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Weak and strong convergence theorems are established for hybrid implicit iteration for a finite family of non-self-nonexpansive
mappings in uniformly convex Banach spaces. The results presented in this paper extend and improve some recent results.

1. Introduction

The convergence problem of an implicit (or nonimplicit)
iterative process to a common fixed point for a finite family
of nonexpansive mappings (or asymptotically nonexpansive
mappings) in Hilbert spaces or uniformly convex Banach
spaces has been considered by many authors (see [1–9]).

In 2001, Xu and Ori [1] introduced the following implicit
iteration scheme for common fixed points of a finite family of
nonexpansive mappings {𝑇

𝑖
}
𝑁

𝑖=1
in Hilbert spaces:

𝑥
𝑛
= 𝛼
𝑛
𝑥
𝑛−1

+ (1 − 𝛼
𝑛
) 𝑇
𝑛
𝑥
𝑛
, 𝑛 ≥ 1, (1)

where 𝑇
𝑛
= 𝑇
𝑛(mod𝑁), and they proved the weak convergence

theorem.
In 2005, Zeng and Yao [2] introduced the following

implicit iteration process with a perturbed mapping 𝐹 in
Hilbert space𝐻.

For an arbitrary initial point 𝑥
0
∈ 𝐻, the sequence {𝑥

𝑛
}
∞

𝑛=1

is generated as follows:

𝑥
𝑛
= 𝛼
𝑛
𝑥
𝑛−1

+ (1 − 𝛼
𝑛
) [𝑇
𝑛
𝑥
𝑛
− 𝜆
𝑛
𝜇𝐹 (𝑇

𝑛
𝑥
𝑛
)] , 𝑛 ≥ 1,

(2)

where 𝑇
𝑛
= 𝑇
𝑛(mod𝑁).

Using this iteration process, they proved the following
weak and strong convergence theorems for a family of non-
expansive mappings in Hilbert spaces.

Theorem 1 (see [2]). Let𝐻 be a real Hilbert space and let 𝐹 :

𝐻 → 𝐻 be a mapping such that, for some constants 𝑘, 𝜂 > 0,
𝐹 is 𝑘-Lipschitzian and 𝜂-strongly monotone. Let {𝑇

𝑛
}
𝑁

𝑛=1
be𝑁

nonexpansive self-mappings of 𝐻 such that ⋂𝑁
𝑛=1

𝐹𝑖𝑥(𝑇
𝑛
) ̸= 0.

Let 𝜇 ∈ (0, 2𝜂/𝑘
2
) and 𝑥

0
∈ 𝐻. Let {𝛼

𝑛
}
∞

𝑛=1
⊂ (0, 1) and

{𝜆
𝑛
}
∞

𝑛=1
⊂ [0, 1) satisfying conditions ∑∞

𝑛=1
𝜆
𝑛
< ∞ and 𝛼 ≤

𝛼
𝑛
≤ 𝛽, 𝑛 ≥ 1, for some 𝛼, 𝛽 ∈ (0, 1).Then the sequence {𝑥

𝑛
}
∞

𝑛=1

defined by (2) converges weakly to a common fixed point of the
mappings {𝑇

𝑛
}
𝑁

𝑛=1
.

Theorem 2 (see [2]). Let𝐻 be a real Hilbert space and let 𝐹 :
𝐻 → 𝐻 be a mapping such that, for some constants 𝑘, 𝜂 > 0,
𝐹 is 𝑘-Lipschitzian and 𝜂-strongly monotone. Let {𝑇

𝑛
}
𝑁

𝑛=1
be𝑁

nonexpansive self-mappings of 𝐻 such that ⋂𝑁
𝑖=1

𝐹𝑖𝑥(𝑇
𝑖
) ̸= 0.

