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The purpose of this paper is to investigate the fixed points of solutions 𝑓(𝑧) of some 𝑞-difference equations and obtain some results
about the exponents of convergence of fixed points of𝑓(𝑧) and𝑓(𝑞𝑗𝑧) (𝑗 ∈ N+), 𝑞-differencesΔ 𝑞𝑓(𝑧) = 𝑓(𝑞𝑧)−𝑓(𝑧), and 𝑞-divided
differences Δ 𝑞𝑓(𝑧)/𝑓(𝑧).

1. Introduction and Main Results

Throughout this paper, we will assume that the readers are
familiar with basic notations such as 𝑚(𝑟, 𝑓), 𝑁(𝑟, 𝑓), and
𝑇(𝑟, 𝑓) of Nevanlinna theory (see Hayman [1], Yang [2], and
Yang and Yi [3]).We use 𝜌(𝑓), 𝜆(𝑓), and 𝜆(1/𝑓) to denote the
order, the exponent of convergence of zeros, and the exponent
of convergence of poles of 𝑓(𝑧), respectively, and we also use
the notation 𝜏(𝑓) to denote the exponent of convergence of
fixed points of 𝑓(𝑧), which is defined as

𝜏 (𝑓) = lim sup
𝑟→∞

log𝑁(𝑟, 1/ (𝑓 (𝑧) − 𝑧))

log 𝑟
, (1)

and 𝑆(𝑟, 𝑓) to denote any quantity satisfying 𝑆(𝑟, 𝑓) = 𝑜(𝑇(𝑟,
𝑓)) for all 𝑟 on a set 𝐹 of logarithmic density 1, where the
logarithmic density of a set 𝐹 is defined by

lim
𝑟→∞

1

log 𝑟
∫
[1,𝑟]∩𝐹

1

𝑡
𝑑𝑡. (2)

Throughout this paper, the set 𝐹 of logarithmic density 1 will
be not necessarily the same at each occurrence.

Recently, a number of papers (including [4–9]) focused
on complex difference equations, system of complex dif-
ference equations, and difference analogues of Nevanlinna
theory. Correspondingly, there are many papers focusing on
the 𝑞-difference (or 𝑞-shift difference) equations, such as [10–
16].

In 2013, Zhang [17] investigated the growth of meromor-
phic solutions of some complex 𝑞-difference equations and
the exponents of convergence of fixed points and zeros of
transcendental meromorphic solutions of the second order
𝑞-difference equation and obtained the following theorem.

Theorem 1 (see [17]). Suppose that 𝑓(𝑧) is a transcendental
meromorphic solution of the equation

𝑓 (𝑞2𝑧) + 𝛾1𝑓 (𝑞𝑧) =
𝛼0 + 𝛼1𝑓 (𝑧) + 𝛼2𝑓

2 (𝑧)

𝛽0 + 𝛽1𝑓 (𝑧) + 𝛽2𝑓
2 (𝑧)

, (3)

where |𝑞| < 1, coefficients 𝛾1, 𝛼0, 𝛼1, 𝛼2, 𝛽0, 𝛽1, and 𝛽2 are con-
stants, and at least one of 𝛼2, 𝛽2 is nonzero. Then, 𝜌(𝑓) = 0
and (i) 𝑓(𝑧) has infinitely many fixed points, and (ii) 𝑓(𝑧) has
infinitely many zeros, whenever 𝛼0 ̸= 0.

Our first result of this paper is about the exponents of con-
vergence of fixed points and zeros of transcendental mero-
morphic solutions of the higher order 𝑞-difference equation
as follows.

Theorem 2. Suppose that 𝑓(𝑧) is a transcendental meromor-
phic solution of the equation

𝑓 (𝑞𝑛𝑧) +
𝑛−1

∑
𝑡=1

𝛾𝑡𝑓 (𝑞
𝑡𝑧) =

∑
𝑛
𝑗=0 𝛼𝑗𝑓

𝑗 (𝑧)

∑
𝑛
𝑗=0 𝛽𝑗𝑓

𝑗 (𝑧)
, (4)
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where 𝑞 ∈ C, |𝑞| < 1, coefficients 𝛾𝑡 (𝑡 = 1, . . . , 𝑛 − 1), 𝛼𝑗,
𝛽𝑗, (𝑗 = 0, . . . , 𝑛), are constants, and at least one of 𝛼𝑛, 𝛽𝑛 is
nonzero. Then, 𝜌(𝑓) = 0 and (i) 𝑓(𝑧) has infinitely many fixed
points, and (ii) 𝑓(𝑧) has infinitely many zeros, whenever 𝛼0 ̸=
0.

FromTheorem 2, it is a natural question to ask,What will
happen if the right-hand side of (4) is a rational function in
both arguments?

Regarding the above question, we will investigate the
exponents of convergence of fixed points of meromorphic
solutions of the 𝑞-difference equation

𝑓 (𝑞𝑧) =
𝑅 (𝑧) 𝑓 (𝑧)

𝑄 (𝑧) + 𝑃 (𝑧) 𝑓 (𝑧)
, (5)

where 𝑃(𝑧), 𝑄(𝑧), and 𝑅(𝑧) are nonzero polynomials, 𝑞 ∈
C, and |𝑞| ̸= 0, 1. Similar to [18, Page 99], we can call
(5) a 𝑞-Pielou logistic equation, which is a special form of
nonautonomous Schröder equations.

