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We investigate relationships between Lie groupoids and generalized almost contact manifolds. We first relate the notions of
integrable Jacobi pairs and contact groupoids on generalized contact manifolds, and then we show that there is a one to one
correspondence between linear operators and multiplicative forms satisfying Hitchin pair. Finally, we find equivalent conditions
among the integrability conditions of generalized almost contact manifolds, the condition of compatibility of source, and target
maps of contact groupoids with contact form and generalized contact maps.

1. Introduction

A groupoid is a small category in which all morphisms are
invertible. More precisely, a groupoid (G, G,) consists of two
sets, G and G, called arrows and objects, respectively, with
maps s, : G — G, called source and target. It is equipped
with a composition m : G, — G defined on the subset G, =
{(g-h) € GXxG | s(g) = t(h)}, (see Figure 1), an inclusion
map of objectse : G, — G and an inverse mapi: G — G.
For a groupoid, the following properties are satisfied: s(gh) =
s(h), t(gh) = t(g),s(g™") = t(g), t(g ") = s(g), and g(hf) =
(gh) f whenever both sides are defined, g 'g = 1 (9 99" =

1,5 Here, we have used gh, 1, and g~ instead of m(g, h),
e(x) and i(g). Generally, a groupoid (G, G,) is denoted by the
set of arrows G. A topological groupoid is a groupoid G whose
set of arrows and set of objects are both topological spaces
whose structure maps s, t, e, i, m are all continuous and s, ¢ are
open maps.

A Lie groupoid is a groupoid G whose set of arrows
and set of objects are both manifolds whose structure maps
s,t,e,i,m are all smooth maps and s, t are submersions. The
latter condition ensures that s and t-fibres are manifolds.
One can see from the above definition that the space G, of
composable arrows is a submanifold of G x G. We note that
the notion of Lie groupoids was introduced by Ehresmann
[1]. Relations among Lie groupoids, Lie algebroids, and other
algebraic structures have been investigated by many authors
[2-6].

On the other hand, Lie algebroids were first introduced
by Pradines [7] as infinitesimal objects associated with the
Lie groupoids. More precisely, a Lie algebroid structure on a
real vector bundle A on a manifold M is defined by a vector
bundle map p, : A — TM, the anchor of A, and an R-Lie
algebra bracket on I'(A), [, ] 4 satisfying the Leibnitz rule

(o, fBla = flow Blu+ Ly, (f) B 1

for all o, 8 € T(A),f € C®(M), where L (o 18 the Lie
derivative with respect to the vector field p,(«), where I'(A)
denotes the set of sections in A.

In [8], Hitchin introduced the notion of generalized
complex manifolds by unifying and extending the usual
notions of complex and symplectic manifolds. Later, such
manifolds have been studied widely by Gualtieri. He also
introduced the notion of generalized Kéhler manifold [9].
On the other hand, the concept of generalized almost contact
structure on odd-dimensional manifolds has been studied in
[10-12].

Recently, Crainic [13] showed that there is a close rela-
tionship between the equations of a generalized complex
manifold and a Lie groupoid. More precisely, he obtained that
the complicated equations of such manifolds turn into simple
structures for Lie groupoids.

In this paper, we investigate relationships between the
complicated equations of generalized contact structures and
Lie groupoids. We showed that the equations of such man-
ifolds are useful to obtain equivalent results on a contact


http://dx.doi.org/10.1155/2014/270715

m(g, h)

"y
=

t(m(g, h)) = t(g)

Gy

Sg) =t sth) = s(m(g, b))

FIGURE 1: Two arrows g and h € G, with the target of h, t(h) € G,,
equal to the source of g, s(g) € G, and the composed arrow m(g, h)

[5].

groupoid. The paper is organized as follows. In Section 2, we
gather main definitions and results used in the other sections.
In Section 3, we first state necessary and sufficient conditions
for generalized almost contact structure to be integrable, and
then we obtain a relation between integrable Jacobi pairs and
contact groupoids defined on generalized manifolds. More-
over, we observe that there is a close relationship between
(1, 1)-tensors satisfying certain conditions in terms of tensor
fields defined on generalized manifolds and multiplicative
forms. Finally, we find one to one correspondence among
generalized contact map, source and target maps, and the
conditions of a generalized contact structure to be integrable.