Let 𝜇 ∈ (0, 2𝜂/𝑘
2
) and 𝑥

0
∈ 𝐻. Let {𝛼

𝑛
}
∞

𝑛=1
⊂ (0, 1)

and {𝜆
𝑛
}
∞

𝑛=1
⊂ [0, 1) satisfying conditions ∑∞

𝑛=1
𝜆
𝑛
< ∞

and 𝛼 ≤ 𝛼
𝑛
≤ 𝛽, 𝑛 ≥ 1, for some 𝛼, 𝛽 ∈ (0, 1). Then

the sequence {𝑥
𝑛
}
∞

𝑛=1
defined by (2) converges strongly to a

common fixed point of the mappings {𝑇
𝑛
}
𝑁

𝑛=1
if and only if

lim inf
𝑛→∞

𝑑(𝑥
𝑛
, ⋂
𝑁

𝑛=1
𝐹𝑖𝑥(𝑇

𝑛
)) = 0.

The purpose of this paper is to extend Theorems 1 and
2 from Hilbert spaces to uniformly convex Banach spaces
and from self-mappings to non-self-mappings. Our results
are more general and applicable than the results of Zeng and
Yao [2] because the strong monotonicity condition imposed
on 𝐹 by them is not required in this paper.
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2. Preliminaries

Throughout this paper, we assume that 𝐸 is a real Banach
space. 𝑇 : 𝐷(𝑇) ⊆ 𝐸 → 𝐸 is a mapping, where 𝐷(𝑇) is the
domain of𝑇.𝐹(𝑇) denotes the set of fixed points of amapping
𝑇.

Recall that 𝐸 is said to satisfy Opial’s condition [10], if,
for each sequence {𝑥

𝑛
} in 𝐸, the condition that the sequence

𝑥
𝑛
→ 𝑥 weakly implies that

lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 < lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
󵄩󵄩󵄩󵄩 , (3)

for all 𝑦 ∈ 𝐸 with 𝑦 ̸= 𝑥.

Definition 3. Let𝐾 be a closed subset of𝐸 and let𝑇 : 𝐾 → 𝐸,
𝑓 : 𝐸 → 𝐸 be two mappings.

(1) 𝑇 is said to be demiclosed at the origin, if, for each
sequence {𝑥

𝑛
} in 𝐾, the condition 𝑥

𝑛
→ 𝑥
0
weakly

and 𝑇𝑥
𝑛
→ 0 strongly implies 𝑇𝑥

0
= 0.

(2) 𝑇 is said to be semicompact, if, for any bounded
sequence {𝑥

𝑛
} in 𝐾, such that ‖𝑥

𝑛
− 𝑇𝑥

𝑛
‖ →

0 (𝑛 → ∞), there exists a subsequence {𝑥
𝑛𝑖
} ⊂ {𝑥

𝑛
}

converging to some 𝑥∗ in𝐾.
(3) 𝑇 is said to be nonexpansive, if ‖𝑇𝑥 − 𝑇𝑦‖ ≤ ‖𝑥 − 𝑦‖

for any 𝑥, 𝑦 ∈ 𝐸.
(4) 𝑓 is said to be 𝐿-Lipschitzian if there exists constant

𝐿 > 0 such that ‖𝑓𝑥−𝑓𝑦‖ ≤ 𝐿‖𝑥−𝑦‖ for any 𝑥, 𝑦 ∈ 𝐸.

Definition 4. A nonempty subset𝐾 of 𝐸 is said to be a retract
of 𝐸, if there exists a continuous mapping 𝑟 : 𝐸 → 𝐾 such
that 𝑟𝑥 = 𝑥, for any 𝑥 ∈ 𝐾. And 𝑟 is called the retraction of 𝐸
onto𝐾.

Remark 5 (see [3]). It is known that every nonempty closed
convex subset 𝐾 of a uniformly convex Banach space 𝐸 is a
retract of 𝐸 and the retraction 𝑟 is a nonexpansive mapping.

