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We discuss the calibration of the univariate and multivariate generalized hyperbolic distributions, as well as their hyperbolic,
variance gamma, normal inverse Gaussian, and skew Student’s 𝑡-distribution subclasses for the daily log-returns of seven of
the most liquid mining stocks listed on the Johannesburg Stocks Exchange. To estimate the model parameters from historic
distributions, we use an expectationmaximization based algorithm for the univariate case and amulticycle expectation conditional
maximization estimation algorithm for the multivariate case. We assess the goodness of fit statistics using the log-likelihood, the
Akaike information criterion, and the Kolmogorov-Smirnov distance. Finally, we inspect the temporal stability of parameters and
note implications as criteria for distinguishing between models. To better understand the dependence structure of the stocks, we
fit the MGHD and subclasses to both the stock returns and the two leading principal components derived from the price data.
While the MGHD could fit both data subsets, we observed that the multivariate normality of the stock return residuals, computed
by removing shared components, suggests that the departure from normality can be explained by the structure in the common
factors.

1. Introduction

Empirical evidence that stock prices do not generally fol-
low geometric Brownian motion precedes even the Black-
Scholes-Merton option pricingmodel [1–3].While numerous
models have been investigated to describe both path and
distributional behaviour more realistically for portfolio opti-
misation and hedging risk, comparatively less attention has
been devoted to the assessment of more sophisticatedmodels
relative to one another.

The hyperbolic Lévy model was first proposed in finance
by Eberlein and Keller [4] to model returns of DAX stocks
via the generalized hyperbolic distributions (GHD for short)
of Barndorff-Nielsen [5]. Round the same time, special cases
were investigated; Barndorff-Nielsen proposed the normal
inverse Gaussian (NIG) [6], Hansen [7] was the first to
propose the skewed Student’s 𝑡-distribution, and Madan and
Seneta [8], Madan and Milne [9], and Madan et al. [10]
proposed the variance gammaprocess for the dynamics of the

log-returns. McNeil et al. [11] review some empirical inves-
tigations and applications of the GHD in finance. Fajardo
and Farias [12] calibrated the GHD to Brazilian market
data and more recently Necula [13] fit the GHD to a series
of index returns from Romania, Hungary, and the Czech
republic; Fajardo and Farias [12] estimate the multivariate
affine GHD for market data from several well-established
markets and Hellmich and Kassberger [14] apply the mul-
tivariate generalized hyperbolic distributions (MGHD for
short) to portfolio modeling. These empirical studies point
out the superior capacities of the univariate and multivariate
generalized hyperbolic distribution and its subclasses for
realistically describing financial data. In connection with
the JSE, some work has been done to study asset prices
(see, e.g., [15, 16]) but, to the best of our knowledge, no
work has been conducted using the generalized hyperbolic
distributions together with the expectation maximization
(EM) based or the multicycle expectation conditional max-
imization (MCECM) [11] estimation algorithms.
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Table 1: Descriptive statistics.

Ticker Mean Standard deviation Skewness Kurtosis Min Max
AGL 0.00020 0.0287 −0.1229 6.8276 −0.1730 0.1385
AMS 0.00006 0.0301 −0.4002 5.4935 −0.1759 0.1195
ANG 0.00005 0.02568 0.2907 6.6361 −0.1232 0.1756
BIL 0.00053 0.02630 0.2913 6.7289 −0.1142 0.1799
GFI 0.00003 0.02911 0.1264 7.3295 −0.1581 0.1939
HAR 0.00006 0.02938 0.04251 6.8839 −0.1727 0.1997
IMP 0.00025 0.03109 −0.3400 5.2412 −0.1885 0.1434

In this work we fit the univariate and the multivariate
GHD and some of their subclasses, namely, the hyperbolic,
the normal inverse Gaussian, the variance gamma, and the
skewed Student’s 𝑡-distributions, to the daily log-returns of
seven liquid mining stocks listed on the Johannesburg Stocks
Exchange (JSE) from January 2006 to December 2011. To
estimate the parameters of the distributions, we use an EM-
based estimation algorithm for the univariate case. We then
apply goodness of fits tests and consider the stability of
the parameters calibrated on the daily basis, as criteria for
discerning between models. For the multivariate case, we
apply the MCECM estimation algorithm before and after
filtering off common driving factors computed via principal
component analysis.

The paper is organized as follows. Section 2 describes our
data set. In Section 3,we briefly review themultivariate gener-
alized hyperbolic distributions and focus on some subclasses,
namely, the hyperbolic, the normal inverse Gaussian, the
skewed Student’s 𝑡-, and the variance gamma distributions.
Section 4 is devoted to the presentation of the univariate
estimation result and inspects the stability of parameters.
In Section 5 we test the multivariate GHD hypotheses and
find that these models are not ruled out. We then apply
principal component analysis to identify common factors
driving returns and then reconsider the multivariate GHD
models after filtering the data to remove these exogenous
effects. Section 6 is devoted to the conclusion.

2. Data

The data used in the present study consists of daily closing
prices between January 2006 and December 2011 for 7 of the
most liquid mining stocks in the J200 Index (representing
the JSE TOP 40 companies). Each set of data contains 1500
observations. The seven companies under consideration are
the following: Anglo American Plc (AGL), Anglo American
Platinum Corporation Limited (AMS), Anglo Gold Ashanti
Limited (ANG), BhP Billington Plc (BIL), Gold Fields Lim-
ited (GFI), HarmonyGoldMining Company Limited (HAR),
and Impala Platinum Holdings Limited (IMP).

The daily log-returns are calculated using

𝑥𝑗 = log 𝑆𝑗 − log 𝑆𝑗−1, 𝑗 = 1, 2, . . . , (1)

where 𝑆𝑗 = 𝑆(𝑡𝑗) is the stock price on day 𝑡𝑗, 𝑗 = 0, 1, . . ..
The mean, the standard deviation, the skewness, and the

kurtosis are presented in Table 1.