Theorem 3. Let 𝑃(𝑧),𝑄(𝑧), and 𝑅(𝑧) be nonzero polynomials
such that

deg𝑃 (𝑧) ≥ max {deg𝑅 (𝑧) , deg𝑄 (𝑧) , 1} . (6)

Set Δ 𝑞𝑓(𝑧) = 𝑓(𝑞𝑧) − 𝑓(𝑧), where 𝑞 ∈ C and |𝑞| ̸= 0, 1. Then
every transcendentalmeromorphic solution𝑓(𝑧) of (5) satisfies
the following statements:

(i) 𝑓(𝑞𝑗𝑧) has infinitely many fixed points and 𝜏(𝑓(𝑞𝑗𝑧))
= 𝜌(𝑓), (𝑗 = 0, 1, 2, . . .);

(ii) if 𝑅(𝑧) − (𝑧 + 1)𝑄(𝑧) ̸≡ 0, then Δ 𝑞𝑓(𝑧)/𝑓(𝑧) has
infinitely many fixed points and 𝜏(Δ 𝑞𝑓/𝑓) = 𝜌(𝑓).

We also study fixed points of transcendental meromor-
phic solutions of the following 𝑞-difference equations:

𝑎𝑛 (𝑧) 𝑓 (𝑞
𝑛𝑧) + ⋅ ⋅ ⋅ + 𝑎1 (𝑧) 𝑓 (𝑞𝑧) + 𝑎0 (𝑧) 𝑓 (𝑧) = 0, (7)

𝑎𝑛 (𝑧) 𝑓 (𝑞
𝑛𝑧) + ⋅ ⋅ ⋅ + 𝑎1 (𝑧) 𝑓 (𝑞𝑧) + 𝑎0 (𝑧) 𝑓 (𝑧) = 𝐹 (𝑧) ,

(8)

where 0 < |𝑞| < 1, 𝑎𝑗(𝑧) (𝑗 = 0, 1, . . . , 𝑛), and 𝐹(𝑧) are
polynomials and 𝑎𝑛(𝑧)𝑎0(𝑧) ̸≡ 0, and obtain the following
results.

Theorem 4. Let 𝑞 ∈ C, 0 < |𝑞| < 1, let 𝑎𝑗(𝑧) (𝑗 = 0, 1, . . . ,
𝑛) be polynomials, and let 𝑎𝑛(𝑧)𝑎0(𝑧) ̸≡ 0. If 𝑎0(𝑧), 𝑎1(𝑧), . . . ,
𝑎𝑛(𝑧) satisfy one of the following conditions:

(i) there exists an integer 𝑠 (0 ≤ 𝑠 ≤ 𝑛) such that

deg 𝑎𝑠 (𝑧) > max {deg 𝑎𝑗 (𝑧) , 𝑗 = 0, 1, . . . , 𝑛, 𝑗 ̸= 𝑠} ; (9)

(ii)

𝑞𝑛𝑎𝑛 (𝑧) + ⋅ ⋅ ⋅ + 𝑞𝑎1 (𝑧) + 𝑎0 (𝑧) ̸≡ 0, (10)

then every transcendental meromorphic solution 𝑓(𝑧) of (7)
satisfies that 𝑓(𝑞𝑗𝑧) has infinitely many fixed points and
𝜏(𝑓(𝑞𝑗𝑧)) = 𝜌(𝑓) for 𝑗 ∈ N.

By using the same argument as that inTheorem 4, we can
easily obtain the following theorem.

Theorem 5. Let 𝑞 ∈ C, 0 < |𝑞| < 1, 𝑎𝑗(𝑧) (𝑗 = 0, 1, . . . ,
𝑛), and 𝐹(𝑧) be polynomials and let 𝑎𝑛(𝑧)𝑎0(𝑧) ̸≡ 0. If 𝑎0(𝑧),
𝑎1(𝑧), . . . , 𝑎𝑛(𝑧), 𝐹(𝑧) satisfy one of the following conditions:

(i) 𝑎0(𝑧), 𝑎1(𝑧), . . . , 𝑎𝑛(𝑧) and 𝐹(𝑧) contain just one term
of maximal total degree;

(ii)

𝑞𝑛𝑎𝑛 (𝑧) + ⋅ ⋅ ⋅ + 𝑞𝑎1 (𝑧) + 𝑎0 (𝑧) − 𝐹 (𝑧) ̸≡ 0, (11)

then every transcendental meromorphic solution 𝑓(𝑧) of (8)
satisfies that 𝑓(𝑞𝑗𝑧) has infinitely many fixed points and
𝜏(𝑓(𝑞𝑗𝑧)) = 𝜌(𝑓) for 𝑗 ∈ N.

2. Some Lemmas

The following result is a difference counterpart to the stan-
dard result due to A. A. Mohon’ko and V. D. Mohon’ko [19].

Lemma 6 (see [20], Theorem 2.2). Let 𝑓(𝑧) be a nonconstant
zero-order meromorphic solution of 𝑃(𝑧, 𝑓) = 0, where𝑃(𝑧, 𝑓)
is a 𝑞-difference polynomial in 𝑓(𝑧). If 𝑃(𝑧, 𝑎) ̸≡ 0 for a slowly
moving target 𝑎(𝑧), then

𝑚(𝑟,
1

𝑓 − 𝑎
) = 𝑆 (𝑟, 𝑓) , (12)

on a set of logarithmic density 1.