Suppose that 𝐾 is a nonempty closed convex subset of 𝐸,
which is also a retract of 𝐸. Let 𝑥

0
∈ 𝐾 be any given point. Let

{𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑁
} : 𝐾 → 𝐸 be𝑁 nonexpansive mappings with

𝑇
𝑛
= 𝑇
𝑛(mod𝑁). Let𝑓 : 𝐸 → 𝐸 be an 𝐿-Lipschitzianmapping.

Assume that {𝛼
𝑛
} is a sequence in (0,1) and {𝜆

𝑛
} ⊂ [0, 1), given

𝜇 > 0. Then the sequence {𝑥
𝑛
} defined by

𝑥
𝑛
= 𝛼
𝑛
𝑥
𝑛−1

+ (1 − 𝛼
𝑛
) 𝑟𝑇
𝜆𝑛

𝑛
𝑥
𝑛

:= 𝛼
𝑛
𝑥
𝑛−1

+ (1 − 𝛼
𝑛
) 𝑟 [𝑇
𝑛
𝑥
𝑛
− 𝜆
𝑛
𝜇𝑓 (𝑇
𝑛
𝑥
𝑛
)] , 𝑛 ≥ 1,

(4)

is called hybrid implicit iteration for a finite family of non-
expansive mappings {𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑁
} in Banach spaces, where

𝑇
𝑛

𝑛
= 𝑇
𝑛

𝑛(mod𝑁) and 𝜇 is a fixed constant.

The purpose of this paper is to study weak and strong
convergence of hybrid implicit iteration {𝑥

𝑛
} defined by (4)

to a common fixed point of {𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑁
} : 𝐾 → 𝐸 in

Banach spaces. The results we obtained in this paper extend
and improve the corresponding results of Xu and Ori [1],
Zeng and Yao [2], and others.

In order to prove our main results of this paper, we need
the following lemmas.

Lemma 6 (see [4]). Let {𝑎
𝑛
}, {𝑏
𝑛
}, and {𝛿

𝑛
} be three nonnega-

tive sequences satisfying

𝑎
𝑛+1

≤ (1 + 𝛿
𝑛
) 𝑎
𝑛
+ 𝑏
𝑛
, ∀𝑛 = 1, 2, . . . . (5)

If ∑∞
𝑛=1

𝛿
𝑛
< ∞ and ∑∞

𝑛=1
𝑏
𝑛
< ∞, then lim

𝑛→∞
𝑎
𝑛
exists.

Lemma7 (see [5]). Let𝐸 be a uniformly convex Banach space.
Let 𝑏, 𝑐 be two constants with 0 < 𝑏 < 𝑐 < 1. Suppose that {𝑡

𝑛
}

is a sequence in [b, c] and {𝑥
𝑛
}, {𝑦
𝑛
} are two sequences in 𝐸.

Then the conditions

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑡𝑛𝑥𝑛 + (1 − 𝑡𝑛) 𝑦𝑛
󵄩󵄩󵄩󵄩 = 𝑑,

lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩 ≤ 𝑑,

lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑦𝑛
󵄩󵄩󵄩󵄩 ≤ 𝑑

(6)

imply that lim
𝑛→∞

‖𝑥
𝑛
−𝑦
𝑛
‖ = 0, where𝑑 ≥ 0 is some constant.

Lemma 8 (see [6]). Let𝐾 be a nonempty closed convex subset
of real Banach space 𝐸 and 𝑇 : 𝐾 → 𝐸 a nonexpansive
mapping. If 𝑇 has a fixed point, then 𝐼 − 𝑇 is demiclosed at
zero, where 𝐼 is the identity mapping of 𝐸.