From Table 1 we can see that the returns are skewed and
characterized by heavy tails since the kurtosis are significantly
greater than 3. While heavy tails suggest that it may be
meaningful to apply extreme value theory to model the tail
distributions, the focus of this work is to investigate models
for the distributions as a whole.

We normalize the log-returns and assume that the 𝑧-
scored daily log-returns are independent and identically
distributed.

3. The Generalized Hyperbolic Distributions

The generalized hyperbolic distribution (GHD) was intro-
duced by Barndorff-Nielsen [5] to model the distribution
of sand grain sizes and can account for heavy tails. It has
since been applied to turbulence theory, geomorphology,
financial mathematics (see Eberlein and Keller [4]), and
so forth. In this section, we will define the multivariate
GHD as a normalmean-variancemixture distribution, where
the mixture variable has the generalized inverse Gaussian
distribution as in McNeil et al. [11, pp. 78].

Definition 1 (normal mean-variance mixture). The random
variable 𝑋 is said to have a multivariate normal mean-
variance distribution if

𝑋 := 𝜇 +𝑊𝛾 + √𝑊𝐴𝑍, (2)

where 𝜇 and 𝛾 are deterministic parameter vectors inR𝑑,𝑍 ∼

𝑁𝑘(0, 𝐼𝑘) follows a 𝑘-dimensional normal distribution, 𝑊 is
a positive scalar random variable independent of 𝑍, and 𝐴 ∈

R𝑑×𝑘 is a matrix.

Letting Σ = 𝐴𝐴
󸀠, from the definition of 𝑋, we can easily

see that

𝐸 [𝑋] = 𝜇 + 𝛾𝐸 [𝑊] ,

Cov [𝑋] = 𝐸 (𝑊)Σ + Var (𝑊) 𝛾𝛾
󸀠
.

(3)

The following definition of the generalized inverse Gaus-
sian distribution together with Definition 1 will help us to
define the generalized hyperbolic distributions.

Definition 2. The random variable 𝑉 ∈ R+ is said to
have a generalized inverse Gaussian (GIG) distribution with
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parameters 𝜆, 𝜒, and 𝜓 if its probability density function is
given by

𝑓GIG (𝑥; 𝜒, 𝜓, 𝜆)

= 𝜒
−𝜆 (𝜒𝜓)

𝜆/2

2𝐾𝜆 (√𝜒𝜓)
𝑥
𝜆−1 exp [−1

2
(𝜓𝑥 + 𝜒𝑥

−1
)] , 𝑥 > 0.

(4)

Here, 𝐾𝜆 is the modified Bessel function of third kind
with index 𝜆 satisfying the differential equation

𝑥
2
𝑦
󸀠󸀠
+ 𝑥𝑦 − (𝑥

2
+ 𝜆
2
) 𝑦 = 0. (5)

For more details, on this function, we refer to Abramowitz
and Stegun [17].

It can be shown that the parameters satisfy

𝜒 ≥ 0, 𝜓 > 0, if 𝜆 > 0;

𝜒 > 0, 𝜓 > 0, if 𝜆 = 0;

𝜒 > 0, 𝜓 ≥ 0, if 𝜆 < 0.

(6)

Note that for nonlimiting cases when 𝜒 > 0 and 𝜓 > 0, (see
McNeil et al. [11], pp. 497) the following holds:

𝐸 [𝑉
𝛼
] = (

𝜒

𝜓
)

𝛼/2
𝐾𝜆+𝛼 (√𝜒𝜓)

𝐾𝜆 (√𝜒𝜓)
, 𝛼 ∈ R. (7)

TheMGHD can now be obtained from the GIG distribution.

Definition 3. If the mixture variable𝑊 in Definition 1 is GIG
distributed, then 𝑋 is said to have a multivariate generalized
hyperbolic distribution (MGHD). When 𝛾 = 0 then𝑋 is said
to have a symmetric generalized hyperbolic distribution.

Theorem 4 (see [11, Section 3.2]). When the mixing variable
𝑊 ∼ 𝐺𝐼𝐺(𝜒, 𝜓, 𝜆) and Σ is nonsingular, it can be shown that
the probability density function of the 𝑑-dimensional 𝑀𝐺𝐻𝐷

is given for 𝑥 ∈ R𝑑 by

𝑓𝑀𝐺𝐻𝐷 (𝑥; 𝜆, 𝜒, 𝜓, 𝜇, Σ, 𝛾)

= 𝑎𝐾𝜆−𝑑/2 (
√(𝜒 + (𝑥 − 𝜇)

󸀠
Σ
−1

(𝑥 − 𝜇)) (𝜓 + 𝛾
󸀠
Σ
−1
𝛾))

× exp ((𝑥 − 𝜇)
󸀠
Σ
−1
𝛾)

× ((𝜒 + (𝑥 − 𝜇)
󸀠
Σ
−1

(𝑥 − 𝜇)) (𝜓 + 𝛾
󸀠
Σ
−1
𝛾))
𝜆/2−𝑑/4

(8)

with the normalizing constant

𝑎 =

(𝜒𝜓)
−𝜆/2

𝜓
𝜆
(𝜓 + 𝛾

󸀠
Σ
−1
𝛾)
𝑑/2−𝜆

(2𝜋)
𝑑/2

|Σ|
1/2

𝐾𝜆 (√𝜒𝜓)

, (9)

where | ⋅ | denotes the determinant.

The following hold true for the MGHD:

(1) 𝜆 defines the subclasses of MGHD and is related to
the tail flatness.