Lemma 7 (see [21, 22]). Let 𝑎𝑗(𝑧), 𝑗 = 0, 1, . . . , 𝑛, and 𝑄(𝑧)
be rational functions, and let 𝑎0(𝑧) ̸≡ 0, 𝑎𝑛(𝑧) ≡ 1, and 𝑞
(0 < |𝑞| < 1). Then

(i) all meromorphic solutions of the equation

𝑛

∑
𝑗=0

𝑎𝑗 (𝑧) 𝑓 (𝑞
𝑗𝑧) = 𝑄 (𝑧) (13)

satisfy 𝑇(𝑟, 𝑓) = 𝑂((log 𝑟)2);

(ii) all transcendental meromorphic solutions of (13) sat-
isfy (log 𝑟)2 = 𝑂(𝑇(𝑟, 𝑓)).

Lemma 8 (see [17], Theorem 2). Suppose that 𝑓(𝑧) is a
nonconstant meromorphic solution of the equation

𝑛

∑
𝑗=1

𝛾𝑗 (𝑧) 𝑓 (𝑞
𝑗𝑧) = 𝑅 (𝑧, 𝑓 (𝑧)) =

∑
𝑠
𝑖=0 𝛼𝑖 (𝑧) 𝑓

𝑖 (𝑧)

∑
𝑡
𝑖=0 𝛽𝑖 (𝑧) 𝑓

𝑖 (𝑧)
, (14)

where 𝑞 (0 < |𝑞| < 1) is a complex number, 𝛼𝑗(𝑧) (𝑗 =
0, 1, . . . , 𝑠), 𝛼𝑠(𝑧) ̸≡ 0, 𝛽𝑗(𝑧) (𝑗 = 0, 1, . . . , 𝑡), 𝛽𝑡(𝑧) ̸≡ 0,
𝛾𝑛(𝑧) ≡ 1, and 𝛾𝑗(𝑧) (𝑗 = 0, 1, . . . , 𝑛) are small functions of
𝑓(𝑧), and 𝑅(𝑧, 𝑓) is irreducible in 𝑓(𝑧). Then, 𝑑 = max{𝑠, 𝑡} ≤
𝑛 and 𝜌(𝑓) ≤ (log 𝑛 − log 𝑑)/ − log |𝑞|.
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Lemma 9 (see [21, page 249] or [23, Theorem 1.1]). Let 𝑓(𝑧)
be a transcendental meromorphic function of zero-order and
let 𝑞 be a nonzero complex constant. Then

𝑇 (𝑟, 𝑓 (𝑞𝑧)) = 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) (15)

on a set of logarithmic density 1.

3. Proof of Theorem 2

Suppose that 𝑓(𝑧) is a transcendental meromorphic solution
of (4). From the assumptions of Theorem 2, it follows from
Lemma 8 that 𝜌(𝑓) ≤ 0 = (log 𝑛 − log 𝑛)/ − log |𝑞|. Thus,
𝜌(𝑓) = 0. Clearly, we have 𝜆(𝑓) = 𝜏(𝑓) = 𝜌(𝑓) = 0.

(i) Firstly, we prove that 𝑓(𝑧) has infinitely many fixed
points. Set 𝑔(𝑧) = 𝑓(𝑧) − 𝑧. Then 𝑔(𝑧) is transcendental,
𝑇(𝑟, 𝑔) = 𝑇(𝑟, 𝑓) + 𝑂(log 𝑟), and 𝑆(𝑟, 𝑓) = 𝑆(𝑟, 𝑔). So, 𝑔(𝑧)
is of zero-order. Then substituting 𝑓(𝑧) = 𝑔(𝑧) + 𝑧 into (4),
we get that

𝑔 (𝑞𝑛𝑧) +
𝑛−1

∑
𝑡=1

𝛾𝑡𝑔 (𝑞
𝑡𝑧) + 𝑞𝑛𝑧 +

𝑛−1

∑
𝑡=1

𝛾𝑡𝑞
𝑡𝑧

=
∑
𝑛
𝑗=0 𝛼𝑗(𝑔 (𝑧) + 𝑧)

𝑗

∑
𝑛
𝑗=0 𝛽𝑗(𝑔 (𝑧) + 𝑧)

𝑗
.

(16)

Set 𝐴(𝑧) = 𝑔(𝑞𝑛𝑧) + ∑𝑛−1𝑡=1 𝛾𝑡𝑔(𝑞
𝑡𝑧) + 𝑞𝑛𝑧 + ∑

𝑛−1
𝑡=1 𝛾𝑡𝑞

𝑡𝑧 and

𝑃1 (𝑧, 𝑔 (𝑧)) := 𝐴 (𝑧)
𝑛

∑
𝑗=0

𝛽𝑗(𝑔 (𝑧) + 𝑧)
𝑗
−
𝑛

∑
𝑗=0

𝛼𝑗 (𝑔 (𝑧) + 𝑧)
𝑗
.