3. Main Results

Theorem 9. Suppose that 𝐸 is a real uniformly convex Banach
space satisfying Opial’s condition and 𝐾 is a nonempty closed
convex subset of 𝐸 with a nonexpansive retraction 𝑟 : 𝐸 → 𝐾.
Let {𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑁
} : 𝐾 → 𝐸 be 𝑁 nonexpansive mappings

with 𝐹 = ⋂
𝑁

𝑛=1
𝐹(𝑇
𝑛
) ̸= 0 and let 𝑓 : 𝐸 → 𝐸 be an 𝐿-

Lipschitzian mapping. Assume that {𝛼
𝑛
} is a sequence in (0, 1)

and {𝜆
𝑛
} ⊂ [0, 1) satisfying the following conditions:

(i) ∑∞
𝑛=1

𝜆
𝑛
< ∞;

(ii) there exist constants 𝜏
1
, 𝜏
2
∈ (0, 1) such that

𝜏
1
≤ (1 − 𝛼

𝑛
) ≤ 𝜏
2
, ∀𝑛 ≥ 1. (7)

Then, the implicit iterative process {𝑥
𝑛
} defined by (4) converges

weakly to a common fixed point of {𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑁
} in 𝐸.

Proof. Since 𝐹 = ⋂
𝑁

𝑛=1
𝐹(𝑇
𝑖
) ̸= 0, for each 𝑞 ∈ 𝐹, we have

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
𝛼
𝑛
(𝑥
𝑛−1

− 𝑞) + (1 − 𝛼
𝑛
) (𝑟𝑇
𝜆𝑛

𝑛
𝑥
𝑛
− 𝑞)

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝛼
𝑛
(𝑥
𝑛−1

− 𝑞) + (1 − 𝛼
𝑛
) (𝑟𝑇
𝜆𝑛

𝑛
𝑥
𝑛
− 𝑟𝑞)

󵄩󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑞
󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛)

󵄩󵄩󵄩󵄩󵄩
𝑇
𝜆𝑛

𝑛
𝑥
𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑞
󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛)

󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛
) 𝜆
𝑛
𝜇
󵄩󵄩󵄩󵄩𝑓 (𝑇𝑛𝑥𝑛)

󵄩󵄩󵄩󵄩
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≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑞
󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛
) 𝜆
𝑛
𝜇
󵄩󵄩󵄩󵄩𝑓 (𝑇𝑛𝑥𝑛) − 𝑓 (𝑞)

󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛
) 𝜆
𝑛
𝜇
󵄩󵄩󵄩󵄩𝑓 (𝑞)

󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑞
󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

+ 𝜆
𝑛
𝜇𝐿

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + 𝜆𝑛𝜇

󵄩󵄩󵄩󵄩𝑓 (𝑞)
󵄩󵄩󵄩󵄩 .

(8)

Simplifying we have

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑞
󵄩󵄩󵄩󵄩 +

𝜆
𝑛
𝜇𝐿

𝛼
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 +

𝜆
𝑛
𝜇

𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑞)
󵄩󵄩󵄩󵄩 . (9)

By condition (ii), 1 − 𝜏
2
≤ 𝛼
𝑛
; hence from (9) we have

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑞
󵄩󵄩󵄩󵄩 +

𝜆
𝑛
𝜇𝐿

1 − 𝜏
2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 +

𝜆
𝑛
𝜇

1 − 𝜏
2

󵄩󵄩󵄩󵄩𝑓 (𝑞)
󵄩󵄩󵄩󵄩 .

(10)