(2) 𝜒 and 𝜓 determine the distribution shape; in general,
the larger those parameters are, the closer the distri-
bution is to the normal distribution.

(3) 𝜇 is the location parameter and can take any real value.
(4) Σ = 𝐴𝐴

󸀠 is a the dispersion matrix.
(5) 𝛾 is the skewness parameter.

Proposition 5. If𝑋 ∼ 𝑀𝐺𝐻𝐷(𝜆, 𝜒, 𝜓, 𝜇, Σ, 𝛾) and𝑌 = 𝐵𝑋+

𝑏 where 𝐵 ∈ R𝑘×𝑑 and 𝑏 ∈ R𝑘 then

𝑌 ∼ 𝑀𝐺𝐻𝐷(𝜆, 𝜒, 𝜓, 𝐵𝜇, 𝐵Σ + 𝑏, 𝐵𝛾) . (10)

(See McNeil et al. [11], pp. 79).

3.1. Parametrizations

(1) The (𝜆, 𝜒, 𝜓, 𝜇, Σ, 𝛾)-parametrization has the follow-
ing drawback: the distributions of MGHD𝑑 (𝜆, 𝜒, 𝜓,
𝜇, Σ, 𝛾) and MGHD𝑑 (𝜆, 𝜒/𝑘, 𝑘𝜓, 𝜇, 𝑘Σ, 𝑘𝛾) coincide
for any 𝑘 > 0, since

𝑓MGHD (𝑥; 𝜆, 𝜒, 𝜓, 𝜇, Σ, 𝛾)

= 𝑓MGHD (𝑥; 𝜆,
𝜒

𝑘
, 𝑘𝜓, 𝜇, 𝑘Σ, 𝑘𝛾) , 𝑥 ∈ R

𝑑
.

(11)

Therefore, an identification problem arises when
starting to fit the parameters of the MGHD to data.
This problem can be addressed in several ways. One
possible way is to require the determinant of the
dispersion matrix to be equal to 1.

(2) The (𝜆, 𝛼, 𝜇, Σ, 𝛾)-parametrization, is considered to be
amore elegant way to eliminate the degree of freedom
than requiring the determinant of the dispersion
matrix Σ to be equal to 1. This parametrization
makes the interpretation of the skewness parameter
𝛾 simpler and, in addition, the fitting procedure
becomes faster. It requires the expected value of
the generalized inverse Gaussian distributed mixing
variable𝑊 to be 1.The drawback of the (𝜆, 𝛼, 𝜇, Σ, 𝛾)-
parametrization is that it does not exist when 𝛼 = 0

and 𝜆 ∈ [−1, 0], which corresponds to a Student’s 𝑡-
distribution without variance. If we set

𝑘 = √

𝜒

𝜓

𝐾𝜆+1 (√𝜒𝜓)

𝐾𝜆 (√𝜒𝜓)
, (12)

then the following formulas are used to switch
from the (𝜆, 𝜒, 𝜓, 𝜇, Σ, 𝛾)-parametrization to the (𝜆, 𝛼,
𝜇, Σ, 𝛾)-parametrization:

𝛼 = √𝜒𝜓, Σ = 𝑘Σ, 𝛾 = 𝑘𝛾. (13)
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(3) The following formulas are used to switch from
the (𝜆, 𝜒, 𝜓, 𝜇, Σ, 𝛾)-parametrization to the (𝜆, 𝛼, 𝜇,
Δ, 𝛿, 𝛽)-parametrization:

Δ = |Σ|
−1/𝑑

Σ, 𝛽 = Σ
−1
𝛾,

𝛿 = √𝜒|Σ|
1/𝑑

, 𝛼 = √|Σ|
−1/𝑑

(𝜓 + 𝛾
󸀠
Σ
−1
𝛾).

(14)

The (𝜆, 𝛼, 𝜇, Δ, 𝛿, 𝛽)-parametrization was introduced
by Blæsild [18] for the GHD. Similar to the
(𝜆, 𝜒, 𝜓, 𝜇, Σ, 𝛾)-parametrization, there is an
identification problem which can be addressed
by constraining the determinant of Δ to 1.

3.2. Mean and Covariance. By (3)–(7) the mean and covari-
ance of𝑋 are given by

𝐸 (𝑋) = 𝜇 + 𝛾(
𝜒

𝜓
)

1/2
𝐾𝜆+1 (√𝜒𝜓)

𝐾𝜆 (√𝜒𝜓)
,

Cov (𝑋) = (
𝜒

𝜓
)

1/2
𝐾𝜆+1 (√𝜒𝜓)

𝐾𝜆 (√𝜒𝜓)
Σ

+ 𝛾𝛾
󸀠
((

𝜒

𝜓
)
𝐾𝜆+2 (√𝜒𝜓)

𝐾𝜆 (√𝜒𝜓)

− ((
𝜒

𝜓
)

1/2
𝐾𝜆+1 (√𝜒𝜓)

𝐾𝜆 (√𝜒𝜓)
)

2

) .

(15)

Note that further properties of the MGHD can be found in
[19].

3.3. The Univariate Generalized Hyperbolic Distributions. If
we set 𝑑 = 1 and Σ = 𝜎

2 in (8), we obtain the univariate
generalized hyperbolic distribution. The probability density
function is given by

𝑓GHD (𝑥; 𝜆, 𝜒, 𝜓, 𝜇, 𝜎
2
, 𝛾)

= 𝑎𝐾𝜆−1/2(
√(𝜒 +

(𝑥 − 𝜇)
2

𝜎
2

)(𝜓 +
𝛾
2

𝜎
2
))

× exp(𝛾
(𝑥 − 𝜇)

𝜎
2

)

× ((𝜒 +
(𝑥 − 𝜇)

2

𝜎
2

)(𝜓 +
𝛾
2

𝜎
2
))

𝜆/2−1/4

(16)

with the normalizing constant

𝑎 =

(𝜒𝜓)
−𝜆/2

𝜓
𝜆
(𝜓 + (𝛾

2
/𝜎
2
))
1/2−𝜆

(2𝜋)
1/2

𝜎𝐾𝜆 (√𝜒𝜓)

. (17)

3.4. Key Subclasses of the GHD. The generalized hyperbolic
family of distributions is very flexible; many distributions
arise as subclasses or limiting cases, are known by alternative
names and have become very popular in financial modeling.
We now take a closer look at some of those distributions.