2. Preliminaries

In this section, we give basic facts of Jacobi geometry, Lie
groupoids and Lie algebroids. We first recall notions of
contact manifold and contact groupoid from [5]. A contact
manifold is a smooth (odd-dimensional) manifold M with 1-
form# € Q'(M) such that yA(dn)" #0. 7 is called the contact
form of M. Let G be a Lie groupoid on M and # a form on Lie
groupoid G; then 7 is called r-multiplicative if

m'n = pry (e7) prin+ pryn, (2)

where pr; : GXG — G,i = 1,2, are the canonical projections
andr : G — R, r(gh) = r(g) + r(h) is a function [14].
A contact groupoid over a manifold M is a Lie groupoid G
over M together with a contact form # on G such that 7 is r-
multiplicative. We recall that multiplicative of a 2-form w is
defined by

m'w = priw+ pryw. 3)

We now recall the notion of Jacobi manifolds. A Jacobi
manifold is a smooth manifold M equipped with a bivector
field 77 and a vector field E such that

[m,n] =-2EAmn, [E,n]=0, (4)

where [, ] denotes the Schouten bracket. In this case, (r, E)
defines a bracket on C*° (M, R), which is called Jacobi bracket
and is given, for all f, g € C*(M,R), by

{f. g} = n(df.dg) + fE(g) - gE(f). (5)

The Jacobi bracket endows C*°(M, R) with a local Lie algebra
structure in the sense of Kirillov [15].
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We now give a relation between Lie algebroid and Lie
groupoid; more details can be found in [16]. Given a Lie
groupoid G on M, the associated Lie algebroid A = Lie(G)
has fibres A . = Ker(ds), = T,,(G(-, x)), for any x € M. Any
a € T(A) extends to a unique right-invariant vector field on
G, which will be denoted by the same letter «. The usual Lie
bracket on vector fields induces the bracket on I'(A), and the
anchor is givenby p =dt : A — TM.

Given a Lie algebroid A, an integration of A is a Lie
groupoid G together with an isomorphism A = Lie(G). If
such a G exists, then it is said that A is integrable. In contrast
with the case of Lie algebras, not every Lie algebroid admits
an integration. However, if a Lie algebroid is integrable, then
there exists a canonical source-simply connected integration
G, and any other source-simply connected integration is
smoothly isomorphic to G. From now on, we assume that all
Lie groupoids are source-simply connected.

We now recall the notion of IM form (infinitesimal
multiplicative form) on a Lie algebroid [17], which will be
useful when we deal with relations between Lie groupoids and
Lie algebroids. An IM form on a Lie algebroid A is a bundle
map

u:A—T'M (6)
satistying the following properties:

(i) (u(a), p(B)) = —(u(p), p(ax))
(it) u(le, B]) = Lo W(P) — Zp(ule)) + d{u(a), p(B))

for a, 5 € T'(A), where p = p, and (,) denotes the usual
pairing between a vector space and its dual.

If A is a Lie algebroid of a Lie groupoid G, then a closed
multiplicative 2-form w on G induces an IM form u,, of A by

(u, (@), X) = w(a, X). (7)

For the relationship between IM form and closed 2-form, we
have the following.

Theorem 1 (see [17]). If A is an integrable Lie algebroid and if
G is its integration, then w — u,, is a one to one correspondence
between closed multiplicative 2-forms on G and IM forms of A.

Finally, in this section, we give brief information on the
notion of generalized geometry; details can be found in [9]. A
central idea in generalized geometry is that TMeT™ M should
be thought of as a generalized tangent bundle to manifold M.
If X and & denote a vector field and a dual vector field on
M, respectively, then we write (X, &) (or X + &) as a typical
element of TM & T* M. The Courant bracket of two sections
(X,8),Y,n) of TM & T*M = T M is defined by