By condition (i), we know that 𝜆
𝑛
→ 0 and 𝜆

𝑛
𝜇𝐿 → 0 as

𝑛 → ∞; therefore there exists a positive integer 𝑛
0
such that

𝜆
𝑛
𝜇𝐿 ≤ (1 − 𝜏

2
)/2, for all 𝑛 ≥ 𝑛

0
; then we have

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 ≤

1 − 𝜏
2

1 − 𝜏
2
− 𝜆
𝑛
𝜇𝐿

󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑞
󵄩󵄩󵄩󵄩

+
𝜆
𝑛
𝜇

1 − 𝜏
2
− 𝜆
𝑛
𝜇𝐿

󵄩󵄩󵄩󵄩𝑓 (𝑞)
󵄩󵄩󵄩󵄩

= (1 +
𝜆
𝑛
𝜇𝐿

1 − 𝜏
2
− 𝜆
𝑛
𝜇𝐿

)
󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑞

󵄩󵄩󵄩󵄩

+
𝜆
𝑛
𝜇

1 − 𝜏
2
− 𝜆
𝑛
𝜇𝐿

󵄩󵄩󵄩󵄩𝑓 (𝑞)
󵄩󵄩󵄩󵄩 .

(11)

It follows from (11) that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 ≤ (1 +

2𝜆
𝑛
𝜇𝐿

1 − 𝜏
2

)
󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑞

󵄩󵄩󵄩󵄩 +
2𝜆
𝑛
𝜇

1 − 𝜏
2

󵄩󵄩󵄩󵄩𝑓 (𝑞)
󵄩󵄩󵄩󵄩 ,

∀𝑛 ≥ 𝑛
0
.

(12)

Taking 𝑎
𝑛
= ‖𝑥
𝑛
−𝑞‖, 𝛿

𝑛
= 2𝜆
𝑛
𝜇𝐿/(1−𝜏

2
), and 𝑏

𝑛
= (2𝜆

𝑛
𝜇/(1−

𝜏
2
))‖𝑓(𝑞)‖ and by using ∑∞

𝑛=1
𝜆
𝑛
< ∞, it is easy to see that

∞

∑
𝑛=1

𝛿
𝑛
< ∞,

∞

∑
𝑛=1

𝑏
𝑛
< ∞. (13)

It follows from Lemma 6 that lim
𝑛→∞

‖𝑥
𝑛
−𝑞‖ exists for each

𝑞 ∈ 𝐹. Hence, there exists𝑀 > 0, such that
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩 ≤ 𝑀, 𝑛 ≥ 0. (14)

We can assume that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 = 𝑑, (15)

where 𝑑 ≥ 0 is some number. Since {‖𝑥
𝑛
− 𝑞‖} is a convergent

sequence, {𝑥
𝑛
} is a bounded sequence in𝐾. Since

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
𝛼
𝑛
(𝑥
𝑛−1

− 𝑞) + (1 − 𝛼
𝑛
) (𝑟𝑇
𝜆𝑛

𝑛
𝑥
𝑛
− 𝑞)

󵄩󵄩󵄩󵄩󵄩
, (16)

by condition (i) and (8) and (15), that

lim sup
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑟𝑇
𝜆𝑛

𝑛
𝑥
𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩
= lim sup
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑟𝑇
𝜆𝑛

𝑛
𝑥
𝑛
− 𝑟𝑞

󵄩󵄩󵄩󵄩󵄩

≤ lim sup
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑇
𝜆𝑛

𝑛
𝑥
𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩

≤ lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝑇𝑛𝑞
󵄩󵄩󵄩󵄩

+ lim sup
𝑛→∞

𝜆
𝑛
𝜇
󵄩󵄩󵄩󵄩𝑓 (𝑇𝑛𝑥𝑛) − 𝑓 (𝑇𝑛𝑞)

󵄩󵄩󵄩󵄩

+ lim sup
𝑛→∞

𝜆
𝑛
𝜇
󵄩󵄩󵄩󵄩𝑓 (𝑇𝑛𝑞)

󵄩󵄩󵄩󵄩

≤ lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

+ lim sup
𝑛→∞

𝜆
𝑛
𝜇𝐿

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

+ lim sup
𝑛→∞

𝜆
𝑛
𝜇
󵄩󵄩󵄩󵄩𝑓 (𝑞)

󵄩󵄩󵄩󵄩 ≤ 𝑑.