3.4.1. Hyperbolic Distributions (HYP)

(i) When 𝜆 = (𝑑 + 1)/2, one arrives at the multivariate
hyperbolic distribution. However, its marginal distri-
butions are no longer hyperbolic distributions.

(ii) When 𝜆 = 1, one can obtain a MGHD whose
univariate marginal distributions are hyperbolic.

3.4.2. Normal Inverse Gaussian (NIG) Distributions. Setting
𝜆 = −1/2 leads to the subclass of normal inverse Gaussian
(NIG) distributions. The multivariate NIG distribution is
widely used in financial modeling (see for example Aas et al.
[20]) for recent applications. We note that the tails of this
subclass are slightly heavier than those of the hyperbolic
subclass.

3.4.3. Variance Gamma (VG) Distributions. When 𝜆 > 0

and 𝜒 = 0, if we use the fact that 𝐾𝜆(𝑥) ∼ Γ(𝜆)2
𝜆−1

𝑥
−𝜆,

as 𝑥 → 0 for 𝜆 > 0, we obtain the limiting case which
is known as variance gamma (VG) distribution. The mean
and the covariance of a variance gamma distributed random
vector𝑋 are given by

𝐸 (𝑋) = 𝜇 + 𝛾
2𝜆

𝜓
,

Cov (𝑋) =
2𝜆

𝜓
Σ + 𝛾𝛾

󸀠 4𝜆

𝜓
2
.

(18)

3.5. The Skewed Student’s 𝑡-Distribution (St). If 𝜆 < 0 and
𝜓 = 0 we obtain another limiting case called the generalized
hyperbolic skew Student’s 𝑡-distribution often simply call the
skew Student’s 𝑡-distribution when 𝛾 = 0. If we use the facts
that𝐾𝜆(𝑥) = 𝐾−𝜆(𝑥) and𝐾𝜆(𝑥) ∼ Γ(𝜆)2

𝜆−1
𝑥
−𝜆, as 𝑥 → 0 for

𝜆 > 0, and define ] = −2𝜆, the mean and the covariance of a
skew Student’s 𝑡-distributed random vector𝑋 are given by

𝐸 (𝑋) = 𝜇 + 𝛾
𝜒

] − 2
,

Cov (𝑋) =
𝜒

] − 2
Σ + 𝛾𝛾

󸀠 𝜒
2

(] − 2)
2
(] − 4)

,

(19)

where the mean exists only if ] ̸= 2 (i.e., 𝜆 ̸= − 1), and the
covariance matrix is only defined for ] > 4.

4. Univariate Estimation Results

Basic properties of the univariateGHDand some of its special
cases can be found in [21] and references therein. In this
section, we present the univariate estimation results obtained



Journal of Applied Mathematics 5

−4 −2 0 4

0.0

0.1

0.2

0.3

0.4

0.5

Daily log returns

D
en

sit
y

GHD
Norm
Emp

Daily log returns density

2

Figure 1: Empirical density of AGL versus fitted Normal and GHD.

via the EM-based algorithm (details can be found in, e.g., [11,
Section 3.2]) which is implemented in the ghyp R package.

To illustrate the superior fit of the GHD, in Figure 1, we
plot the empirical density and log-density of the log-returns
of AGL together with fitted density functions for the GHD
and normal distribution. One can clearly see the better fit of
the GHD, particularly with respect to the fits to the tails.

The univariate estimation parameters are presented in
Table 2. We obtain −3.2041 ≤ 𝜆 ≤ 2.2652, 0 ≤ 𝜒 ≤ 4.4083,
0 ≤ 𝜓 ≤ 4.5305 and from the values of 𝛾, 4 stocks are left
skewed and 3 are right skewed for the period investigated.

4.1. Comparisons of the Estimated Parameter Sets. We analyze
and compare the goodness of fits of the univariate generalized
hyperbolic distributions under consideration. To this end, the
following four criteria will be used to compare the goodness-
of-fit of different candidate distributions.

(i) The log-likelihood (LL): the LL is an overall measure
of goodness-of-fit, with higher values of LL implying a
more likely distribution candidate to model the data.

(ii) The Akaike information criterion (AIC): the AIC is a
measure of the relative goodness of fit which estimates
relative support for a model. Let 𝑘 be the number of
parameters in the calibrated model, then,

AIC = 2𝑘 − 2 log 𝐿, (20)

where 𝐿 is the maximized value of the likelihood
function of the estimated model.

(iii) Kolmogorov-Smirnov (KS) test statistics: the KS
test uses the Kolmogorov distance of the empirical
distribution function 𝐹emp and a given continuous

distribution (null distribution) function 𝐹 to test
whether the data was sampled from the distribution
𝐹.TheKolmogorov distance is the supremumover the
absolute differences between two density functions. It
is given by

KS = sup
𝑥∈R

󵄨󵄨󵄨󵄨󵄨
𝐹emp (𝑥) − 𝐹est (𝑥)

󵄨󵄨󵄨󵄨󵄨
, (21)

where 𝐹emp and 𝐹est are the empirical and the esti-
mated CDFs, respectively.