(17)

It follows from (17) that

𝑃1 (𝑧, 0)

= (𝑞𝑛 +
𝑛−1

∑
𝑡=1

𝛾𝑡𝑞
𝑡)
𝑛

∑
𝑗=0

𝛽𝑗𝑧
𝑗+1 −

𝑛

∑
𝑗=0

𝛼𝑗𝑧
𝑗

= (𝑞𝑛 +
𝑛−1

∑
𝑡=1

𝛾𝑡𝑞
𝑡)𝛽𝑛𝑧

𝑛+1

+
𝑛−1

∑
𝑗=0

[(𝑞𝑛 +
𝑛−1

∑
𝑡=1

𝛾𝑡𝑞
𝑡)𝛽𝑗 − 𝛼𝑗+1] 𝑧

𝑗+1 − 𝛼0.

(18)

Suppose that 𝑃1(𝑧, 0) ≡ 0. If 𝑞𝑛 + ∑𝑛−1𝑡=1 𝛾𝑡𝑞
𝑡 = 0, then it

follows from (18) that 𝛼0 = 𝛼1 = ⋅ ⋅ ⋅ = 𝛼𝑛 = 0. Thus, the
right-hand side of (4) is 0, which is in contradiction with the
assumption ofTheorem 2. If 𝑞𝑛+∑𝑛−1𝑡=1 𝛾𝑡𝑞

𝑡 ̸= 0, it follows from
(18) that 𝛽𝑛 = 𝛼0 = 0 and

𝛼𝑗+1

𝛽𝑗
= 𝑞𝑛 +

𝑛−1

∑
𝑡=1

𝛾𝑡𝑞
𝑡, 𝑗 = 0, 1, . . . , 𝑛 − 1. (19)

Thus, we have from (4) and (19) that

𝑓 (𝑞𝑛𝑧) +
𝑛−1

∑
𝑡=1

𝛾𝑡𝑓 (𝑞
𝑡𝑧) = (𝑞𝑛 +

𝑛−1

∑
𝑡=1

𝛾𝑡𝑞
𝑡)𝑓 (𝑧) , (20)

which is in contradiction with the assumption of Theorem 2.
Hence, we have 𝑃1(𝑧, 0) ̸≡ 0. By Lemma 6, we get that

𝑚(𝑟,
1

𝑔
) = 𝑆 (𝑟, 𝑔) = 𝑆 (𝑟, 𝑓) (21)

on a set of logarithmic density 1.Thus, it follows from (21) that

𝑁(𝑟,
1

𝑓 − 𝑧
) = 𝑁(𝑟,

1

𝑔
) = 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) (22)

on a set of logarithmic density 1. Since𝑓(𝑧) is a transcendental
meromorphic solution of (4), then it follows from (22) that
𝑓(𝑧) has infinitely many fixed points.

(ii) From (4), we have

𝑃2 (𝑧, 𝑓 (𝑧)) := [𝑓 (𝑞
𝑛𝑧) +

𝑛−1

∑
𝑡=1

𝛾𝑡𝑓 (𝑞
𝑡𝑧)]

𝑛

∑
𝑗=0

𝛽𝑗𝑓
𝑗
(𝑧)

−
𝑛

∑
𝑗=0

𝛼𝑗𝑓
𝑗
(𝑧) .

(23)

Since 𝛼0 ̸= 0 and from (23), we derive that

𝑃2 (𝑧, 0) = 𝛼0 ̸≡ 0. (24)

Thus, it follows from Lemma 6 that

𝑚(𝑟,
1

𝑓
) = 𝑆 (𝑟, 𝑓) (25)

on a set of logarithmic density 1; that is,

𝑁(𝑟,
1

𝑓
) = 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) (26)

on a set of logarithmic density 1. Since𝑓(𝑧) is a transcendental
solution of (4), then it follows from (26) that 𝑓(𝑧) has
infinitely many zeros.

Thus, this completes the proof of Theorem 2.

4. Proof of Theorem 3

Suppose that 𝑓(𝑧) is a transcendental meromorphic solution
of (5). Since 𝑞 ∈ C, |𝑞| ̸= 0, 1, and 𝑃(𝑧), 𝑄(𝑧), and 𝑅(𝑧) are
polynomials, it follows from Lemma 8 and [11] that 𝑓(𝑧) is of
zero-order.

(i) We first prove that 𝑓(𝑧) has infinitely many fixed
points and 𝜏(𝑓) = 𝜌(𝑓). Set 𝑔(𝑧) = 𝑓(𝑧) − 𝑧. Then 𝑔(𝑧) is
transcendental, 𝑇(𝑟, 𝑔) = 𝑇(𝑟, 𝑓) + 𝑂(log 𝑟), and 𝑆(𝑟, 𝑔) =
𝑆(𝑟, 𝑓). Then it follows that 𝑔(𝑧) is of zero-order. Set

𝑃3 (𝑧, 𝑓 (𝑧)) := 𝑃 (𝑧) 𝑓 (𝑧) 𝑓 (𝑞𝑧)

+ 𝑓 (𝑞𝑧)𝑄 (𝑧) − 𝑅 (𝑧) 𝑓 (𝑧) ≡ 0.
(27)

Then substituting 𝑓(𝑧) = 𝑔(𝑧) + 𝑧 into (27), we have

𝑃4 (𝑧, 𝑔 (𝑧)) = 𝑃 (𝑧) (𝑔 (𝑧) + 𝑧) (𝑔 (𝑞𝑧) + 𝑞𝑧)

+ 𝑄 (𝑧) (𝑔 (𝑞𝑧) + 𝑞𝑧) − 𝑅 (𝑧) (𝑔 (𝑧) + 𝑧) = 0.