(8, (V)] = Y] + Ln - L4 - 5 (ixn - i),
(8)

whered, &y, and iy denote exterior derivative, Lie derivative,
and interior derivative with respect to X, respectively. The
Courant bracket is antisymmetric, but it does not satisfy the
Jacobi identity. Here, we use the notations ﬁ(nﬂa) = 7(a, B)
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and wy(X)(Y) = w(X,Y), which are defined as i T'M >
TM,w, : TM — T" M forany1-forms aand f3, 2-form w and
bivector field 77, and vector fields X and Y. Also we denote by
[, ], the bracket on the space of 1-forms on M defined by

[(x’ﬁ]n2371“06[;_371”/3“_61”(“’/3)' (9)

3. Lie Groupoids and Generalized
Contact Structures

In this section, we first give a characterization for generalized
contact structures to be integrable; then we obtain certain
relationships between generalized contact manifolds and
contact groupoids. We recall a generalized almost contact
pair and then a generalized almost contact structure.

Definition 2 (see [12]). A generalized almost contact pair
(£, F+n) on a smooth odd-dimensional manifold M consists
of a bundle endomorphism % of TM & T*M and a section
F + 1 of T M such that

J+I" =0; n(F) =1

(10)
JF) =0 F()=0 I =-Id+Foy,
where Fon(X+«) := n(X)F+a(F)y, forany X+« € I'(T ).
Since .# has a matrix form,

t
gl w

where ¢ is a (1, 1)-tensor, 7 is a bivector field, 0 is a 2-form,
and 9" : T"M — T"M is dual of ¢, one sees that a
generalized almost contact pair is equivalent to a quintuplet
(F,n,7,0,¢), where F is a vector field,  a 1-form.

Definition 3 (see [12]). A generalized almost contact structure
on M is an equivalent class of such pairs (.7, F + 7).

We now present two examples of generalized almost
contact manifolds.

Example 4 (see [11]). An (2n + 1)-dimensional smooth
manifold M has an almost contact structure (¢, F,#) if it
admits a tensor field ¢ of type (1, 1), a vector field F, and a
1-form # satisfying the following compatibility conditions:

¢ (F)=0,

n(F) =1,

nep=0,
5 (12)
¢ =-id+neF.

Associated with any almost contact structure, we have an
almost generalized contact structure by setting

7 = [‘g _2)*]. (13)

Example 5 (see [11]). On the three-dimensional Heisenberg
group H;, we choose a basis {X,, X,, X5} and let {«;, «,, a5}

be a dual frame. For t = rc +irs, wherec = cosvand s = sinv
for some real number v, we define

%(X2®(x2+X3®oc3),

Py =

2 —2rs+1 5 3
—_—

0, = o,

2
1-r (14)
2
ro+2rs+1
T = TXZ /\X3,

nzocl, F=X,-bX,+aX;,

for any real numbers a, b. We also define

#
J:[‘Pt ”t*]. (15)
O —P;

Then, 7, = (F,n, ¢, m,0,) is a family of generalized almost
contact structures.

Given a generalized almost contact pair (7, F + 1), we
define

E®Y = {e—i7(e) | e € kern@ker F},
(16)
E®Y ={e+if (e) | eckernakerF}.

The endomorphism .7 is linearly extended to the complexi-
fied bundle 7 .# ® C. It has three eigenvalues, namely, A = 0,
A =i=+/~-1,and A = —i. The corresponding eigenbundles
areLp®L,, E®Y and E®Y where L, and L, are the complex
vector bundles of rank 1 generated with F and #, respectively.
Define

L=L,eE™, L:=L,eE",

17)
L*=L,6E*, I :=L,eE".
Definition 6 (see [11]). Consider a generalized almost contact
pair and let L be its associated maximal isotropic subbundle.
One says that the generalized almost contact pair is integrable
if the space I'(L) of sections of L is closed under the Courant
bracket; that is, [I['(L),I'(L)] < T(L). In this case, the
generalized almost contact pair is simply called a generalized
contact pair. A generalized contact structure is an equivalence

class of generalized contact pairs.

In the sequel, we give necessary and sufficient conditions
for a generalized almost contact structure to be integrable in
terms of the above tensor fields. We note that the following
result was stated in [12].

