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The spectral homotopy analysis method is extended to solutions of systems of nonlinear partial differential equations. The SHAM
has previously been successfully used to find solutions of nonlinear ordinary differential equations. We solve the nonlinear system
of partial differential equations that model the unsteady nonlinear convective flow caused by an impulsively stretching sheet. The
numerical results generated using the spectral homotopy analysis method were compared with those found using the spectral
quasilinearisation method (SQLM) and the two results were in good agreement.

1. Introduction

The current study serves to demonstrate the extension of the
spectral homotopy analysis method (SHAM) to systems of
nonlinear partial differential equations. The method, origi-
nally introduced by Motsa et al. [1, 2], was used to solve non-
linear ordinary differential equations. A recent modification
(seeMotsa [3]) allows themethod to be used to find solutions
of nonlinear PDEs. A nonlinear system of partial differential
equations that describe unsteady nonlinear convective flow
caused by an impulsively stretched plate is used as the test
problem in the study.The spectral quasilinearisation method
(SQLM), an adaptation of the quasilinearisation method
(Bellman and Kalaba [4]), is used as a benchmark to prove
the accuracy of the spectral homotopy analysis method.

The test equations for this study are obtained by consider-
ing unsteady nonlinear convection flow over an impulsively
stretched flat surface. Fluid flow over stretching surfaces is
important in many practical applications such as extrusion
of plastic sheets, paper production, glass blowing, metal
spinning, and drawing plastic films. The quality of the final
product depends on the rate of heat transfer at the stretching
surface. In a previous study in this field, Kumari et al. [5]
used the Keller box method and the Nakamura method to
investigate the problem of heat transfer in the unsteady free

convection flow over a continuous moving vertical sheet in
an ambient fluid. Ishak et al. [6] investigated theoretically
the unsteady mixed convection boundary layer flow and heat
transfer due to a stretching vertical surface in a quiescent
viscous and incompressible fluid. Further, Pop and Na [7]
and Wang et al. [8] dealt with the unsteady boundary layer
flow due to impulsive flow starting from rest of a stretching
sheet in a viscous fluid. A numerical solution for unsteady
mixed convection boundary layer nanofluid flow and heat
transfer due to a stretching vertical sheet was presented by
Mahdy [9]. The equations were solved using the implicit
finite difference method. Bachok et al. [10] studied the
flow and heat transfer problem due to the unsteady, two-
dimensional laminar flow of a viscous nanofluid caused by
a permeable stretching/shrinking sheet in a quiescent fluid.
Numerical solutions of the transformed governing equations
were obtained using a shooting method. Sharma et al. [11]
used the finite element method to find numerical solutions
of the flow and heat transfer problem over a stretching sheet
immersed in a nanofluid, with velocity slip at the boundary.

In fluid flow problems involving heat transfer, it may
be essential to consider a nonlinear relationship between
density and temperature. Thermal stratification and heat
released by the viscous dissipation triggers some changes
in density gradients. To the best of our knowledge there
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is no study that has been conducted to discuss the effects
of nonlinear density on unsteady nonlinear convection flow
over an impulsively stretched flat surface. Accordingly, the
main aim of the study is to investigate the nonlinear con-
vective flow over an impulsively stretched flat surface under
the nonlinear density-temperature relationship. Using the
boundary layer approximation, the unsteady momentum,
heat, andmass transfer equations are transferred to nonlinear
partial differential equations form and solved using the
spectral homotopy analysis method (SHAM). This work is
the first attempt at applying the SHAM to system of coupled
nonlinear PDEs. The SHAM results presented in this study
are validated against results from a quasilinearisation based
spectral collocation method.

2. Governing Equations

Consider the problem of unsteady nonlinear convection of a
fluid over a stretching flat plate. Initially (𝑡 = 0), both the fluid
and stretching plate are kept at a constant temperature𝑇

𝑤
and

concentration 𝐶
∞

where 𝑇
𝑤
> 𝑇
∞

is for a heated plate and
𝑇
𝑤
< 𝑇
∞

corresponding to a cooled plate. We assume that at
𝑡 = 0 the velocity of the stretching plate is 𝑢

𝑤
= 𝑎𝑥, where

𝑎 is a positive constant. From the Boussinesq approximation,
density is related to temperature and the concentration by the
equation

𝜌 = 𝜌
0
[1 − 𝛽

𝑇
(𝑇 − 𝑇

∞
) + 𝛽
𝐶
(𝐶 − 𝐶

∞
)] . (1)

In the case of thermal stratification and heat released by
viscous dissipation, wall jet like profiles induce significant
changes in density gradients, and the density depends on the
temperature or temperature and concentration in a nonlinear
form (see [12–17]):

𝜌 = 𝜌
∞
[1 − 𝛽

𝑇
(𝑇 − 𝑇

∞
) + 𝛽
1
(𝑇 − 𝑇

∞
)
2

] . (2)

Karcher andMüller [18] used the formulation below to define
the nonlinearity of the relationship between the density, the
temperature, and the concentration:

𝜌 = 𝜌
∞
[1 − 𝛽

0
(𝑇 − 𝑇

∞
) − 𝛽
1
(𝑇 − 𝑇

∞
)
2

− 𝛽
2
(𝐶 − 𝐶

∞
)] ,

(3)

where 𝜌
∞

is the constant fluid density, 𝑇
∞

and 𝐶
∞

are the
fluid temperature and solutal concentration, respectively, 𝛽

0

and 𝛽
2
are the coefficients of thermal and solutal expansion,

and 𝛽
1
denotes the nonlinear coefficient of thermal expan-

sion. Partha [16] investigated the natural nonlinear convec-
tion in a non-Darcy porous medium using a temperature-
concentration-dependent density relation in the form

𝜌 = 𝜌
∞
[𝛽
0
(𝑇 − 𝑇

∞
) + 𝛽
1
(𝑇 − 𝑇

∞
)
2

+𝛽
2
(𝐶 − 𝐶

∞
) + 𝛽
3
(𝐶 − 𝐶

∞
)
2

] .