(28)
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It follows from (28) that

𝑃4 (𝑧, 0) = 𝑞𝑧
2𝑃 (𝑧) + 𝑞𝑧𝑄 (𝑧) − 𝑧𝑅 (𝑧) . (29)

Thus, we derive by (6) and (29) that 𝑃4(𝑧, 0) ̸≡ 0. Thus, by
Lemma 6 and 𝑃4(𝑧, 0) ̸≡ 0, we have

𝑚(𝑟,
1

𝑔
) = 𝑆 (𝑟, 𝑔) = 𝑆 (𝑟, 𝑓) (30)

on a set of logarithmic density 1; that is,

𝑁(𝑟,
1

𝑓 − 𝑧
) = 𝑁(𝑟,

1

𝑔
) = 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) (31)

on a set of logarithmic density 1.
Since 𝑓(𝑧) is a transcendental meromorphic solution of

(5), then it follows from (31) that 𝑓(𝑧) has infinitely many
fixed points.

Next, we prove that𝑓(𝑞𝑧) has infinitelymany fixed points
and 𝜏(𝑓(𝑞𝑧)) = 𝜌(𝑓). From (5), we have

𝑓 (𝑞𝑧) − 𝑧

=
(𝑅 (𝑧) − 𝑧𝑃 (𝑧)) 𝑓 (𝑧) − 𝑧𝑄 (𝑧)

𝑄 (𝑧) + 𝑃 (𝑧) 𝑓 (𝑧)

=
(𝑅 (𝑧) − 𝑧𝑃 (𝑧)) [𝑓 (𝑧) − 𝑧𝑄 (𝑧) / (𝑅 (𝑧) − 𝑧𝑃 (𝑧))]

𝑄 (𝑧) + 𝑃 (𝑧) 𝑓 (𝑧)
.

(32)

By (6), we have𝑅(𝑧)−𝑧𝑃(𝑧) ̸≡ 0. Since𝑓(𝑧) is transcendental
and𝑃(𝑧),𝑄(𝑧), and𝑅(𝑧) are polynomials, we have by (32) the
fact that𝑓(𝑧)−𝑧𝑄(𝑧)/(𝑅(𝑧)−𝑧𝑃(𝑧)) and𝑄(𝑧)+𝑃(𝑧)𝑓(𝑧) have
the same poles, except possibly finitelymany poles.Moreover,
we can get that (𝑅(𝑧)−𝑧𝑃(𝑧))𝑓(𝑧)−𝑧𝑄(𝑧) and𝑄(𝑧)+𝑃(𝑧)𝑓(𝑧)
have at most finitely many common zeros. In fact, suppose
that 𝑧0 is a common zero of (𝑅(𝑧) − 𝑧𝑃(𝑧))𝑓(𝑧) − 𝑧𝑄(𝑧) and
𝑄(𝑧) +𝑃(𝑧)𝑓(𝑧). Then (𝑅(𝑧0) − 𝑧0𝑃(𝑧0))𝑓(𝑧0) − 𝑧0𝑄(𝑧0) = 0;
that is,𝑓(𝑧0) = 𝑧0𝑄(𝑧0)/(𝑅(𝑧0)−𝑧0𝑃(𝑧0)). Substituting it into
𝑄(𝑧0) + 𝑃(𝑧0)𝑓(𝑧0), we have

𝑧0𝑄 (𝑧0)

𝑅 (𝑧0) − 𝑧0𝑃 (𝑧0)
𝑃 (𝑧0) + 𝑄 (𝑧0) =

𝑅 (𝑧0) 𝑄 (𝑧0)

𝑅 (𝑧0) − 𝑧0𝑃 (𝑧0)
= 0.

(33)

Thus, this shows that 𝑧0must be the zeros of𝑅(𝑧)𝑄(𝑧)/(𝑅(𝑧)−
𝑧𝑃(𝑧)). Since 𝑃(𝑧), 𝑄(𝑧), and 𝑅(𝑧) are polynomials, then
𝑅(𝑧)𝑄(𝑧)/(𝑅(𝑧) − 𝑧𝑃(𝑧)) has only finitely many zeros. So,
𝑓(𝑧) − 𝑧𝑄(𝑧)/(𝑅(𝑧) − 𝑧𝑃(𝑧)) and 𝑄(𝑧) + 𝑃(𝑧)𝑓(𝑧) have at
most finitely many common zeros. Then it follows from (32)
that

𝜏 (𝑓 (𝑞𝑧)) = 𝜆 (𝑓 (𝑞𝑧) − 𝑧) = 𝜆(𝑓 (𝑧) −
𝑧𝑄 (𝑧)

𝑅 (𝑧) − 𝑧𝑃 (𝑧)
) .

(34)

From (27), we have

𝑃3 (𝑧,
𝑧𝑄 (𝑧)

𝑅 (𝑧) − 𝑧𝑃 (𝑧)
)

= 𝑃 (𝑧)
𝑧𝑄 (𝑧)

𝑅 (𝑧) − 𝑧𝑃 (𝑧)

𝑞𝑧𝑄 (𝑞𝑧)

𝑅 (𝑞𝑧) − 𝑞𝑧𝑃 (𝑞𝑧)

+
𝑞𝑧𝑄 (𝑞𝑧)

𝑅 (𝑞𝑧) − 𝑞𝑧𝑃 (𝑞𝑧)
𝑄 (𝑧) − 𝑅 (𝑧)

𝑧𝑄 (𝑧)

𝑅 (𝑧) − 𝑧𝑃 (𝑧)

= (𝑞𝑧2𝑃 (𝑞𝑧)𝑄 (𝑧) 𝑅 (𝑧) + 𝑞𝑧𝑄 (𝑞𝑧)𝑄 (𝑧) 𝑅 (𝑧)

− 𝑧𝑄 (𝑧) 𝑅 (𝑧) 𝑅 (𝑞𝑧))

× ((𝑅 (𝑧) − 𝑧𝑃 (𝑧)) (𝑅 (𝑞𝑧) − 𝑞𝑧𝑃 (𝑞𝑧)))
−1
.