Theorem 7. A generalized almost contact pair corresponding
to the quintuplet (F,n,m,0,¢) is integrable if and only if the
following relations are satisfied:

(@)
1
(@) = [, ] =FA nt e nt)dn,
5 ( )dn )
(b) [F, 7] = —-F At Py



4
(C2)
gpr' =n'e"
¢ Bl = Lo B~ Loipp o —dr (9" e, B);
(C3)
¢ +nﬁ0ﬁ =-Id+Fopn,
(20)
N, (X,Y) +dn (¢X,Y) F = * (ix,ydb);
(C4)
b, (X,Y,Z)
= dO (¢X,Y, Z) +d0 (X, Y, Z) + d6 (X, Y, ¢Z);
(21)
(Cs5)
Frp=0;  L0=0, (22)
where
[a’ ﬁ]n = gnuaﬁ - gn”ﬁ‘x —dn (OC, ﬂ) >
(23)

0,(X,Y)=0(pX,Y).

We note that if (11) is a generalized contact structure, then

7 = [_"én :Zﬁ] (24)

is also a generalized contact structure. .7 is called the opposite
of 7. In this paper, we denote a generalized contact manifold
endowed with .7 by M.

As an analogue of a Hitchin pair on a generalized complex
manifold, a Hitchin pair on a generalized almost contact
manifold M is a pair (dn,¢) consisting of a contact form
n and a (1,1)-tensor ¢ with the property that dy and ¢
commute (i.e., dy(X, ¢Y) = dn(¢X,Y)). We note that since
a generalized almost contact structure is equivalent to a
generalized almost complex structure on M x R, the bivector
field 7 of the generalized almost contact structure is not
nondegenerate in general. But we emphasize that we are
putting this condition for restricted case.

Lemma 8. Let M be a generalized almost contact manifold. If
7 is a nondegenerate bivector field on TM ™ -Span{n}, dn is the
inverse 2-form (defined by (dn); = (7M™, and satisfies (20),
then 0 = —dn — ¢*dn + n A (ipdy) if and only if dy(¢* X, Y) =
e dn(X,Y).
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Proof. For X € x(M), we apply (dn), to (20) and using the
dual structure ¢, we have

(dn),9* (X0
= —(dn), (X) = (dn), (7*6, (X)) + (dn), (7 (X) F)

dn(*X,Y) = —dn (X,Y) - 0, (X) (V) + dn (n (X)F,Y).

(25)
We obtain
@ dn(X,Y) =-dn(X,Y)-0(X,Y) +n(X)dn(FY).
(26)
Since (26) holds, for all X and Y, we get
0 = —dn —¢"dn +n A (ipdn). (27)
In a similar way, one can get the converse. O

From now on, when we mention a nondegenerate bivec-
tor field 7, we mean it is nondegenerate on TM"-Span{z}.
We note that if dy is the inverse 2-form of 77, nondegenerate
7 on TM™-Span{y} implies that dy is also nondegenerate on
TM-Span{F}.

We say that 2-form 0 is the twist of Hitchin pair (d#, ¢).
Note that in this case ¢ is neither an almost contact structure
nor torsion(N(p) free.

Lemma 9. Let (M,#, ¢, F) be an almost contact manifold. dn
and ¢ commute if and only if dn + ¢*dn = n A (ipdn).

Proof. We will only prove the sufficient condition. We have
e dn(X,Y) +dn(X,Y) —nA(igdn) (X,Y) =0.  (28)
Since ¢* is dual contact structure, we get
dn (pX, 9Y) +dn(X,Y) — n(X) (igdn) (Y) =0.  (29)
Substituting X by X, and using contact structure property,
dn(-X +1n(X)F,¢Y) +dn(¢X,Y) = 0. (30)
Hence, we obtain
—dn (X, 9Y) +dn (9X,Y) = 0, (31)

which shows that dr and ¢ commute. The converse is clear.
O

Next, we see that (Cl) is satisfied automatically when one
chooses d# as the 2-form which is the inverse of 7r defined by

(dn); = ()"

Lemmal0. Let 7 be a nondegenerate bivector on a generalized
almost contact manifold M, and dn the inverse 2-form (defined
by (dn), = (n*)™"). Then n satisfies (C1).