(17)

Since 𝐸 is a uniformly convex Banach space, from (15)–(17)
and Lemma 7 we know that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛−1

− 𝑟𝑇
𝜆𝑛

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0. (18)

By (18), we have that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
(𝛼
𝑛
− 1) 𝑥

𝑛−1
+ (1 − 𝛼

𝑛
) 𝑟𝑇
𝜆𝑛

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛−1

− 𝑟𝑇
𝜆𝑛

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
󳨀→ 0, (𝑛 󳨀→ ∞) .

(19)

It follows from (18) and (19) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑟𝑇
𝜆𝑛

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
≤ lim
𝑛→∞

(
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛−1

− 𝑟𝑇
𝜆𝑛

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
) = 0,

(20)

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑥
𝑛+𝑗

󵄩󵄩󵄩󵄩󵄩
= 0, ∀𝑗 = 1, 2, . . . , 𝑁. (21)

By (14), we know

󵄩󵄩󵄩󵄩𝑓 (𝑇𝑛𝑥𝑛)
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑓 (𝑇𝑛𝑥𝑛) − 𝑓 (𝑞)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑓 (𝑞)
󵄩󵄩󵄩󵄩

≤ 𝐿
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑓 (𝑞)

󵄩󵄩󵄩󵄩 ≤ 𝐿𝑀 +
󵄩󵄩󵄩󵄩𝑓 (𝑞)

󵄩󵄩󵄩󵄩 .
(22)

From (20), (22), and condition (i) we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑛𝑥𝑛
󵄩󵄩󵄩󵄩

≤ lim
𝑛→∞

(
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑇
𝜆𝑛

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑇
𝜆𝑛

𝑛
𝑥
𝑛
− 𝑇
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
)

≤ lim
𝑛→∞

(
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑇
𝜆𝑛

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+ 𝜆
𝑛
𝜇 (𝐿𝑀 +

󵄩󵄩󵄩󵄩𝑓 (𝑞)
󵄩󵄩󵄩󵄩)) = 0.

(23)
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Consequently, for any 𝑗 = 1, 2, . . . , 𝑁, from (21) and (23) we
have
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑇
𝑛+𝑗
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑥
𝑛+𝑗

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛+𝑗

− 𝑇
𝑛+𝑗
𝑥
𝑛+𝑗

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛+𝑗
𝑥
𝑛+𝑗

− 𝑇
𝑛+𝑗
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

≤ 2
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑥
𝑛+𝑗

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛+𝑗

− 𝑇
𝑛+𝑗
𝑥
𝑛+𝑗

󵄩󵄩󵄩󵄩󵄩
󳨀→ 0,

(𝑛 󳨀→ ∞) .

(24)

This implies that the sequence

𝑁

⋃
𝑗=1

{
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑇
𝑛+𝑗
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
}
∞

𝑛=1
󳨀→ 0 (𝑛 󳨀→ ∞) . (25)

Since, for each 𝑙 = 1, 2, . . . , 𝑁, {‖𝑥
𝑛
− 𝑇
𝑙
𝑥
𝑛
‖}
∞

𝑛=1
is a subse-

quence of⋃𝑁
𝑗=1

{‖𝑥
𝑛
− 𝑇
𝑛+𝑗
𝑥
𝑛
‖}
∞

𝑛=1
, therefore we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑙𝑥𝑛
󵄩󵄩󵄩󵄩 = 0, ∀𝑙 = 1, 2, . . . 𝑁. (26)

Since 𝐸 is uniformly convex, every bounded subset of 𝐸 is
weakly compact. Since {𝑥

𝑛
} is a bounded sequence in 𝐸, there

exists a subsequence {𝑥
𝑛𝑗
} ⊂ {𝑥

𝑛
} such that {𝑥

𝑛𝑗
} converges

weakly to 𝑢 ∈ 𝐸. From (26) we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑗
− 𝑇
𝑙
𝑥
𝑛𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
= 0, ∀𝑙 = 1, 2, . . . 𝑁. (27)

By Lemma 8, we know that 𝑢 ∈ 𝐹(𝑇
𝑙
). By the arbitrariness of

𝑙 ∈ {1, 2, . . . 𝑁}, we have that 𝑢 ∈ 𝐹 = ⋂
𝑁

𝑙=1
𝐹(𝑇
𝑖
).