(iv) We simultaneously compute the 𝑃 values of the
Kolmogorov test statistics. The 𝑃 value is a measure
of how much evidence we have against the null
hypothesis (that the data is drawn from the theo-
retical distribution concerned) against an alternative
hypothesis (that the null hypothesis is false). The
smaller the𝑃 value themore evidence we have against
the null hypothesis. In this work, if 𝑃 > 0.1, we will
say that the data appears to be consistent with the
null hypothesis, and if 𝑃 < 0.001 we will conclude
that there is very strong evidence against the null
hypothesis.

From Table 3, we can see that the generalized hyperbolic
distribution (GHD) has the highest log-likelihood by a small
margin for all the returns analyzed. The largest discrepancy
between the log-likelihood indications occurs forAGL,where
LL(GHD) = −2029.336 compared to LL(VG) = −2038.502.
This amounts to a percentage difference of less than 10%.

Amongst the subclasses, Student’s 𝑡-distribution has the
highest log-likelihood and the smallest AIC for AGL and
IMP, while ANG, BIL, and GFI are best modeled by the NIG
distribution according to the LL and AIC criteria.

From Table 4, there is evidence against the null hypothe-
sis in 1 case. Specifically, the Hyp is ruled out for ANG stock.
For AGL, GFI, and IMP stocks, the generalized hyperbolic
distribution has the smallest Kolmogorov distance.

4.2. Temporal Stability of Parameters. We inspect the stability
of parameters via the plots of parameters for daily rolling
window for the GH and the VG distributions. For the daily
parameter variations, we first calibrate the daily log-returns
from January 3, 2006 to December 31, 2010 (1250 observa-
tions). We then remove one observation at the beginning
and add one observation at the end until December 2011. We
obtain the following figures.

The subplots in Figure 2 suggest that the parameters
are not very stable over time for the generalized hyper-
bolic distribution. However, Figure 3 suggests a more stable
parametrization for the variance gamma distribution when 𝜒

is constrained to zero. It can also be noted that the varying
of 𝜎may be consistent with a more general model with time-
varying volatility.

Next, we compute the densities of the change in parame-
ters.
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Table 2: Univariate estimation parameters.

Tickers 𝜆 𝜒 𝜓 𝜇 𝜎 𝛾

AGL

GHD −0.5547 1.0373 0.9583 0.0358 1.0111 −0.0138
HYP 1 0.2363 2.4977 0.0169 0.9769 −0.0170
NIG −0.5 0.9433 0.9433 0.0167 0.9913 −0.0167
VG 1.5674 0 3.1349 0.0182 0.9768 −0.0184
St −2.0142 2.0284 0 0.0149 1.0178 −0.0151

AMS

GHD 1.1746 0.0950 2.5765 0.0701 0.9934 −0.0699
HYP 1 0.1705 2.3891 0.0728 0.9947 −0.0729
NIG −0.5 1.0749 1.0749 0.0892 0.9972 −0.0892
VG 1.3704 0 2.7408 0.0503 0.9972 −0.0504
St −2.2587 2.5174 0 0.0946 1.0137 −0.0957

ANG

GHD −1.0350 1.2428 0.5004 −0.0123 0.9995 0.0122
HYP 1 0.1336 2.3238 −0.0154 0.9844 0.0154
NIG −0.5 0.8662 0.8662 −0.0088 0.9972 0.0088
VG 1.3704 0 2.7408 −0.0150 0.9844 0.0150
St −1.9560 1.9120 0 −0.0106 1.0279 0.0109

BIL

GHD −1.5514 1.7473 0.2624 −0.01000 0.9979 0.0069
HYP 1 0.1679 2.3847 0.0075 0.9846 −0.0073
NIG −0.5 0.9414 0.9414 −0.0016 0.9950 0.0017
VG 1.4412 0 2.8824 0.0184 0.9840 −0.0185
St −2.0684 2.1369 0 −0.0104 1.0180 0.0106

GFI

GHD −1.0813 1.1149 0.3490 −0.0180 1.0001 0.01750
HYP 1 0.0829 2.2257 −0.0247 0.9761 0.0248
NIG −0.5 0.7346 0.7346 −0.0204 0.9949 0.0203
VG 1.2872 0 2.5743 −0.0243 0.9755 0.0245
St −1.7969 1.5938 0 −0.0151 1.0359 0.0150

HAR

GHD −1.2701 1.7211 0.5818 −0.0726 1.0055 0.0863
HYP 1 0.2848 2.5731 −0.0751 0.9837 0.0751
NIG −0.5 1.1388 1.1388 −0.0646 0.9909 0.0646
VG 1.6596 0 3.3192 −0.0728 0.9828 0.0729
St −2.3340 2.6681 0 −0.0474 1.0038 0.0475

IMP

GHD 0.6870 0.9805 2.9234 0.1593 0.9870 −0.1654
HYP 1 0.7646 3.2210 0.1267 0.9900 −0.1267
NIG −0.5 1.8458 1.8458 0.1251 0.9918 −0.1250
VG 2.2652 0 4.5305 0.1278 0.9898 −0.1279
St −3.2041 4.4083 0 0.1249 0.9944 −0.1251

Table 3: Log-likelihood and AIC.