Proof. Since dn is a closed form, it is obvious due to [13,
Lemma 2.7]. O
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Definition 11 (see [14]). The Lie algebroid of the Jacobi
manifold (M, 7, F) is T*M @ R, with the anchor p : T"M &
R — TM given by

p (@A) = (m, F)! (w, 1) = 7* () + AF, (32)
and the bracket
[(@,0), (7,0)] = ([w: 7] ,,0) = (if (w0 A1), 77 (s 77)) .
[0, 1), (@,0)] = (Z#w,0).
The associated groupoid,
S(M)=G(T"MeR), (34)

is called contact groupoid of the Jacobi manifold M. We say
that M is integrable as a Jacobi manifold if the associated
algebroid T*M @ R is integrable (or, equivalently, if (M) is
smooth).

Thus, we have the following result which shows that there
is a close relationship between the condition (Cl) and a
contact groupoid.

Theorem 12. Let M be a generalized almost contact manifold
and 1 a contact form. There is a I-1 correspondence between

(i) integrable Jacobi pair (F,m) on M (i.e, (F,m) is
satisfying (Cl), integrable),

(ii) contact groupoids (Z,) over M.

Proof. Since (1,dn) is a contact pair and (F,7) satisfies
(Cl), then (F,m) is an integrable Jacobi pair [18]. From
Definition 11, one sees that a contact groupoid is obtained
from an integrable Jacobi pair.

The converse is clear. O

We now give the conditions for (C2) in terms of dy and

.

Lemma 13. Let M be a generalized almost contact manifold
and dn a 2-form. Given a nondegenerate bivector m on
TM*-{n} (i.e., n* = ((dn)n)_l) and amap ¢ : TM — TM,
then m and ¢ satisfy (C2) if and only if dy and ¢ commute.

We now give a correspondence between generalized
contact structures with nondegenerate 7 and Hitchin pairs

(dn, p).

Proposition 14. There is a one to one correspondence between
generalized contact structures given by (11) with m nonde-
generate and Hitchin pairs (dn, @) such that dy(X,Y) =
dn(eX, ¢Y). In this correspondence, 7 is the inverse of dy, and
0 is the twist of the Hitchin pair (dn, @).

Proof. Since (dn, ¢) is Hitchin pair, dyj and (d#),, are closed.
By using the following equation (see [13]):

iNq)(X,Y) (dn) = Ly XAY+XAQY (d(dﬂ)q,) — IpXrpy (d(dn))

—ixay (d(9"dn)),

(35)

we get
in, oy (@) = —ixny (d (97 dn)). (36)
Since 8 = —dn — ¢*dn + n A (ipdn), we derive
(dn)y (Ny (X,Y)) = =ixy (d (<0 + 1 A (ipdn))) . (37)
Applying 7' to (37), then we get
N, (X,Y) = =7* (ixny (d (-6 + 7 A (irdn))))
N, (X,Y) = 7t* (ixny (d0) — 7* (ixnydn A (ipdn)))  (38)
N, (X,Y) = 7* (i(xny)d6) - dn (X, Y) F.
By assumption, we have
dn(X,Y) = dn (X, ¢Y). (39)
Putting this equation into (38), we obtain
N, (X,Y) = 7* (i(xar)d6) - dn (pX,9Y) F,  (40)

which is the second equation of (C3). Now we show that
¢"6; = 6,¢. From (26), we obtain

9"0, = 9" (=(dn), - (9" (dn)), + (n A (i (dn))),) . (4D)
Hence, we have
¢ 0y = —(dn),p — (¢ (dn)),0 + (1 A (ip (dn))),9.  (42)
From definition of twist, we get
¢ 0, = 0,0. (43)
This equation is the first equation of (C4). Now, we will obtain
db, (XY, Z)

= d6(¢X,Y, Z) +d0 (X, ¢V, Z) + dO (X, Y, ¢Z),
(44)

which is second equation of (C4). Writing the equation as
ixXny (d9<p) = igxavexngy (@0) + @7 (ixay (d6)),  (45)
and since 0 = —dn — ¢*dn + n A (ipdn), then we should find
ixay (4 (=(97 (dn)), + (1 A (ir (dn))),))
= ipxnvixngy (A (=9 dn +n A (ipdn))) (46)
+ ¢ (ixay (d (=9 dn + 1 A (ixdn)))) -
A straightforward computation shows that
ixay (d ((‘P* (dﬂ))q,)) = IpXAY+XAQY (d(9"dn))

+ 9 (ixay (d (97dn))).