Suppose that there exists some subsequence {𝑥
𝑛𝑘
} ⊂ {𝑥

𝑛
}

such that 𝑥
𝑛𝑘
→ V ∈ 𝐸 weakly and V ̸= 𝑢. From Lemma 8, V ∈

𝐹. By (12) we know that lim
𝑛→∞

‖𝑥
𝑛
−𝑢‖ and lim

𝑛→∞
‖𝑥
𝑛
−V‖

exist. Since 𝐸 satisfies Opial’s condition, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢
󵄩󵄩󵄩󵄩 = lim
𝑗→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑗
− 𝑢

󵄩󵄩󵄩󵄩󵄩󵄩
< lim
𝑗→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑗
− V

󵄩󵄩󵄩󵄩󵄩󵄩

= lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − V󵄩󵄩󵄩󵄩 = lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑘
− V

󵄩󵄩󵄩󵄩󵄩

< lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑘
− 𝑢

󵄩󵄩󵄩󵄩󵄩
= lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢
󵄩󵄩󵄩󵄩 ,

(28)

which is a contradiction. Hence 𝑢 = V. This implies that {𝑥
𝑛
}

converges weakly to a common fixed point of {𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑁
}

in 𝐸.

Theorem10. Suppose that𝐸 is a real uniformly convex Banach
space and𝐾 is a nonempty closed convex nonexpansive retract
of 𝐸 with 𝑟 : 𝐸 → 𝐾 as a nonexpansive retraction. Let
{𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑁
} : 𝐾 → 𝐸 be 𝑁 nonexpansive mappings

with 𝐹 = ⋂
𝑁

𝑛=1
𝐹(𝑇
𝑛
) ̸= 0 and let 𝑓 : 𝐸 → 𝐸 be an 𝐿-

Lipschitzian mapping. Assume that {𝛼
𝑛
} is a sequence in (0, 1)

and {𝜆
𝑛
} ⊂ [0, 1) satisfying the following conditions:

(i) ∑∞
𝑛=1

𝜆
𝑛
< ∞;

(ii) there exist constants 𝜏
1
, 𝜏
2
∈ (0, 1) such that

𝜏
1
≤ (1 − 𝛼

𝑛
) ≤ 𝜏
2
, ∀𝑛 ≥ 1. (29)

Then, the implicit iterative process {𝑥
𝑛
} defined by (4) converges

strongly to a common fixed point of {𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑁
} if and only

if lim inf
𝑛→∞

𝑑(𝑥
𝑛
, 𝐹(𝑇
𝑙
)) = 0 (for all 𝑙 = 1, 2, . . . , 𝑁).

Proof. From (12) and (14) in the proof ofTheorem 9, we have
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩 ≤ (1 + 𝛿𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑞

󵄩󵄩󵄩󵄩 + 𝑏𝑛 ≤
󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑞

󵄩󵄩󵄩󵄩

+ 𝑀𝛿
𝑛
+ 𝑏
𝑛
=
󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑞

󵄩󵄩󵄩󵄩 + 𝛽𝑛,
(30)

where 𝛿
𝑛
= 2𝜆
𝑛
𝜇𝐿/(1 − 𝜏

2
), 𝑏
𝑛
= (2𝜆

𝑛
𝜇/(1 − 𝜏

2
))‖𝑓(𝑞)‖, and

𝛽
𝑛
= 𝑀𝛿

𝑛
+ 𝑏
𝑛
. Hence, 𝑑(𝑥

𝑛
, 𝐹) ≤ 𝑑(𝑥

𝑛−1
, 𝐹) + 𝛽

𝑛
. Since

∑
∞

𝑛=1
𝛽
𝑛
< ∞, it follows from Lemma 6 that lim

𝑛→∞
𝑑(𝑥
𝑛
, 𝐹)