(4)

With the usual Boussinesq and the boundary layer approxi-
mations, the governing equations are in the form

𝜕𝑢

𝜕𝑥
+
𝜕V
𝜕𝑦

= 0, (5)

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ V

𝜕𝑢

𝜕𝑦
= ]

𝜕
2𝑢

𝜕𝑦2
+ [𝛽
0
(𝑇 − 𝑇

∞
) + 𝛽
1
(𝑇 − 𝑇

∞
)
2

]

+ [𝛽
2
(𝐶 − 𝐶

∞
) + 𝛽
3
(𝐶 − 𝐶

∞
)
2

] g,
(6)

𝑢
𝜕𝑇

𝜕𝑥
+ V

𝜕𝑇

𝜕𝑦
= 𝛼
𝑚

𝜕
2

𝑇

𝜕𝑦2
, (7)

𝑢
𝜕𝐶

𝜕𝑥
+ V

𝜕𝐶

𝜕𝑦
= 𝐷

𝜕
2𝐶

𝜕𝑦2
, (8)

subject to the boundary conditions

𝑢 = 𝑎𝑥, V = 0, 𝑇 = 𝑇
𝑤
, 𝐶 = 𝐶

𝑤
,

at 𝑦 = 0, 𝑡 ≥ 0,

𝑢 → 0, 𝑇 → 𝑇
∞
, 𝐶 → 𝐶

∞

as 𝑦 → ∞, 𝑡 ≥ 0.

(9)

The initial conditions are
𝑡 < 0 : 𝑢 = 0, V = 0, 𝑇 = 𝑇w, 𝐶 = 𝐶

𝑤
,

∀𝑥, 𝑦,
(10)

where 𝑢 and V are the velocity components along 𝑥 and 𝑦
directions, respectively, 𝑇 and 𝐶 are the local fluid temper-
ature and solute concentration across the boundary layer,
respectively, ] is the kinematic viscosity, 𝑔 is the acceleration
due to gravity, 𝛽

0
and 𝛽

1
are the thermal expansion coeffi-

cients, 𝛽
2
and 𝛽

3
are solutal expansion coefficients, 𝛼

𝑚
is the

effective thermal diffusivity, and𝐷 is the mass diffusivity.
We introduce the following nondimensional variables:

𝜂 = √
𝑎

]𝜉
, 𝜉 = 1 − exp (−𝜏) , 𝜏 = 𝑎𝑡,

𝜓 = √𝑎]𝜉𝑥𝑓 (𝜉, 𝜂) ,

𝜃 (𝜉, 𝜂) =
𝑇 − 𝑇
∞

𝑇
𝑤
− 𝑇
∞

, 𝜙 (𝜉, 𝜂) =
𝐶 − 𝐶

∞

𝐶
𝑤
− 𝐶
∞

.

(11)

The governing equations (6)–(8) along with the boundary
conditions (9) can be presented in the form

𝑓


+ (1 − 𝜉) [
𝜂

2
𝑓


− 𝜉
𝜕𝑓

𝜕𝜉
] + 𝜉 [𝑓𝑓



− 𝑓
2

]

+ 𝜆𝜉 [(1 + 𝛼𝜃) 𝜃 +Nr (1 + 𝜎𝜙) 𝜙] = 0,

𝜃


+ Pr (1 − 𝜉) [
𝜂

2
𝜃


− 𝜉
𝜕𝜃

𝜕𝜉
] + Pr𝜉𝑓𝜃 = 0,

1

Le
𝜙


+ Sc (1 − 𝜉) [
𝜂

2
𝜙


− 𝜉
𝜕𝜙

𝜕𝜉
] + Sc𝜉𝑓𝜙 = 0,

(12)
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subject to the boundary conditions

𝑓 (𝜉, 0) = 0, 𝑓


(𝜉, 0) = 1

𝜃 (𝜉, 0) = 1, 𝜙 (𝜉, 0) = 1,

𝜉 ≥ 0,

𝑓


(𝜉,∞) = 0, 𝜃 (𝜉,∞) = 0, 𝜙 (𝜉,∞) = 0

𝜉 ≥ 0

(13)

where the Rayleigh number Ra
𝑥
, the nonlinear temperature

parameter 𝛾, the buoyancy parameterNr, the Prandtl number
Pr, the Schmidt number Sc, the Peclet number Pe

𝑥
, and the

Lewis number Le are defined as

Ra
𝑥
=
(1 − 𝜙

𝑓∞
) 𝑔𝛽
0
𝜌𝑓
∞
Δ𝑇𝑥

𝛼
𝑚
𝑎

,

𝛾 =
𝛽
1
(𝑇
𝑤
− 𝑇
∞
)

𝛽
0

, 𝜎 =
𝛽
3
(𝜙
𝑤
− 𝜙
∞
)

𝛽
2

,

Nr =
(𝜌
𝑝
− 𝜌
∞
) (𝜙
𝑤
− 𝜙
∞
)

𝛽
0
𝜌
𝑓∞

(1 − 𝜙
∞
) (𝑇
𝑤
− 𝑇
∞
)
,

Pr = ]
𝛼
𝑚

, Sc = ]
𝐷
𝐵

, Le =
𝛼
𝑚

𝐷
𝐵

,

Pe
𝑥
=
𝑢
𝑤
𝑥

𝛼
𝑚

, 𝜆 =
Ra
𝑥

Pe
𝑥

.

(14)

The skin friction and heat and mass transfer coefficients
are described by the local skin friction coefficient, Nusselt
number Nu, and the Sherwood number Sh defined as

𝜏w = 𝜇
𝜕𝑢

𝜕𝑦

𝑦=0
, 𝑞

𝑤
= −𝛼
𝑚

𝜕𝑇

𝜕𝑦

𝑦=0
,

𝑞
𝑚
= −𝐷

𝜕𝐶

𝜕𝑦

𝑦=0
.

(15)

The nondimensional form of the skin friction coefficient, the
reduced Nusselt number, and the reduced Sherwood number
are

𝜉
1/2Re1/2
𝑥
𝐶
𝑓
= 𝑓


(𝜉, 0) ,

Nu
𝑅
= 𝜉
1/2Re−1/2
𝑥

Nu = −𝜃 (𝜉, 0) ,

𝜉
1/2Re−1/2
𝑥

Sh = −𝜙 (𝜉, 0) .