Using (35), then we get

ixay (d (((P* (dﬂ))q,))

= ipxnysxngy (4 (97dN)) —in xv)(dn) -

(48)

Since iN(X,Y)((dW)q;) = ‘P*iN(X,Y)(d’?)a applying ix,yd(¢"dn)
= —in(X’Y)(dn) to (48), we have

XAy (d ((4’* (dﬂ))<p))

(49)
= LpXAY+XAQY (d(9"dn)) +¢" (ixny (d (¢ dn))).
In a similar way, we can obtain (C5).
The converse is clear from Lemmas 10 and 13. O

We note that, similar to 2-forms, given a Lie groupoid G,
a(1,1)-tensor J : TG — TG is called multiplicative [13] if
forany (g,h) € Gx Gand any v, € T;G, wy, € TG such that
(vg, wy,) is tangent to G x G at (g, h), so is (]vg, Jwy,), and

(dm),, (]vg, ]wh) =] ((dm)g,h (vg, wh)) . (50)

Let (M, 7)) be a contact manifold. Then it is easy to see that
there is a one to one correspondence between (1, 1)-tensors
¢ commuting with dy and 2-forms on M. On the other hand,
it is easy to see that (C2) is equivalent to the fact that ¢™ o pr,
is an IM form on the Lie algebroid T* M @R associated Jacobi
structure (F, 7r). Thus, from the above discussion, Lemma 13
and Theorem 1, one can conclude with the following theorem.

Theorem 15. Let M be a generalized almost contact manifold.
Let (F, ) be an integrable Jacobi structure on M and (Z,1)
a contact groupoid over M. Then there is a natural 1-1
correspondence between

(i) (1, 1)-tensors @ on M satisfying (C2),

(ii) multiplicative (1,1)-tensors I on X with the property
that (1, dy) is a Hitchin pair.

We recall the notion of generalized contact map between
generalized contact manifolds. This notion is similar to the
generalized holomorphic map given in [13].

Let (M;,.%;), i = 1,2, be two generalized contact
manifolds, and let ¢,, ;, 0; be the components of .7; in the
matrix representation (11). A map f : M; — M, is called
generalized contact if and only if f maps ¢, into ¢,, F,; into
F,,and 7, into 7,, f*0, = 0, and (df) ¢, = ¢, o (df).

We now state and prove the main result of this paper. This
result gives equivalent assertions between the condition (C3),
twist 0 of (dn, I), and contact maps for a contact groupoid
over M.

Theorem 16. Let M be a generalized almost contact manifold
and (Z,4,1) an induced contact groupoid over M with the
induced multiplicative (1,1)-tensor. Assume that ((F,m),I)
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satisfy (Cl1), (C2) with integrable (F, ). Then, for a 0 2-form
on M, the following assertions are equivalent.

(i) (C3) is satisfied,
(i) dn+ I"dy —n A (ipdn) = s*0 — 70,

(iii) (¢,8) : = —> MxMisa generalized contact map;
condition of generalized contact map on M is (dt)oq, =
@, o (dt); this condition on M is (ds) o @, = —@, o (ds).

Proof. (i) & (ii): define ¢ = 6—t*0+s"0, such that § = —dy—
I"dn+nA(igdn) is the twist of (dn, I) and A = ker(ds)|,,. We
know from Theorem 1 that closed multiplicative 2-form ¥ on
¥ vanishes if and only if IM form uy, = 0; thatis, y(X, &) = 0,
such that X € TM, « € A. This case can be applied for forms
with higher degree; that is, 3-form y vanishes if and only if
y(X,Y,a) = 0.

