝑡,𝑡]

𝑦 (𝑠))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

𝑏 = 1 +
1

𝛼 − 𝛿
,

𝑐
5
= max {3𝑒−2𝑡0 , 𝑒−2𝛽𝑡0} ,

𝑐
6
= max {31/(𝛼−𝛿)𝑒−𝑏𝑡0 , 𝑒−𝑏𝛽𝑡0} ,

ℎ
5
(𝑡) = 𝑐

5
max
𝑠∈[𝛽𝑡0 ,𝑡0]

󵄨󵄨󵄨󵄨󵄨
𝜙(𝑠) − 𝜙(𝑠)

󵄨󵄨󵄨󵄨󵄨

2

+
6𝑐
5
Γ (2𝛼 − 2𝛿 − 1)

4𝛼−𝛿Γ2 (𝛼)

× ∫
𝑡

𝑡0

(𝐿
2

1
𝐴
2

(𝑠) + 𝐿
2

2
max
𝜉∈[𝛽𝑠,𝑠]

𝑚
2

2
(𝜉)) 𝑑𝑠,

ℎ
6
(𝑡) = 𝑐

6
max
𝑠∈[𝛽𝑡0 ,𝑡0]

󵄨󵄨󵄨󵄨󵄨
𝜙(𝑠) − 𝜙 (𝑠)

󵄨󵄨󵄨󵄨󵄨

𝑏

+
𝑐
6
[3Γ ((𝛼 − 𝛿)

2

)]
1/(𝛼−𝛿)

(𝛼 − 𝛿 + 1)
𝛼−𝛿

Γ𝑏 (𝛼)

× ∫
𝑡

𝑡0

(𝐿
𝑏

1
𝐴
𝑏

(𝑠) + 𝐿
𝑏

2
max
𝜉∈[𝛽𝑠,𝑠]

𝑚
𝑏

2
(𝜉)) 𝑑𝑠,

(84)

with

𝑚
2
(𝑡) = {

𝐴 (𝑡) , 𝑡 ∈ 𝐼,
󵄨󵄨󵄨󵄨󵄨
𝜙 (𝑡) − 𝜙 (𝑡)

󵄨󵄨󵄨󵄨󵄨
, 𝑡 ∈ [𝛽𝑡

0
, 𝑡
0
] .

(85)
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Proof. The solutions 𝑥 and 𝑦 of the initial value problems
(69)-(70) and (80)-(81) satisfy the following equations:

𝑥 (𝑡) =

𝑛−1

∑
𝑗=0

𝜌
𝑗

𝑗!
(𝑡 − 𝑡
0
)
𝑗

+
1

Γ (𝛼)

× ∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−1

𝑓(𝑠, 𝑥 (𝑠) , max
𝜉∈[𝛽𝑠,𝑠]

𝑥 (𝜉)) 𝑑𝑠,

𝑦 (𝑡) =

𝑛−1

∑
𝑗=0

𝜌
𝑗

𝑗!
(𝑡 − 𝑡
0
)
𝑗

+
1

Γ (𝛼 − 𝛿)

× ∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−𝛿−1

𝑓(𝑠, 𝑦 (𝑠) , max
𝜉∈[𝛽𝑠,𝑠]

𝑦 (𝜉)) 𝑑𝑠,

(86)

respectively. So, using the assumption (𝐻
17
), it follows that

󵄨󵄨󵄨󵄨𝑦 (𝑡) − 𝑥 (𝑡)
󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛−1

∑
𝑗=0

𝜌
𝑗

𝑗!
(𝑡 − 𝑡
0
)
𝑗

−

𝑛−1

∑
𝑗=0

𝜌
𝑗

𝑗!
(𝑡 − 𝑡
0
)
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

Γ (𝛼 − 𝛿)
∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−𝛿−1

× 𝑓(𝑠, 𝑦 (𝑠) , max
𝜉∈[𝛽𝑠,𝑠]

𝑦 (𝜉)) 𝑑𝑠

−
1

Γ (𝛼)
∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−𝛿−1

× 𝑓(𝑠, 𝑦 (𝑠) , max
𝜉∈[𝛽𝑠,𝑠]

𝑦 (𝜉)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

Γ (𝛼)
∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−𝛿−1

× 𝑓(𝑠, 𝑦 (𝑠) , max
𝜉∈[𝛽𝑠,𝑠]

𝑦 (𝜉)) 𝑑𝑠

−
1

Γ (𝛼)
∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−𝛿−1

× 𝑓(𝑠, 𝑥 (𝑠) , max
𝜉∈[𝛽𝑠,𝑠]

𝑥 (𝜉)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

Γ (𝛼)
∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−𝛿−1

× 𝑓(𝑠, 𝑥 (𝑠) , max
𝜉∈[𝛽𝑠,𝑠]

𝑥 (𝜉)) 𝑑𝑠

−
1

Γ (𝛼)
∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−1

× 𝑓(𝑠, 𝑥 (𝑠) , max
𝜉∈[𝛽𝑠,𝑠]

𝑥 (𝜉)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐴 (𝑡) +
1

Γ (𝛼)
∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−𝛿−1

× (𝐿
1

󵄨󵄨󵄨󵄨𝑦 (𝑠) − 𝑥 (𝑠)
󵄨󵄨󵄨󵄨

+ 𝐿
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
max
𝜉∈[𝛽𝑠,𝑠]

𝑦 (𝜉) − max
𝜉∈[𝛽𝑠,𝑠]

𝑥 (𝜉)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
) 𝑑𝑠

≤ 𝐴 (𝑡) +
1

Γ (𝛼)
∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−𝛿−1

× (𝐿
1

󵄨󵄨󵄨󵄨𝑦 (𝑠) − 𝑥 (𝑠)
󵄨󵄨󵄨󵄨

+ 𝐿
2
max
𝜉∈[𝛽𝑠,𝑠]

󵄨󵄨󵄨󵄨𝑦 (𝜉) − 𝑥 (𝜉)
󵄨󵄨󵄨󵄨) 𝑑𝑠,

𝑡 ∈ 𝐼,

(87)

where 𝐴(𝑡) is defined by (84) and

󵄨󵄨󵄨󵄨𝑦 (𝑡) − 𝑥 (𝑡)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨
𝜙 (𝑡) − 𝜙 (𝑡)

󵄨󵄨󵄨󵄨󵄨
, 𝑡 ∈ [𝛽𝑡

0
, 𝑡
0
] . (88)

Applying Theorem 6 yields the desired inequalities (82) and
(83). This completes the proof.
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