(16)

3. Method of Solution

The system of (12) was solved using the spectral homotopy
analysis method. The spectral quasilinearisation method
(SQLM) was used to validate the results. The spectral homo-
topy analysis method (SHAM) was first introduced for the
solution of nonlinear ordinary differential equation. The
method is a hybrid numerical scheme that combines the

underlying ideas of the homotopy analysis method (HAM)
and the Chebyshev spectral collocation method. The HAM
scheme breaks down a nonlinear differential equation into
infinitely many linear ordinary differential equations whose
solutions are found analytically. The SHAM provides flex-
ibility when solving linear ODEs through the use of the
Chebyshev spectral collocation method. The first attempt
to extend the application of the SHAM to PDEs was made
by Motsa [3] who solved a nonlinear partial differential
equation for an unsteady boundary-layer flow caused by an
impulsively stretching plate.The blending of homotopy based
methods with other methods has also been considered in
[19, 20] wherein the homotopy perturbation method was
used in conjunction with Laplace transform to solve partial
differential equations. In this work, we extend the application
to a system of nonlinear PDEs. In the framework of the
SHAM, the nonlinear equations are decomposed into their
linear and nonlinear parts as follows:

L
𝑓
[𝑓 (𝜂, 𝜉) , 𝜃 (𝜂, 𝜉) , 𝜙 (𝜂, 𝜉)]

= 𝑓


+
𝜂

2
(1 − 𝜉) 𝑓



− 𝜉 (1 − 𝜉)
𝜕𝑓

𝜕𝜉
+ 𝜆𝜉 (𝜃 +Nr𝜙) ,

N
𝑓
[𝑓 (𝜂, 𝜉) , 𝜃 (𝜂, 𝜉) , 𝜙 (𝜂, 𝜉)]

= 𝑓


+
𝜂

2
(1 − 𝜉) 𝑓



− 𝜉 (1 − 𝜉)
𝜕𝑓


𝜕𝜉
+ 𝜆𝜉 (𝜃 +Nr𝜙)

+ 𝜉 (𝑓𝑓


− 𝑓
2

) + 𝜆𝜉 (𝛼𝜃
2

+Nr𝜎𝜙2) ,

L
𝜃
[𝜃 (𝜂, 𝜉)] = 𝜃



+
1

2
Pr (1 − 𝜉) 𝜂𝜃 − Pr𝜉 (1 − 𝜉) 𝜕𝜃

𝜕𝜉
,

N
𝜃
[𝑓 (𝜂, 𝜉) , 𝜃 (𝜂, 𝜉)]

= 𝜃


+
1

2
Pr (1 − 𝜉) 𝜂𝜃 − Pr𝜉 (1 − 𝜉) 𝜕𝜃

𝜕𝜉
+ Pr𝜉𝑓𝜃,

L
𝜙
[𝜙 (𝜂, 𝜉)]

= 𝜙


+ Le [1
2
Sc (1 − 𝜉) 𝜂𝜙 − Sc𝜉 (1 − 𝜉)

𝜕𝜙

𝜕𝜉
] ,

N
𝜙
[𝑓 (𝜂, 𝜉) , 𝜙 (𝜂, 𝜉)]

= 𝜙


+ Le [1
2
Sc (1 − 𝜉) 𝜂𝜙 − Sc𝜉 (1 − 𝜉)

𝜕𝜙

𝜕𝜉
]

+ Le Sc𝜉𝑓𝜙,
(17)

with L
𝑗
and N

𝑗
(𝑗 = 𝑓, 𝜃, 𝜙) representing the linear and

nonlinear operators of the equations, respectively. According
to the HAM description, the zeroth order deformation equa-
tions are formulated as

(1 − 𝑞)L
𝑓
[F (𝜂, 𝜉; 𝑞) − 𝑓

0
(𝜂, 𝜉)] = 𝑞ΛN

𝑓
[F (𝜂, 𝜉; 𝑞)] ,

(1 − 𝑞)L
𝜃
[Θ (𝜂, 𝜉; 𝑞) − 𝜃

0
(𝜂, 𝜉)] = 𝑞ΛN

𝜃
[Θ (𝜂, 𝜉; 𝑞)] ,
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(1 − 𝑞)L
𝜙
[Φ (𝜂, 𝜉; 𝑞) − 𝜙

0
(𝜂, 𝜉)] = 𝑞ΛN

𝜙
[Φ (𝜂, 𝜉; 𝑞)] ,

(18)

subject to the boundary conditions

F (0, 𝜉; 𝑞) = 0,
𝜕F (𝜂, 𝜉; 𝑞)

𝜕𝜂

𝜂=0
= 1,

𝜕F(𝜂, 𝜉; 𝑞)
𝜕𝜂

𝜂=∞
= 0,

Θ (0, 𝜉; 𝑞) = 1, Θ (∞, 𝜉; 𝑞) = 0,

Φ (0, 𝜉; 𝑞) = 1, Φ (∞, 𝜉; 𝑞) = 0.

(19)

The functions F, Θ, and Φ are unknown, 𝑞 ∈ [0, 1] is the
embedding parameter,Λ is the nonzero convergence control-
ling auxiliary parameter, and the functions 𝑓

0
(𝜂, 𝜉), 𝜃

0
(𝜂, 𝜉),

and 𝜙
0
(𝜂, 𝜉) are the initial solutions. From the zeroth order

deformation equations above, it can be noted that, as 𝑞
increases from 0 to 1, the functions F, Θ, and Φ vary
from the initial approximations𝑓

0
(𝜂, 𝜉), 𝜃

0
(𝜂, 𝜉), and𝜙

0
(𝜂, 𝜉),

respectively, to the solutions 𝑓(𝜂, 𝜉), 𝜃(𝜂, 𝜉), and 𝜙(𝜂, 𝜉) of
the original equations (12). Using the Taylor series to expand
F, Θ, and Φ about 𝑞 yields

F (𝜂, 𝜉; 𝑞) = F (𝜂, 𝜉; 0) +
+∞

∑
𝑛=1

𝑓
𝑛
(𝜂, 𝜉) 𝑞

𝑛

,

Θ (𝜂, 𝜉; 𝑞) = Θ (𝜂, 𝜉; 0) +

+∞

∑
𝑛=1

𝜃
𝑛
(𝜂, 𝜉) 𝑞

𝑛

,

Φ (𝜂, 𝜉; 𝑞) = Φ (𝜂, 𝜉; 0) +

+∞

∑
𝑛=1

𝜙
𝑛
(𝜂, 𝜉) 𝑞

𝑛

,

(20)

with

𝑓 (𝜂, 𝜉) =
1

𝑛!

𝜕𝑛F(𝜂, 𝜉; 𝑞)
𝜕𝑞𝑛

𝑞=0
,

𝜃 (𝜂, 𝜉) =
1

𝑛!