Tickers GHD Hyp NIG VG St
Log-likelihood AIC Log-likelihood AIC Log-likelihood AIC Log-likelihood AIC Log-likelihood AIC

AGL −2029.336 4070.672 −2035.351 4080.702 −2030.577 4071.154 −2038.502 4087.004 −2029.336 4068.672
AMS −2056.030 4124.06 −2057.04 4124.08 −2056.819 4123.638 −2056.234 4122.468 −2058.495 4126.990
ANG −2032.588 4077.176 −2035.291 4080.582 −2032.791 4075.582 −2036.618 4083.236 −2033.722 4077.446
BIL −2037.136 4086.272 −2039.864 4089.728 −2037.549 4085.098 −2041.2 4092.4 −2037.633 4085.266
GFI −2010.106 4032.212 −2014.294 4038.588 −2010.466 4030.932 −2016.555 4043.10 −2011.146 4032.292
HAR −2048.74 4109.48 −2051.336 4112.672 −2049.502 4109.004 −2052.879 4115.758 −2048.747 4107.494
IMP −2081.01 4174.02 −2084.209 4178.418 −2083.609 4177.218 −2084.81 4179.62 −2082.956 4175.912
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Figure 2: Daily variation of 𝜆, 𝜎, 𝜒, 𝜓, and 𝛾 for AGL with GHD.
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Table 4: Kolmogorov distance.

Tickers GHD Hyp NIG VG St
KS 𝑃 value KS 𝑃 value KS 𝑃 value KS 𝑃 value KS 𝑃 value

AGL 0.0214 0.884 0.024 0.78 0.0414 0.1536 0.0254 0.7208 0.0467 0.07593
AMS 0.036 0.2847 0.032 0.4253 0.0267 0.6596 0.03 0.5086 0.03 0.508
ANG 0.028 0.5981 0.4746 0.0003 0.018 0.9681 0.0227 0.8351 0.0274 0.6288
BIL 0.0447 0.09989 0.03 0.5086 0.0207 0.9055 0.026 0.6903 0.0454 0.09129
GFI 0.026 0.6903 0.0347 0.3275 0.0374 0.2461 0.028 0.5981 0.0354 0.3056
HAR 0.03 0.5086 0.0134 0.9993 0.0234 0.8082 0.0374 0.2461 0.0314 0.4522
IMP 0.0254 0.7208 0.0274 0.6288 0.026 0.6903 0.026 0.6903 0.028 0.5981
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Figure 3: Daily variation of 𝜆, 𝜎, 𝜓, and 𝛾 for AGL with VG.

From Figures 4 and 5, it is clear that the variation
in parameter estimates is significantly diminished for the
VG model. Thus, consideration of the temporal stability
of parameters provides a further criterion for discerning
between models.

5. Multivariate Case

To examine the suitability of the multivariate GHD model
for the seven stocks, we fit the 𝑧-scored data, where stocks
are listed in the same order as in Section 2 for calculations.
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Figure 4: Density of daily change in 𝜆 and 𝜎 for AGL (GHD versus VG).

TheMCECM algorithm, implemented in the ghyp R package
(a detailed description of the algorithm is documented

in [11, Section 3.2]), yielded the following parameters esti-
mates for the joint return distribution for the GHD case:

𝜆 = −1.8889, 𝜒 = 2.1435, 𝜓 = 0.1457,

𝜇 = (0.02602, 0.0208, −0.00164, 0.0180, 0.0033, 0.01634, 0.0048) ,

𝛾 = (−0.0260, −0.0208, 0.0016, −0.0180, −0.0033, −0.0164, −0.0049) ,

Σ =

(
(
(
(

(

0.9589 0.5773 0.3359 0.8165 0.3385 0.3403 0.5820

1.0303 0.3185 0.5333 0.3391 0.3459 0.7357

0.9771 0.3424 0.7052 0.6694 0.3561

0.9811 0.3389 0.3381 0.5634

0.9669 0.7305 0.3732

1.0404 0.3961

1.0992

)
)
)
)

)

.

(22)



10 Journal of Applied Mathematics

−10 −5 0 5 10
0

0.5

1

1.5

2

2.5

Difference 𝜓

D
en

sit
y 

of
 ch

an
ge

 in
𝜓

G
H

D

(a)

−10 −5 0 5 10
0

0.5

1

1.5

2

2.5

Difference 𝜓

D
en

sit
y 

of
 ch

an
ge

 in
𝜓

VG

(b)

−5 0 5
0

500

1000

1500

2000

2500

3000

D
en

sit
y 

of
 ch

an
ge

 in
 𝛾

 G
H

D

Difference 𝛾 ×10−3

(c)

−5 0 5
0

500

1000

1500

2000

2500

3000

D
en

sit
y 

of
 ch

an
ge

 in
 𝛾

 V
G

Difference 𝛾 ×10−3

(d)

Figure 5: Density of daily change in 𝜓 and 𝛾 for AGL (GHD versus VG).

Parameters obtained for the subclasses are given in
Appendix A.1.

Table 5 gives the log-likelihood, the AIC, and KS distance
for each of the fitted multivariate distributions. The gener-
alized hyperbolic distribution has the highest log-likelihood
and the smallest AIC. However, from the 𝑃 values of the KS
test, we can conclude that the data appears to be consistent
with the null hypothesis for the subclasses, MNIG, MVG,
and MSt, as well but the MHYP is rejected by the 𝑃 value.
In addition we fit a multivariate normal distribution and
from the last row of Table 5, it is clear that the multivariate
normal distribution is ruled out by the log-likelihood, the
AIC, and the Kolmogorov-Smirnov statistics test for the 𝑧-
scored multivariate data.

From Table 5 we also note that the result obtained for the
log-likelihood and the AIC of the MSt and MGHD are very
similar, although the MSt has less parameters. This was also
observed for fitting of Dow Jones daily returns to the MGHD

model and its subclasses, using the MCEM algorithm (see
McNeil et al. [11], pp. 83 for details description).

Since the data set comprises stocks from the same
market and the same sector, it is possible that there are
nontrivial positive correlations.Therefore, we apply principal
components analysis (PCA) to identify common statistical
factors in order to filter off a reduced-dimension set of shared
exogenous price determinants, before fitting multivariate
generalized hyperbolic distributions and subclasses [22, 23].
As in Section 2, we use the 𝑧-scored data for the PCA.