(35)

Since deg𝑃(𝑧) ≥ max{deg𝑅(𝑧), deg𝑄(𝑧)} and
deg𝑃(𝑞𝑧) = deg𝑃(𝑧), then we have deg{𝑞𝑧2𝑃(𝑞𝑧)𝑄(𝑧)𝑅(𝑧)+
𝑞𝑧𝑄(𝑞𝑧)𝑄(𝑧)𝑅(𝑧) − 𝑧𝑄(𝑧)𝑅(𝑧)𝑅(𝑞𝑧)} ≥ 1. Thus, it
follows from (35) that 𝑃3(𝑧, 𝑧𝑄(𝑧)/(𝑅(𝑧) − 𝑧𝑃(𝑧))) ̸≡ 0.
Since 𝑓(𝑧) is transcendental function of zero-order and
𝑧𝑄(𝑧)/(𝑅(𝑧) − 𝑧𝑃(𝑧)) is a rational function, then we have by
Lemma 6 the fact that

𝑚(𝑟,
1

𝑓 (𝑧) − 𝑧𝑄 (𝑧) / (𝑅 (𝑧) − 𝑧𝑃 (𝑧))
) = 𝑆 (𝑟, 𝑓) (36)

on a set of logarithmic density 1; that is,

𝑁(𝑟,
1

𝑓 (𝑧) − 𝑧𝑄 (𝑧) / (𝑅 (𝑧) − 𝑧𝑃 (𝑧))
)

= 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓)

(37)

on a set of logarithmic density 1. Since𝑓(𝑧) is transcendental,
we can derive from (34) and (37) that 𝑓(𝑞𝑧) has infinitely
many fixed points and 𝜏(𝑓(𝑞𝑧)) = 𝜌(𝑓).

Now, we prove that 𝑓(𝑞2𝑧) has infinitely many fixed
points and 𝜏(𝑓(𝑞2𝑧)) = 𝜌(𝑓). From (5), we have

𝑓1 (𝑞𝑧) =
𝑅 (𝑞𝑧) 𝑓1 (𝑧)

𝑄 (𝑞𝑧) + 𝑃 (𝑞𝑧) 𝑓1 (𝑧)
, (38)

where 𝑓1(𝑧) = 𝑓(𝑞𝑧). By Lemma 9, we have 𝜌(𝑓1) = 𝜌(𝑓) =
0. Obviously, deg𝑃(𝑞𝑧) = deg𝑃(𝑧) ≥ 1, deg𝑅(𝑞𝑧) =
deg𝑅(𝑧), and deg𝑄(𝑞𝑧) = deg𝑄(𝑧). Thus, by using the same
argument as in the proof of 𝜏(𝑓(𝑞𝑧)) = 𝜌(𝑓), we can prove
that 𝑓1(𝑞𝑧) = 𝑓(𝑞2𝑧) has infinitely many fixed points and
𝜏(𝑓(𝑞2𝑧)) = 𝜏(𝑓1(𝑞𝑧)) = 𝜌(𝑓1) = 𝜌(𝑓).

Thus, by using the same method as above, we can obtain
that 𝑓(𝑞𝑗𝑧) has infinitely many fixed points and 𝜏(𝑓(𝑞𝑗𝑧)) =
𝜌(𝑓) for 𝑗 = 0, 1, . . ..

(ii) Now, we prove that Δ 𝑞𝑓(𝑧)/𝑓(𝑧) has infinitely many
fixed points and

𝜏(
Δ 𝑞𝑓

𝑓
) = 𝜌 (𝑓) . (39)
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By (5) and from 𝑅(𝑧) − (𝑧 + 1)𝑄(𝑧) ̸≡ 0, we have

Δ 𝑞𝑓 (𝑧)

𝑓 (𝑧)
− 𝑧

=
𝑓 (𝑞𝑧) − 𝑓 (𝑧)

𝑓 (𝑧)
− 𝑧

=
𝑅 (𝑧) − (𝑧 + 1)𝑄 (𝑧) − (𝑧 + 1) 𝑃 (𝑧) 𝑓 (𝑧)

𝑄 (𝑧) + 𝑃 (𝑧) 𝑓 (𝑧)

= − (𝑧 + 1) 𝑃 (𝑧)

× (𝑓 (𝑧) −
𝑅 (𝑧) − (𝑧 + 1)𝑄 (𝑧)

(𝑧 + 1) 𝑃 (𝑧)
)

× (𝑄 (𝑧) + 𝑃 (𝑧) 𝑓 (𝑧))
−1
.