𝜕𝑛Θ(𝜂, 𝜉; 𝑞)

𝜕𝑞𝑛

𝑞=0
,

𝜙 (𝜂, 𝜉) =
1

𝑛!

𝜕𝑛Φ(𝜂, 𝜉; 𝑞)

𝜕𝑞𝑛

𝑞=0
.

(21)

Therefore, since

F (𝜂, 𝜉; 1) = 𝑓 (𝜂, 𝜉) , Θ (𝜂, 𝜉; 1) = 𝜃 (𝜂, 𝜉) ,

Φ (𝜂, 𝜉; 1) = 𝜙 (𝜂, 𝜉) , F (𝜂, 𝜉; 0) = 𝑓
0
(𝜂, 𝜉) ,

Θ (𝜂, 𝜉; 0) = 𝜃
0
(𝜂, 𝜉) , Φ (𝜂, 𝜉; 0) = 𝜙

0
(𝜂, 𝜉) ,

(22)

we obtain

𝑓 (𝜂, 𝜉) = 𝑓
0
(𝜂, 𝜉) +

+∞

∑
𝑚=1

𝑓
𝑚
(𝜂, 𝜉) ,

𝜃 (𝜂, 𝜉) = 𝜃
0
(𝜂, 𝜉) +

+∞

∑
𝑚=1

𝜃
𝑚
(𝜂, 𝜉) ,

𝜙 (𝜂, 𝜉) = 𝜙
0
(𝜂, 𝜉) +

+∞

∑
𝑚=1

𝜙
𝑚
(𝜂, 𝜉) . (23)

The series (23) converge provided the auxiliary parameter
Λ and the linear operators are properly chosen. The linear
operators are often chosen to be the linear parts of the
governing equations.The functions𝑓

𝑚
, 𝜃
𝑚
, and 𝜙

𝑚
are found

from solutions of higher order deformation equations which
are obtained by differentiating the zeroth order deformation
equations (18) 𝑚 times with respect to 𝑞, dividing by 𝑚! and
setting 𝑞 = 0. This gives rise to the following equations:

L
𝑓
[𝑓
𝑚
(𝜂, 𝜉) − 𝜒

𝑚
𝑓
𝑚−1

(𝜂, 𝜉)] = Λ𝑅
𝑓

𝑚
,

L
𝜃
[𝜃
𝑚
(𝜂, 𝜉) − 𝜒

𝑚
𝜃
𝑚−1

(𝜂, 𝜉)] = Λ𝑅
𝜃

𝑚
,

L
𝜙
[𝜙
𝑚
(𝜂, 𝜉) − 𝜒

𝑚
𝜙
𝑚−1

(𝜂, 𝜉)] = Λ𝑅
𝜙

𝑚
,

(24)

with boundary conditions

𝑓
𝑚
(0, 𝜉) = 0, 𝑓



𝑚
(0, 𝜉) = 0, 𝑓



𝑚
(+∞, 𝜉) = 0,

𝜃
𝑚
(0, 𝜉) = 0, 𝜃

𝑚
(+∞, 𝜉) = 0,

𝜙
𝑚
(0, 𝜉) = 0, 𝜙

𝑚
(+∞, 𝜉) = 0.

(25)

Here the prime denotes differentiation with respect to 𝜂 and

𝑅
𝑓

𝑚
= 𝑓


𝑚−1
+
1

2
(1 − 𝜉) 𝜂𝑓



𝑚−1
− 𝜉 (1 − 𝜉)

𝜕𝑓
𝑚−1

𝜕𝜉

+ 𝜆𝜉 (𝜃
𝑚−1

+ Nr𝜙
𝑚−1

)

+ 𝜉

𝑚−1

∑
𝑛=0

[𝑓
𝑚−1−𝑛

𝑓


𝑛
− 𝑓


𝑚−1−𝑛
𝑓


𝑛

+ 𝜆 (𝛾𝜃
𝑚−1−𝑛

𝜃
𝑛
+Nr𝜎𝜙

𝑚−1−𝑛
𝜙
𝑛
)] ,

𝑅
𝜃

𝑚
= 𝜃


𝑚−1
+
1

2
Pr (1 − 𝜉) 𝜂𝜙

𝑚−1

− Pr𝜉 (1 − 𝜉)
𝜕𝜃
𝑚−1

𝜕𝜉
+ Pr𝜉
𝑚−1

∑
𝑛=0

𝑓
𝑚−1−𝑛

𝜙


𝑛
,

𝑅
𝜙

𝑚
=

1

Le
𝜙


𝑚−1
+
1

2
Sc (1 − 𝜉) 𝜂𝜙

𝑚−1

− Sc𝜉 (1 − 𝜉)
𝜕𝜙
𝑚−1

𝜕𝜉
+ Sc𝜉
𝑚−1

∑
𝑛=0

𝑓
𝑚−1−𝑛

𝜙


𝑛
,

(26)

where

𝜒
𝑚
= {

0, 𝑚 ≤ 1,

1, 𝑚 > 1.
(27)

At this stage, in the HAM framework, the higher order differ-
ential equations (24) are solved analytically. However, here,
it is not possible since the linear operators contain variable
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coefficients.The rule of solution expression is modified in the
𝜉 space direction and we assume solutions of the form

𝑓 (𝜂, 𝜉) =

+∞

∑
𝑗=0

+∞

∑
𝑘=0

𝜉
𝑘

𝑓
𝑗,𝑘
(𝜂) with 𝑓

𝑚
(𝜂, 𝜉)=

+∞

∑
𝑘=0

𝜉
𝑘

𝑓
𝑚,𝑘

(𝜂, 𝜉) ,

𝜃 (𝜂, 𝜉) =

+∞

∑
𝑗=0

+∞

∑
𝑘=0

𝜉
𝑘

𝜃
𝑗,𝑘
(𝜂) with 𝜃

𝑚
(𝜂, 𝜉)=

+∞

∑
𝑘=0

𝜉
𝑘

𝜃
𝑚,𝑘

(𝜂, 𝜉) ,

𝜙 (𝜂, 𝜉) =

+∞

∑
𝑗=0

+∞

∑
𝑘=0

𝜉
𝑘

𝜙
𝑗,𝑘
(𝜂) with 𝜙

𝑚
(𝜂, 𝜉)=

+∞

∑
𝑘=0

𝜉
𝑘

𝜙
𝑚,𝑘

(𝜂, 𝜉) .