The PCA is done as follows.

(i) First, we estimate the covariance matrix for the entire
data set.

(ii) Second, we calculate the seven eigenvalues for the
estimated covariances matrix and obtain that 𝛼1 ⋍

3.8391 and 𝛼2 ⋍ 1.4541 account for greater than 95%
of the variation.
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Table 5: Log-likelihood, AIC, and KS distance.

Class Log-likelihood AIC KS distance
KS 𝑃 value

MGHD −10730.64 21549.28 0.014 0.2542
MHYP −10897.83 21881.66 0.037 0.0000
MNIG −10741.39 21568.77 0.0124 0.3959
MVG −10799.64 21685.28 0.0184 0.0573
MSt −10731.49 21548.98 0.0233 0.0068
Mnor −11726.54 23523.07 0.044 0.0000

Table 6: Log-likelihood, AIC, and KS distance.

Class Log-likelihood AIC KS distance
KS 𝑃 value

MGHD −5320.1 10658.2 0.024 0.3525
MHYP −5333.8 10683.6 0.0134 0.9522
MNIG −5322.0 10660.0 0.0187 0.6719
MVG −5335.3 10686.6 0.0267 0.2358
MSt −5321.2 10658.4 0.028 0.1896
Mnor −5538.18 11086.38 0.0551 0.0002

(iii) Third, we compute the two eigenvectors correspond-
ing to 𝛼1 and 𝛼2, respectively:

𝑒1 ⋍ (−0.3945 −0.3745 −0.3596 −0.3919 −0.3799 −0.3606 −0.3830) ,

𝑒2 ⋍ (0.3609 0.3057 −0.4434 0.3358 −0.4431 −0.4483 0.2637) .

(23)

(iv) Next, we compute the two leading principal compo-
nents as common statistical factors and regress the
returns data for each stock against the two statistical
factors.

(v) Finally, we fit theMGHD to both the pair of principal
components derived from the price data, as well as to
set of seven stock return components which are not
explained by shared exogenous drivers.

We obtain the followingMGHD parameters estimates for the
joint return distribution of the two principal components:

𝜆 = −1.4843, 𝜒 = 1.6432, 𝜓 = 0.2684,

𝜇 = (−0.0745, 0.0811) , 𝛾 = (0.0746, −0.0811) ,

Σ = (
3.9936 −0.0042

1.4014
) .

(24)

The parameters estimated for the other subclasses are given
in Appendix A.2.

Table 6 gives the log-likelihood, the AIC, and KS distance
for each of the fitted multivariate distributions, with the last
line documenting results for the fit of a multivariate normal

distribution. The generalized hyperbolic distribution has the
highest log-likelihood and the smallest AIC and, from the 𝑃
values of the KS test, we can conclude that the data for the
two shared statistical factors appears to be consistent with the
null hypothesis for fiveGHDsubclasses considered.However,
it is clear from the last row of Table 5 that the bivariate
normal distribution is ruled out by the log-likelihood, the
AIC, and the Kolmogorov-Smirnov statistics test for the pair
of common factors.

We assessed the fit of theMGHDandmultivariate normal
models to the residuals obtained from the regression of
the seven stocks against the two principal components. We
found that these stock return components were explained by
a multivariate normal distribution and that more complex
models were ruled out.The combined outcome for the shared
factors and the residuals suggests that the success of MGHD
model for explaining returns, with positive results in Table 5,
may be a reflection of the MGHD structure in the two
principal components, revealed in Table 5.

6. Conclusions

We estimated the parameters of the univariate generalized
hyperbolic, hyperbolic, variance gamma, normal inverse
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Gaussian, and skew Student’s 𝑡-distributions for the 𝑧-scored
daily log-returns of liquid mining stocks listed on the Johan-
nesburg Stocks Exchange from January 2006 to December
2011. According to the log-likelihood (LL) and the Akaike
information criteria (AIC), the generalized hyperbolic dis-
tribution offered the best fit for all seven stocks considered.
However, the differences between themodelswere small, with
disagreement of at most 10% in the criteria computed. More-
over, application of the Kolmogorov-Smirnov (KS) statistics
test ruled out the hyperbolic distribution for one of the stocks,
namely, ANG.

Considering only the proper subclasses, the LL and AIC
pointed to the NIG distribution for ANG, BIL, and GFI
but by even narrower margins relative to the alternatives
(less than 0.8% differences). The KS statistics tests suggested
that AMS, ANG, BIL, and IMP were best modeled by NIG
distribution.

On inspection of the temporal stability of the parameters
fits for the most general case, we observed that the model
parameters varied through time, with the suggestion that a
VG model would offer a more stable calibration for AGL.
We also noted that the volatility parameter 𝜎 varied over
the period considered, which is consistent with the literature
on time-varying volatility models and suggests a further line
of investigation in the context of models with GHD type
increments.

We considered the multivariate generalized hyperbolic
and its hyperbolic, variance gamma, normal inverse Gaus-
sian, and skew Student’s 𝑡 subclasses as possible models for
the joint distributions of returns. It was found that it was
possible to fit MGHD models to joint returns, with this
model narrowly outperforming the multivariate Student’s 𝑡-
distribution with the next best fit.

Closer analysis of common risk factors via principal
component analysis yielded two shared factors which were
successfully modeled with a bivariate GHD model. The
regression residuals for the seven stocks, whichwere obtained
by removing the common price determinants, were found
to be normally distributed. This provided evidence for the
view that the GHD structure of the principal components
was adequate for explaining the dependence structure of the
seven stocks.

Appendix

A. Multivariate and Bivariate Estimation
Results

A.1. Multivariate Estimation Results. In this section, we
present the 7-dimensional estimation results for the sub-
classes of generalized hyperbolic distribution.