Since dn and (dy); are closed, from (35) we get
ixay (AI*dn)) = iy, (xy)dy. Putting 6 = —dn - I*dy + n A
(ipdn), we obtain

ixnyd (=0 +n A (ipdn)) = =in,condn (51)
Since d¢ = 0 & dp(X,Y, ) = 0, we have
dé (X, Y,a) = 0 = df (X,Y,a) —d (t*0) (X, Y, )
+d(s70) (X,Y,a) = 0. oY
On the other hand, we obtain
d(t"0) (X,Y,a) =dO (dt (X),dt (Y),dt (). (53)
If we take dt = p in (53) for A, we get
d(t°0) (X, Y, ) = d6 (dt (X),dt (Y), p (). (54)
On the other hand, from [17], we know that
Idy =mo (t,1dy). (55)
Differentiating (55), we obtain
X =dt (X). (56)
Using (56) in (54), we get
d(t"0)(X,Y,a)=dO (XY, p(x)). (57)
In a similar way, we see that
d(s"0) (X,Y,a) = dO (ds(X),ds (Y),ds («)). (58)

Since « € kerds, then ds(x) = 0. Hence, d(s*60) = 0. Thus,
we obtain

do (X,Y,a) = d0 (X, Y, p (a)). (59)
Using (51) in (59), we derive
d (A (igdn)) (X, Y, &) + di (N; (X, Y) , )

(60)
=do(X,Y,p()).
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On the other hand, it is clear that ¢ = 0 & 8 —t*0 + s*0 = 0.
Thus, we obtain

0(X,a) =0(X,p(a)). (61)
Since 8 = —dn — I*dn + 1 A (ipdn), we get
— dn (X, &) — dn (IX, Iet) + (1 A (ipdn)) (X, )
=0(X,p(®).

(62)

Since Jacobi structure (F,7) is integrable, it defines a Lie
algebroid whose anchor map is p = (71, F)*. Let us use (7, F)*
instead of p in (60) and (62); then we get

d (n A (igdn)) (X, Y, &) +dn (N} (X,Y), &)
=do (XY, 7 (a) + fF), )
—dn (X, &) - dn (IX, Ia) + (1 A (ipdn)) (X, @)
=0(X,n* (a) + fF). oy

Since dy(«, X) = a(X), (dn);(a, X) = a(¢X), from (63) we
have

—a(dn(X,Y)F) - a(N, (X,Y))
=do (X,Y,n* () + fF)
= ixnyd0 (7* (@) + F)
= ixpyd0 (7 (@) + ixpyd6 (fF)
= 71 (@, ixnyd0)
= —a (n* (ix,yd0));
that is, a(dn(X, Y)F + N, (X, Y)) = a(rr* (i ryd0)).

Since the above equation holds for all nondegenerate «,
we get

(65)

dn(X,Y)F + N, (X,Y) = 7* (ix,yd0). (66)
Then, we arrive at
dn (pX,9Y) F+ N, (X,Y) = ' (ix,ydf).  (67)
On the other hand, from (64) we obtain
a(X) +a(¢’X) = n(X)a(F) = 7 (a,ix0) +ix0 (fF)

= -« (nnGnX) .
(68)

Thus, we get
¢’ +7'0, = -Id + Fon. (69)

Then (i) (ii) follows from (67) and (69).

(i) & (il): dy+1"dn—nAigdn = s"0—1"0 says that (¢, s)
is compatible with 2-form dy. Also, it is clear that (¢,s) and
bivectors are compatible because X is a contact groupoid. We
will check the compatibility of (¢, s) and (1, 1)-tensors. From
compatibility condition of t and s, we get dt o I = ¢ o dt and
dsol=—-@ods.

Foralla € A,V € x(£),and f € R, we have

dn (e, V) =dn(a,dtV), (70)
which is equivalent to
a (V)= (u(dq) (@), dtV). (71)
Since ug,) = Id and w4y ) = ¢* © pry such that u g, \(a) =
" o pri(a, f) = ¢" (), we get
(o, (dt (V) = (o (dt (V)
=@ a(dt (V)
= (anpa V) (72)
=dn(«,1V)
= (e, dt (IV)).

Since this equation holds for all « € A, a(dt) = dt(I). Using
s=toli,

a(ds(V))=ad(tei)V
= ¢ (dt (di(V)))
=~ (dt (V)
= —ds(IV),

which shows that a(ds) = —ds(I). Thus, proof is completed.
O
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