(40)

Since𝑅(𝑧)−(𝑧+1)𝑄(𝑧) ̸≡ 0,𝑓(𝑧) is transcendental, and𝑃(𝑧),
𝑄(𝑧), and 𝑅(𝑧) are polynomials, we have by (40) the fact that
𝑓(𝑧)−(𝑅(𝑧)−(𝑧+1)𝑄(𝑧))/(𝑧+1)𝑃(𝑧) and𝑄(𝑧)+𝑃(𝑧)𝑓(𝑧)have
the same poles, except possibly finitelymany poles.Moreover,
by using the same argument as in (i), we can get that 𝑅(𝑧) −
(𝑧 + 1)𝑄(𝑧) − (𝑧 + 1)𝑃(𝑧)𝑓(𝑧) and 𝑄(𝑧) + 𝑃(𝑧)𝑓(𝑧) have at
most finitely many common zeros. Then it follows from (40)
that

𝜏(
Δ 𝑞𝑓

𝑓
) = 𝜆(

Δ 𝑞𝑓

𝑓
− 𝑧)

= 𝜆(𝑓 (𝑧) −
𝑅 (𝑧) − (𝑧 + 1)𝑄 (𝑧)

(𝑧 + 1) 𝑃 (𝑧)
) .

(41)

From (27), we have

𝑃3 (𝑧,
𝑅 (𝑧) − (𝑧 + 1)𝑄 (𝑧)

(𝑧 + 1) 𝑃 (𝑧)
)

= 𝑃 (𝑧)
𝑅 (𝑧) − (𝑧 + 1)𝑄 (𝑧)

(𝑧 + 1) 𝑃 (𝑧)

𝑅 (𝑞𝑧) − (𝑞𝑧 + 1)𝑄 (𝑞𝑧)

(𝑞𝑧 + 1) 𝑃 (𝑞𝑧)

+
𝑅 (𝑞𝑧) − (𝑞𝑧 + 1)𝑄 (𝑞𝑧)

(𝑞𝑧 + 1) 𝑃 (𝑞𝑧)
𝑄 (𝑧)

− 𝑅 (𝑧)
𝑅 (𝑧) − (𝑧 + 1)𝑄 (𝑧)

(𝑧 + 1) 𝑃 (𝑧)

:=
𝐵 (𝑧)

(𝑞𝑧 + 1) (𝑧 + 1) 𝑃 (𝑞𝑧) 𝑃 (𝑧)
,

(42)

where

𝐵 (𝑧) = (𝑞𝑧 + 1) (𝑧 + 1) 𝑃 (𝑞𝑧)𝑄 (𝑧) 𝑅 (𝑧)

− (𝑞𝑧 + 1) 𝑃 (𝑧)𝑄 (𝑞𝑧) 𝑅 (𝑧)

− (𝑞𝑧 + 1) 𝑃 (𝑞𝑧) 𝑅2 (𝑧) + 𝑃 (𝑧) 𝑅 (𝑧) 𝑅 (𝑞𝑧) .

(43)

Since 𝑃(𝑧), 𝑄(𝑧), and 𝑅(𝑧) are polynomials satisfying (6),
then it follows from (43) that 𝐵(𝑧) is a polynomial of degree

𝑡 ≥ 1. Thus, from (42) we have 𝑃3(𝑧, (𝑅(𝑧)− (𝑧+1)𝑄(𝑧))/(𝑧+
1)𝑃(𝑧)) ̸≡ 0. Since 𝑓(𝑧) is transcendental function of zero-
order and (𝑅(𝑧) − (𝑧 + 1)𝑄(𝑧))/(𝑧 + 1)𝑃(𝑧) is a rational
function, then we have by Lemma 6 the fact that

𝑚(𝑟,
1

𝑓 (𝑧) − (𝑅 (𝑧) − (𝑧 + 1)𝑄 (𝑧)) / (𝑧 + 1) 𝑃 (𝑧)
)

= 𝑆 (𝑟, 𝑓)

(44)

on a set of logarithmic density 1; that is,

𝑁(𝑟,
1

𝑓 (𝑧) − (𝑅 (𝑧) − (𝑧 + 1)𝑄 (𝑧)) / (𝑧 + 1) 𝑃 (𝑧)
)

= 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓)

(45)

on a set of logarithmic density 1. Since𝑓(𝑧) is transcendental,
we can derive from (41) and (45) that Δ 𝑞𝑓(𝑧)/𝑓(𝑧) has
infinitely many fixed points and 𝜏(Δ 𝑞𝑓/𝑓) = 𝜌(𝑓).

Thus, this completes the proof of Theorem 3.

5. Proof of Theorem 4

Suppose that 𝑓(𝑧) is a transcendental meromorphic solution
of (7). Since 𝑞 ∈ C, 0 < |𝑞| < 1, and 𝑎𝑗(𝑧), 𝑗 = 0, 1, . . . , 𝑛, are
polynomials, by Lemma 7, we see that 𝑓(𝑧) is of zero-order.
Set

𝑃5 (𝑧, 𝑓 (𝑧)) := 𝑎𝑛 (𝑧) 𝑓 (𝑞
𝑛𝑧) + ⋅ ⋅ ⋅ + 𝑎1 (𝑧) 𝑓 (𝑞𝑧)

+ 𝑎0 (𝑧) 𝑓 (𝑧) = 0.
(46)