(i)We calibrate theMHypmodel to the daily returns of 7-
dimensional 𝑧-scored above mentioned daily returns and we
obtain the following result:

𝜆 = 4, 𝜒 = 0.0000, 𝜓 = 8,

𝜇 = (0.0369, 0.0233, −0.0044, 0.0219, 0.0028, 0.0157, 0.0016) ,

𝛾 = (−0.0369, −0.0233, 0.0045, −0.0219, −0.0028, −0.0157, −0.0016) ;

Σ =

(
(
(

(

0.8591 0.5138 0.2956 0.7288 0.3038 0.2937 0.5093

0.9059 0.2771 0.4743 0.3018 0.3040 0.6419

0.8735 0.3050 0.6319 0.5898 0.3105

0.8736 0.3063 0.2933 0.4938

0.8659 0.6479 0.3322

0.9074 0.3398

0.9469

)
)
)

)

.

(A.1)

(ii) We present the parameters estimated for the MNIG
distribution,

𝜆 = −0.5, 𝜒 = 1.1746, 𝜓 = 1.1747,

𝜇 = (0.0292, 0.0168, −0.0007, 0.0201, 0.0020, 0.0116, 0.0019) ,

𝛾 = (−0.0292, −0.0168, 0.0007, −0.0202, −0.0020, −0.0116, −0.0019) ;

Σ =

(
(
(

(

0.9431 0.5662 0.3296 0.8013 0.3328 0.3319 0.5693

1.0056 0.3102 0.5225 0.3324 0.3378 0.7179

0.9576 0.3361 0.6920 0.6558 0.3482

0.9619 0.3329 0.3300 0.5504

0.9481 0.7156 0.3665

1.0169 0.3870

1.07260

)
)
)

)

.

(A.2)
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(iii) We obtain the following parameters for the MVG,

𝜆 = 1.9247, 𝜒 = 0, 𝜓 = 3.8494,

𝜇 = (0.0287, 0.0033, −0.0034, 0.0160, −0.0013, −0.0012, −0.0049) ,

𝛾 = (−0.0287, −0.0033, 0.0034, −0.0161, 0.0013, 0.0012, 0.0049) ;

Σ =

(
(
(

(

0.9170 0.5499 0.3193 0.7773 0.3241 0.3182 0.5478

0.9681 0.2976 0.5066 0.3231 0.3263 0.6892

0.9303 0.32630.6721 0.6340 0.3346

0.9304 0.3246 0.3168 0.5291

0.9181 0.6907 0.3549

0.9755 0.3702

1.0257

)
)
)

)

.

(A.3)

(iv) The estimated multivariate skewed Student’s 𝑡-para-
meters are

𝜆 = −2.1386, 𝜒 = 2.2772, 𝜓 = 0,

𝜇 = (0.0252, 0.0213, −0.0018, 0.0174, 0.0035, 0.0170, 0.0052) ,

𝛾 = (−0.0259, −0.0219, 0.0019, −0.0178, −0.0036, −0.0175, −0.0053) ;

Σ =

(
(
(

(

0.9906 0.5969 0.3472 0.8439 0.3498 0.3521 0.6019

1.0659 0.3295 0.5514 0.3506 0.3579 0.7611

1.0103 0.3538 0.7290 0.6920 0.3682

1.01422 0.35026 0.3499 0.5828

0.9995 0.7552 0.3857

1.0758 0.4096

1.1370

)
)
)

)

.

(A.4)

(v) The estimated multivariate normal parameters are

𝜇 = (0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000) ,

Σ =

(
(
(

(

1.0000 0.5793 0.3265 0.8334 0.3516 0.3106 0.5568

1.0000 0.3015 0.5347 0.3400 0.3333 0.6978

1.0000 0.3478 0.7274 0.6578 0.3377

1.0000 0.3591 0.3160 0.5433

1.0000 0.7358 0.3781

1.0000 0.3562

1.0000

)
)
)

)

.

(A.5)

A.2. Bivariate Estimation Result. In this section, we present
the bivariate estimation results for the subclasses of general-
ized hyperbolic distribution.

(i) We calibrate the bivariate Hyp model to the daily
returns of the two compressed above mentioned daily
returns and we obtain the following result:
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𝜆 = 1.5, 𝜒 = 0.07069, 𝜓 = 3.1513,

𝜇 = (−0.0943, 0.1193) , 𝛾 = (0.0943, 0.1192) ;

Σ = (
3.7386 −0.0029

1.3313
) .

(A.6)

(ii) We present the parameters estimated for the bivariate
NIG distribution as follows:

𝜆 = −0.5, 𝜒 = 0.9705, 𝜓 = 0.9705,

𝜇 = (−0.08617, 0.0920) , 𝛾 = (0.0861, −0.0920) ;

Σ = (
3.9106 −0.0033

1.3767
) .

(A.7)

(iii) We obtain the following parameters for the bivariate
VG:

𝜆 = 1.5777, 𝜒 = 0, 𝜓 = 3.1554,

𝜇 = (−0.0709, 0.1266) 𝛾 = (0.07091, −0.1266) ;

Σ = (
3.7801 −0.0046

1.3434
) .

(A.8)

(iv) The estimated bivariate skewed Student’s 𝑡-
parameters are

𝜆 = −1.9993, 𝜒 = 1.9987, 𝜓 = 0,

𝜇 = (−0.0665, 0.0737) , 𝛾 = (0.0683, −0.0757) ;

Σ = (
4.1822 −0.0048

1.4672
) .

(A.9)

(v) The estimated bivariate normal parameters are

𝜇 = (0.0000, 0.0000) , Σ = (
3.8391 0

1.4541
) .

(A.10)
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