(28)

Initial approximate solutions are chosen to satisfy the rule
of solution expression in (28), the corresponding boundary
conditions, and the equations

L
𝑓
[𝑓
0
(𝜂, 𝜉)] = 0, 𝑓

0
(0, 𝜉) = 0,

𝑓


0
(0, 𝜉) = 1, 𝑓



0
(∞, 𝜉) = 0,

L
𝜃
[𝜃
0
(𝜂, 𝜉)] = 0, 𝜃

0
(0, 𝜉) = 1,

𝜃
0
(∞, 𝜉) = 0, L

𝜙
[𝜙
0
(𝜂, 𝜉)] = 0,

𝜙
0
(0, 𝜉) = 1, 𝜙

0
(∞, 𝜉) = 0.

(29)

Substituting (28) in (29) and balancing terms of equal order
in 𝜉 give

𝑓


0,0
+
𝜂

2
𝑓


0,0
= 0, 𝑓

0,0
(0) = 0,

𝑓


0,0
(0) = 1, 𝑓



0,0
(∞) = 0,

𝜃


0,0
+ Pr

𝜂

2
𝜃


0,0
= 0, 𝜃

0,0
(0) = 1, 𝜃

0,0
(∞) = 0,

1

Le
𝜙


0,0
+ Sc

𝜂

2
𝜙


0,0
= 0, 𝜙

0,0
(0) = 1, 𝜙

0,0
(∞) = 0,

(30)

whose solutions are, respectively,

𝑓
0,0
(𝜂) = 𝜂 erfc(

𝜂

2
) +

2

√𝜋
[1 − exp(−

𝜂2

4
)] ,

𝜃
0,0
(𝜂) = erfc(√Pr

𝑦

2
) ,

𝜙
0,0
(𝜂) = erfc(√Le Sc

𝑦

2
) .

(31)

The function erfc(𝜂) is the standard complementary error
function defined by

erfc (𝜂) = 2

√𝜋
∫
∞

𝜂

exp (−𝑧2) 𝑑𝑧. (32)

Substituting (28) in the higher order deformation equations
(24) gives rise to the iteration scheme

𝑓


𝑚,𝑘
+
𝜂

2
𝑓


𝑚,𝑘
− 𝑘𝑓


𝑚,𝑘

= (Λ + 𝜒
𝑚
) {𝑓


𝑚−1,𝑘
+
𝜂

2
𝑓


𝑚−1,𝑘
− 𝑘𝑓


𝑚−1,𝑘
}

+ (Λ + 𝜒
𝑚
) {(𝑘 − 1) 𝑓



𝑚−1,𝑘−1
−
𝜂

2
𝑓


𝑚−1,𝑘−1

+𝜆𝜃
𝑚−1,𝑘−1

+ 𝜆Nr𝜙
𝑚−1,𝑘−1

}

+
𝜂

2
𝑓


𝑚,𝑘−1
− (𝑘 − 1) 𝑓



𝑚,𝑘−1
− 𝜆𝜃
𝑚,𝑘−1

− 𝜆Nr𝜙
𝑚,𝑘−1

× Λ

𝑚−1

∑
𝑛=0

𝑘−1

∑
𝑝=0

[𝑓
𝑛,𝑝
𝑓


𝑚−1−𝑛,𝑘−1−𝑝
− 𝑓


𝑛,𝑝
𝑓


𝑚−1−𝑛,𝑘−1−𝑝

+ 𝜆𝛾𝜃
𝑛,𝑝
𝜃
𝑚−1−𝑛,𝑘−1−𝑝

+𝜆𝜎𝜙
𝑛,𝑝
𝜙
𝑚−1−𝑛,𝑘−1−𝑝

] ,

𝜃


𝑚,𝑘
+
𝜂

2
Pr𝜃
𝑚,𝑘

− 𝑘𝜃
𝑚,𝑘

= (Λ + 𝜒
𝑚
) {𝜃


𝑚−1,𝑘
+
𝜂

2
Pr𝜃
𝑚−1,𝑘

− 𝑘Pr𝜃
𝑚−1,𝑘

}

× (Λ + 𝜒
𝑚
) {Pr (𝑘 − 1) 𝜃

𝑚−1,𝑘−1
− Pr

𝜂

2
𝜃


𝑚−1,𝑘−1
}

+
𝜂

2
Pr𝜃
𝑚,𝑘−1

− Pr (𝑘 − 1) 𝜃
𝑚,𝑘−1

+ ΛPr
𝑚−1

∑
𝑛=0

𝑘−1

∑
𝑝=0

[𝑓
𝑛,𝑝
𝜃


𝑚−1−𝑛,𝑘−1−𝑝
] ,

𝜙


𝑚,𝑘
+ Le [

𝜂

2
Sc𝜙
𝑚,𝑘

− 𝑘Sc𝜙
𝑚,𝑘
]

= (Λ + 𝜒
𝑚
) {𝜙


𝑚−1,𝑘
+ Le Sc

𝜂

2
𝜙


𝑚−1,𝑘
− 𝑘Le Sc𝜙

𝑚−1,𝑘
}

× (Λ + 𝜒
𝑚
) {Le Sc (𝑘 − 1) 𝜙

𝑚−1,𝑘−1
− Le Sc

𝜂

2
𝜙


𝑚−1,𝑘−1
}

+
𝜂

2
Le Sc𝜙

𝑚,𝑘−1
− Le Sc (𝑘 − 1) 𝜙

𝑚,𝑘−1

+ ΛLe Sc
𝑚−1

∑
𝑛=0

𝑘−1

∑
𝑝=0

[𝑓
𝑛,𝑝
𝜙


𝑚−1−𝑛,𝑘−1−𝑝
] ,

(33)

with boundary conditions

𝑓
𝑚,𝑘

(0) = 0, 𝑓


𝑚,𝑘
(0) = 0, 𝑓



𝑚,𝑘
(∞) = 0,

𝜃
𝑚,𝑘

(0) = 0, 𝜃
𝑚,𝑘

(∞) = 0,

𝜙
𝑚,𝑘

(0) = 0, 𝜙
𝑚,𝑘

(∞) = 0.

(34)

The system (33) is a linear sequence of ordinary differential
equations that can be solved by any numerical method. In
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this study the equations are solved using the spectralmethods
whose underlying ideas will be sketched in Section 3.1.