Thus, it follows from (46) that

𝑃5 (𝑧, 𝑧) = 𝑎𝑛 (𝑧) 𝑞
𝑛𝑧 + ⋅ ⋅ ⋅ + 𝑎1 (𝑧) 𝑞𝑧 + 𝑎0 (𝑧) 𝑧

= 𝑧 [𝑞𝑛𝑎𝑛 (𝑧) + ⋅ ⋅ ⋅ + 𝑞𝑎1 (𝑧) + 𝑎0 (𝑧)] .
(47)

(i) Suppose that 𝑎0(𝑧), . . . , 𝑎𝑛(𝑧) satisfy condition (9).
Then it follows that 𝑃5(𝑧, 𝑧) ̸≡ 0. Since 𝑓(𝑧) is a transcen-
dental solution of zero-order, then it follows from Lemma 6
that

𝑚(𝑟,
1

𝑓 − 𝑧
) = 𝑆 (𝑟, 𝑓) (48)

on a set of logarithmic density 1. So,

𝑁(𝑟,
1

𝑓 − 𝑧
) = 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) (49)

on a set of logarithmic density 1.Thus, it follows that𝑓(𝑧) has
infinitely many fixed points and 𝜏(𝑓) = 𝜌(𝑓).

Now, we prove that𝑓(𝑞𝑧) has infinitely many fixed points
and 𝜏(𝑓(𝑞𝑧)) = 𝜌(𝑓). By (7), we derive

𝑎𝑛 (𝑞𝑧) 𝑓1 (𝑞
𝑛𝑧) + ⋅ ⋅ ⋅ + 𝑎1 (𝑞𝑧) 𝑓1 (𝑞𝑧) + 𝑎0 (𝑞𝑧) 𝑓1 (𝑧) = 0,

(50)

where 𝑓1(𝑧) = 𝑓(𝑞𝑧). Since 𝑓(𝑧) is a transcendental mero-
morphic function of zero-order, then we have by Lemma 9
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the fact that 𝑓1(𝑧) is a transcendental and 𝜌(𝑓1) = 𝜌(𝑓). By
deg 𝑎𝑗(𝑞𝑧) = deg 𝑎𝑗(𝑧), 𝑗 = 0, 1, . . . , 𝑛, and (9), we have

deg 𝑎𝑠 (𝑞𝑧)

= deg 𝑎𝑠 (𝑧) > max {𝑎𝑗 (𝑞𝑧) , 𝑗 = 0, 1, . . . , 𝑛, 𝑗 ̸= 𝑠} .
(51)

Thus, by the above proof of 𝜏(𝑓) = 𝜌(𝑓), we see that 𝑓1(𝑧) =
𝑓(𝑞𝑧)has infinitelymany fixed points and 𝜏(𝑓1) = 𝜏(𝑓(𝑞𝑧)) =
𝜌(𝑓1) = 𝜌(𝑓). Continuing to use the same method as the
above, we can prove that 𝑓(𝑞𝑗𝑧) has infinitely many fixed
points and 𝜏(𝑓(𝑞𝑗𝑧)) = 𝜌(𝑓) for 𝑗 = 0, 1, . . ..

(ii) Suppose that 𝑎0(𝑧), . . . , 𝑎𝑛(𝑧) satisfy the condition
(10).

By using the same argument as the one above, we can
prove that 𝑓(𝑧) has infinitely many fixed points and 𝜏(𝑓) =
𝜌(𝑓) easily.

Now, we prove that𝑓(𝑞𝑧) has infinitely many fixed points
and 𝜏(𝑓(𝑞𝑧)) = 𝜌(𝑓). Set

𝑃6 (𝑧, 𝑓1 (𝑧)) := 𝑎𝑛 (𝑞𝑧) 𝑓1 (𝑞
𝑛𝑧) + ⋅ ⋅ ⋅ + 𝑎1 (𝑞𝑧) 𝑓1 (𝑞𝑧)

+ 𝑎0 (𝑞𝑧) 𝑓1 (𝑧) = 0.
(52)

Thus, it follows from (10) that

𝑃6 (𝑧, 𝑧) = 𝑧 [𝑞
𝑛𝑎𝑛 (𝑞𝑧) + ⋅ ⋅ ⋅ + 𝑞𝑎1 (𝑞𝑧) + 𝑎0 (𝑞𝑧)] ̸≡ 0.

(53)

In fact, if 𝑃6(𝑧, 𝑧) ≡ 0, replacing 𝑧 by 𝑧/𝑞 into (53), we have

𝑃6 (
𝑧

𝑞
,
𝑧

𝑞
) =

𝑧

𝑞
[𝑞𝑛𝑎𝑛 (𝑧) + ⋅ ⋅ ⋅ + 𝑞𝑎1 (𝑧) + 𝑎0 (𝑧)] ≡ 0, (54)

which is in contradiction with the condition (10). Since
𝑓1(𝑧) = 𝑓(𝑞𝑧) and 𝑓(𝑧) is transcendental meromorphic
of zero-order, then it follows from (53) and Lemma 6 that
𝑓1(𝑧) = 𝑓(𝑞𝑧) has infinitely many fixed points and 𝜏(𝑓1) =
𝜏(𝑓(𝑞𝑧)) = 𝜌(𝑓1) = 𝜌(𝑓). Continuing to use the same
method as the one above, we can prove that 𝑓(𝑞𝑗𝑧) has
infinitely many fixed points and 𝜏(𝑓(𝑞𝑗𝑧)) = 𝜌(𝑓) for 𝑗 =
0, 1, . . ..

Thus, this completes the proof of Theorem 4.
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