3.1. The Spectral Quasilinearisation Method (SQLM). In this
section we present a spectral quasilinearisation method
(SQLM) for solving systems of partial differential equations
such as those in (12). Consider first an initial unsteady state
solution corresponding to 𝜏 = 0 and obtained by setting 𝜉 = 0
in (12). This gives the equations

𝑓


+
1

2
𝜂𝑓


= 0, 𝑓 (0, 0) = 0,

𝑓


(0, 0) = 1, 𝑓


(∞, 0) = 0,

𝜃


+ Pr
𝜂

2
𝜃


= 0, 𝜃 (0, 0) = 1,

𝜃 (∞, 0) = 0,
1

Le
𝜙


+ Sc
𝜂

2
𝜙


= 0,

𝜙 (0, 0) = 1, 𝜙 (∞, 0) = 0.

(35)

Solving (35) analytically gives

𝑓 (𝜂, 0) = 𝜂 erfc(
𝜂

2
) +

2

√𝜋
[1 − exp(−

𝜂
2

4
)] ,

𝜃 (𝜂, 0) = erfc(√Pr
𝑦

2
) ,

𝜙 (𝜂, 0) = erfc(√Le Sc
𝑦

2
) .

(36)

The quasilinearisation method (QLM) is essentially a gen-
eralized Newton-Raphson method that was originally used
by Bellman and Kalaba [4] for solving functional equations.
The QLM scheme is derived by linearising the nonlinear
component of the governing equations using Taylor series
expansion with the assumption that the difference between
the value of the unknown functions at the current iteration
level (denoted by 𝑟+1) and the value at the previous iteration
level (denoted by 𝑟) is small. Applying the QLM on (12) leads
to the following system of linear equations:

𝑓


𝑟+1
+ 𝑎
1,𝑟
𝑓


𝑟+1
+ 𝑎
2,𝑟
𝑓


𝑟+1
+ 𝑎
3,𝑟
𝑓
𝑟+1

+ 𝑎
4,𝑟
𝜃
𝑟+1

+ 𝑎
5,𝑟
𝜙
𝑟+1

+ 𝑎
6,𝑟
= 𝜉 (1 − 𝜉)

𝜕𝑓
𝑟+1

𝜕𝜉
,

𝜃


𝑟+1
+ 𝑏
1,𝑟
𝜃


𝑟+1
+ 𝑏
2,𝑟
𝑓
𝑟+1

+ 𝑏
3,𝑟
= Pr𝜉 (1 − 𝜉)

𝜕𝜃
𝑟+1

𝜕𝜉
,

𝜙


𝑟+1
+ 𝑐
1,𝑟
𝜙


𝑟+1
+ 𝑐
2,𝑟
𝑓
𝑟+1

+ 𝑐
3,𝑟
= Le Sc𝜉 (1 − 𝜉)

𝜕𝜙
𝑟+1

𝜕𝜉
,

(37)

where the coefficients 𝑎
𝑝,𝑟
, 𝑏
𝑝,𝑟
, and 𝑐

𝑝,𝑟
(𝑝 = 1, 2, . . .) are

known from previous calculations and are given by

𝑎
1,𝑟
= (1 − 𝜉)

𝜂

2
+ 𝜉𝑓
𝑟
, 𝑎

2,𝑟
= −2𝜉𝑓



𝑟
,

𝑎
3,𝑟
= 𝜉𝑓


𝑟
, 𝑎

4,𝑟
= 𝜆𝜉 + 2𝜆𝛼𝜉𝜃

𝑟
,

𝑎
5,𝑟
= 𝜆𝜉Nr + 2𝜆𝜎Nr𝜉𝜙

𝑟
,

𝑎
6,𝑟
= 𝜉(𝑓



𝑟
)
2

− 𝜉𝑓
𝑟
𝑓


𝑟
− 𝜆𝜉 (𝛼𝜃

2

𝑟
+Nr𝜎𝜙2

𝑟
) ,

𝑏
1,𝑟
= Pr (1 − 𝜉)

𝜂

2
+ Pr𝜉𝑓

𝑟
,

𝑏
2,𝑟
= Pr𝜉𝜃

𝑟
, 𝑏

3,2
= −Pr𝜉𝑓

𝑟
𝜃


𝑟
,

𝑐
1,𝑟
= Le Sc (1 − 𝜉)

𝜂

2
+ Le Sc𝜉𝑓

𝑟
,

(38)

𝑐
2,𝑟
= Le Sc𝜉𝜙

𝑟
, 𝑐

3,𝑟
= −Le Sc𝜉𝑓

𝑟
𝜙


𝑟
. (39)

Starting from the initial approximations (36), the iteration
schemes (37) can be solved iteratively for𝑓

𝑟+1
(𝜂, 𝜉), 𝜃

𝑟+1
(𝜂, 𝜉),

and 𝜙
𝑟+1
(𝜂, 𝜉) when 𝑟 = 0, 1, 2, . . ..

In solving (37), we discretize the equation using
the Chebyshev spectral collocation method [21] in the
𝜂-direction and use an implicit finite difference method in
the 𝜉-direction. The spectral method can be implemented
on the interval [−1, 1]; therefore it is necessary to transform
the domain of the problem to the interval [−1, 1] before
applying the spectral method. For the convenience of the
numerical computations, the semi-infinite domain in the
space direction is approximated by the truncated domain
[0, 𝜂
∞
], where 𝜂

∞
is a finite number selected to be large

enough to represent the behaviour of the flow properties
when 𝜂 is very large. The transformation 𝜂 = 𝜂

∞
(𝑌 + 1)/2

is used to map the interval [0, 𝜂
∞
] to [−1, 1]. The basic idea

behind the spectral collocation method is the introduction
of a differentiation matrix 𝐷 which is used to estimate the
derivatives of the unknown variables 𝑓(𝜂), 𝜃(𝜂), and 𝜙(𝜂)

at the collocation points (grid points) as the matrix vector
product. For example, the vector product for 𝑓(𝜂) will be as
follows:

𝑑𝐹
(1)

𝑑𝜂
=

𝑁
𝑥

∑
𝑘=0

D
𝑗𝑘
𝑓 (𝑌
𝑘
) = D𝐹, 𝑗 = 0, 1, . . . , 𝑁

𝑥
, (40)

where𝑁
𝑥
+1 is the number of collocation points,D = 2𝐷/𝜂

∞
,

and

𝐹 = [𝑓 (𝑌
0
) , 𝑓 (𝑌

1
) , . . . , 𝑓 (𝑌

𝑁
𝑥

)]
𝑇 (41)

is the vector function at the collocation points. Higher order
derivatives are obtained as powers ofD; that is,

𝐹
(𝑠)

= D𝑠𝐹, (42)

where 𝑠 is the order of the derivative. We choose the Gauss-
Lobatto collocation points to define the nodes in [−1, 1] as

𝑌
𝑗
= cos(

𝜋𝑗

𝑁
𝑥

) , 𝑗 = 0, 1, . . . , 𝑁
𝑥
. (43)
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The matrix 𝐷 is of size (𝑁
𝑥
+ 1) × (𝑁

𝑥
+ 1). The grid points

on (𝜂, 𝜉) are defined as

𝑌
𝑗
= cos

𝜋𝑗

𝑁
𝑥

, 𝜉
𝑛

= 𝑛Δ𝜉,

𝑗 = 0, 1, . . . , 𝑁
𝑥
, 𝑛 = 0, 1, . . . , 𝑁

𝑡
,

(44)

where𝑁
𝑥
+ 1 and𝑁

𝑡
+ 1 are the total numbers of grid points

in the 𝜂- and 𝜉-directions, respectively, and Δ𝜉 is the spacing
in the 𝜉-direction. The finite difference scheme is applied
with centering about a midpoint halfway between 𝜉𝑛+1 and
𝜉𝑛. This midpoint is defined as 𝜉𝑛+(1/2) = (𝜉𝑛+1 + 𝜉𝑛)/2.
The derivatives with respect to 𝜂 are defined in terms of the
Chebyshev differentiation matrices. Applying the centering
about 𝜉𝑛+(1/2) to any function, say 𝑢(𝜂, 𝜉), and its associated
derivative we obtain

𝑢 (𝜂
𝑗
, 𝜉
𝑛+(1/2)

) = 𝑢
𝑛+(1/2)

𝑗
=
𝑢𝑛+1
𝑗

+ 𝑢𝑛
𝑗

2
,

(
𝜕𝑢

𝜕𝜉
)

𝑛+(1/2)

=
𝑢𝑛+1
𝑗

− 𝑢𝑛
𝑗

Δ𝜉
.

(45)

Thus, applying the spectral method to (37) with the finite
difference in 𝜉 gives

[
[

[

A
11

A
12

A
13

A
21

A
22

A
23

A
31

A
32

A
33

]
]

]

[
[
[

[

𝐹
𝑛+1

𝑟+1

Θ𝑛+1
𝑟+1

Φ
𝑛+1

𝑟+1

]
]
]

]

=
[
[

[

B
11

B
12

B
13

B
21

B
22

B
23

B
31

B
32

B
33

]
]

]

[
[

[

𝐹𝑛
𝑟+1

Θ𝑛
𝑟+1

Φ𝑛
𝑟+1

]
]

]

+
[
[

[

𝐾
1

𝐾
2

𝐾
3

]
]

]

,

(46)

where A
𝑖𝑗
,B
𝑖𝑗
(𝑖, 𝑗 = 1, 2, 3) and 𝐾

𝑖
(𝑖 = 1, 2, 3) are (𝑁

𝑥
+ 1) ×

(𝑁
𝑥
+1)matrices and (𝑁𝑥+1)×1 vectors, respectively, defined

as

A
11
=
1

2
(D3 + a𝑛+(1/2)

1,𝑟
D2 + a𝑛+(1/2)

2,𝑟
D + a𝑛+(1/2)

3,𝑟
)

−
𝜉𝑛+(1/2) (1 − 𝜉𝑛+(1/2))

Δ𝜉
D,

A
12
=
1

2
a𝑛+(1/2)
4,𝑟

, A
13
=
1

2
a𝑛+(1/2)
5,𝑟

,

A
21
=
1

2
b𝑛+(1/2)
2,𝑟

,

A
22
=
1

2
(D2 + b𝑛+(1/2)

1,𝑟
D)

−
Pr𝜉𝑛+(1/2) (1 − 𝜉𝑛+(1/2))

Δ𝜉
I,

A
23
= 0I, A

31
=
1

2
c𝑛+(1/2)
2,𝑟

,

A
32
= 0I,

A
33
=
1

2
(D2 + c𝑛+(1/2)

1,𝑟
D)

−
Le Sc𝜉𝑛+(1/2) (1 − 𝜉𝑛+(1/2))

Δ𝜉
I,

K
1
= −a𝑛+(1/2)
6,𝑟

, K
2
= −b𝑛+(1/2)
3,𝑟

,

K
3
= −c𝑛+(1/2)
3,𝑟

,

B
11
= −

1

2
(D3 + a𝑛+(1/2)

1,𝑟
D2 + a𝑛+(1/2)

2,𝑟
D + a𝑛+(1/2)

3,𝑟
)

−
𝜉𝑛+(1/2) (1 − 𝜉𝑛+(1/2))

Δ𝜉
D,

B
12
= −

1

2
a𝑛+(1/2)
4,𝑟

, B
13
= −

1

2
a𝑛+(1/2)
5,𝑟

,

B
21
= −

1

2
b𝑛+(1/2)
2,𝑟

,

B
22
= −

1

2
(D2 + b𝑛+(1/2)

1,𝑟
D)

−
Pr𝜉𝑛+(1/2) (1 − 𝜉𝑛+(1/2))

Δ𝜉
I,

B
23
= 0I, B

31
= −

1

2
c𝑛+(1/2)
2,𝑟

,

B
32
= 0I,

B
33
= −

1

2
(D2 + c𝑛+(1/2)

1,𝑟
D)

−
Le Sc𝜉𝑛+(1/2) (1 − 𝜉𝑛+(1/2))

Δ𝜉
I.

(47)

4. Results and Discussion

In this section we present numerical solutions to (12)
computed using the spectral homotopy analysis method.
Approximate solutions of the skin friction coefficient, the
surface heat transfer, and the surface mass transfer rates
at different values of flow parameters are presented and
compared with the SQLM solutions. Velocity, temperature,
and concentration profiles at different flow parameters are
also presented. All SHAM results were generated using 𝐿 =

30, 𝑁 = 100, and Λ = −1 unless stated otherwise. These
values were found to give accurate solutions after a numerical
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Figure 1: Effect of 𝜆 and 𝛼 on the skin friction coefficient.

Table 1: Comparison of the SHAM solutions for 𝑓(𝜉, 0), −𝜃(𝜉, 0), and −𝜙(𝜉, 0) against those of the SQLM at different values of 𝜉.𝑀 = 𝐾 =

30, ℎ = −1, 𝐿 = 30, 𝑁 = 100, 𝜆 = 0.5, Pr = 0.7, Nr = 0.5, Le = 3, Sc = 1, 𝛼 = 1, and 𝜎 = 1.

𝜉
𝑓(𝜉, 0) −𝜃(𝜉, 0) −𝜙(𝜉, 0)

SHAM SQLM SHAM SQLM SHAM SQLM
0.1 −0.540183 −0.540183 0.475790 0.475790 0.993124 0.993124
0.2 −0.516888 −0.516888 0.479891 0.479891 1.010491 1.010491
0.3 −0.494398 −0.494398 0.484385 0.484385 1.029550 1.029550
0.4 −0.472821 −0.472821 0.489330 0.489330 1.050616 1.050616
0.5 −0.452295 −0.452295 0.494804 0.494804 1.074110 1.074110
0.6 −0.432994 −0.432994 0.500905 0.500905 1.100615 1.100615
0.7 −0.415145 −0.415145 0.507775 0.507775 1.130989 1.130989
0.8 −0.399066 −0.399066 0.515629 0.515629 1.166621 1.166621
0.9 −0.385221 −0.385221 0.524843 0.524843 1.210167 1.210167
1.0 −0.374286 −0.374286 0.536307 0.536307 1.268622 1.268622

experimentation.The same𝐿 = 30 and𝑁 = 100were used for
the computation of the SQLM solutions. The𝑀 and𝐾 in the
tables represent themaximum𝑚th and 𝑘th iteration required
to produce converging results. Values of the skin friction
coefficient and reduced Nusselt and Sherwood numbers at
different values of 𝜉 are presented in Table 1. The table
also shows a comparison of the SHAM and SQLM results.
As can be seen from the table, the results match perfectly
well for the set accuracy level. The data from the table also
reveals a steady increase of 𝑓(𝜉, 0), −𝜃(𝜉, 0), and −𝜙(𝜉, 0)
with 𝜉.

Table 2 shows a variation of 𝑓(𝜉, 0), −𝜃(𝜉, 0), and
−𝜙(𝜉, 0) with selected flow parameters. It can be seen from
the data in Table 2 that all 𝜆, 𝛼, Nr, and 𝜎 contribute pos-
itively towards the skin friction coefficient, Nusselt number,
and Sherwood number as they are seen to increase with the

increase in the flow parameters. All SHAM results in the table
are accurate for up to six decimal places.

Figure 1 shows the variation of the skin friction coefficient
with 𝜆 and 𝛼. The skin friction coefficient is shown to be an
increasing function of 𝜉 for values of 𝜆 = 0.1 and 𝜆 = 0.3

while showing a decreasing function for 𝜆 = 0.5. The skin
friction coefficient is shown to decrease with the increase in
𝑥𝑖 for any value of 𝛼 and the decrease is more prominent for
increasing values of 𝛼.

The effect of 𝜎 and Nr on the skin friction coefficient is
presented in Figure 2. The skin friction coefficient is again
seen to be a decreasing function of 𝜉 for any value of 𝜎 or
Nr. Increasing 𝜎 or Nr further decreases the skin friction
coefficient.

Figure 3 shows the effect of the Prandtl number on
the temperature profile. The temperature decreases with an
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Table 2: Variation of the SHAM approximate solutions of 𝑓(𝜉, 0), −𝜃(𝜉, 0), and −𝜙(𝜉, 0) for different flow parameters.𝑀 = 𝐾 = 30, ℎ =
−1, 𝐿 = 30,𝑁 = 100, Pr = 0.7, Le = 3, and Sc = 1.

𝜆 𝛼 Nr 𝜎 𝑓


(𝜉, 0) −𝜃


(𝜉, 0) −𝜙


(𝜉, 0)

0.1 1 0.5 1 −0.721619 0.488512 1.063098
0.5 1 0.5 1 −0.452295 0.494804 1.074110
1.0 1 0.5 1 −0.123169 0.502489 1.087615
0.5 0.1 0.5 1 −0.549445 0.492700 1.070271
0.5 0.5 0.5 1 −0.506182 0.493637 1.071980
0.5 1.0 0.5 1 −0.452295 0.494804 1.074110
0.5 1 0.1 1 −0.516058 0.493757 1.071997
0.5 1 0.5 1 −0.452295 0.494804 1.074110
0.5 1 1.0 1 −0.372924 0.496105 1.076742
0.5 1 0.5 0.1 −0.481198 0.494428 1.073293
0.5 1 0.5 0.5 −0.468347 0.494595 1.073656
0.5 1 0.5 1.0 −0.452295 0.494804 1.074110
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Figure 2: Effect of 𝜎 and Nr on the skin friction coefficient.

increase in Prandtl number.This is due to the fact that smaller
values of Pr are corresponding to larger values of thermal
conductivities and therefore heat is able to diffuse away from
the stretching sheet.

The effect of the Schmidt number Sc on the concentration
profile is shown in Figure 4. It can be seen from the figure
that, as the Schmidt number increases, the volume fraction
boundary layer decreases across the stretching sheet. A
higher Schmidt number implies a lower Brownian diffusion
coefficient which will give rise to a shorter penetration depth
for the concentration boundary layer.

In Figure 5, we present the solution of concentration
profile for various values of the Lewis number (Le). Increasing
the Lewis number decreases the concentration profile. Larger
values of the Lewis number correspond to weaker molecular
diffusivity and thinner boundary layer thickness.

5. Conclusions

The present study was carried out to extend the application
of the spectral homotopy analysis method (SHAM) to sys-
tems of nonlinear partial differential equations. The method
has been used successfully to find solutions of nonlinear
ordinary differential equations. We solve the nonlinear sys-
tem of partial differential equations governing the unsteady
nonlinear convection flow over a stretching flat plate. The
spectral quasilinearisation method (SQLM) was used to
validate the SHAM results. Numerical values of the skin
friction coefficient and the reduced Nusselt and Sherwood
numbers were generated using both methods. The results
matched well for the desired accuracy. Effects of selected
flow parameters on the skin friction coefficient, temperature,
and concentration profiles were also presented. The study
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Figure 3: Effect of the Prandtl number on the temperature profile.
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Figure 4: Effect of the Schmidt number on the concentration profile.

reveals yet another successful application of the SHAM. The
method is a promising tool for solutions of nonlinear partial
differential equations and their systems.
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