exists.
If {𝑥
𝑛
}
∞

𝑛=1
converges strongly to a common fixed point 𝑝

of {𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑁
}, then lim

𝑛→∞
‖𝑥
𝑛
− 𝑝‖ = 0. Since

0 ≤ 𝑑 (𝑥
𝑛
, 𝐹) ≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 , (31)

we know that lim inf
𝑛→∞

𝑑(𝑥
𝑛
, 𝐹) = 0.

Conversely, suppose lim inf
𝑛→∞

𝑑(𝑥
𝑛
, 𝐹) = 0; then

lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝐹) = 0. Moreover, we have ∑∞

𝑛=1
𝛽
𝑛
< ∞; thus

for arbitrary 𝜖 > 0, there exists a positive integer𝑁 such that
𝑑(𝑥
𝑛
, 𝐹) < 𝜖/4 and ∑∞

𝑗=𝑛
𝛽
𝑗
< 𝜖/4 for all 𝑛 ≥ 𝑁. It follows

from (30) that, for all 𝑛,𝑚 ≥ 𝑁 and for all 𝑝 ∈ 𝐹, we have
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑚

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑚 − 𝑝

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑁 − 𝑝

󵄩󵄩󵄩󵄩 +

𝑛

∑
𝑗=𝑁+1

𝛽
𝑗
+
󵄩󵄩󵄩󵄩𝑥𝑁 − 𝑝

󵄩󵄩󵄩󵄩 +

𝑚

∑
𝑗=𝑁+1

𝛽
𝑗

≤ 2
󵄩󵄩󵄩󵄩𝑥𝑁 − 𝑝

󵄩󵄩󵄩󵄩 + 2

∞

∑
𝑗=𝑁

𝛽
𝑗
.

(32)

Taking infimum over all 𝑝 ∈ 𝐹, we obtain

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑚
󵄩󵄩󵄩󵄩 ≤ 2𝑑 (𝑥𝑁, 𝐹) + 2

∞

∑
𝑗=𝑁

𝛽
𝑗
< 𝜖, ∀𝑛,𝑚 ≥ 𝑁. (33)

Thus, {𝑥
𝑛
}
∞

𝑛=1
is a Cauchy sequence. Letting lim

𝑛→∞
𝑥
𝑛
= 𝑢,

then, fromLemma 8, we have 𝑢 ∈ 𝐹.This completes the proof
of the theorem.

Theorem 11. Suppose that𝐸 is a real uniformly convex Banach
space and𝐾 is a nonempty closed convex nonexpansive retract
of 𝐸 with 𝑟 : 𝐸 → 𝐾 as a nonexpansive retraction. Let
{𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑁
} : 𝐾 → 𝐸 be𝑁 nonexpansive mappings with

𝐹 = ⋂
𝑁

𝑛=1
𝐹(𝑇
𝑛
) ̸= 0 and at least there exists a 𝑇

𝑙
, 1 ≤ 𝑙 ≤ 𝑁,

which is semicompact. Let 𝑓 : 𝐸 → 𝐸 be 𝐿-Lipschitzian map-
ping. Assume that {𝛼

𝑛
} is a sequence in (0, 1) and {𝜆

𝑛
} ⊂ [0, 1)

satisfying the following conditions:

(i) ∑∞
𝑛=1

𝜆
𝑛
< ∞;

(ii) there exist constants 𝜏
1
, 𝜏
2
∈ (0, 1) such that

𝜏
1
≤ (1 − 𝛼

𝑛
) ≤ 𝜏
2
, ∀𝑛 ≥ 1. (34)

Then, the implicit iterative process {𝑥
𝑛
} defined by (4) converges

strongly to a common fixed point of {𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑁
} in 𝐸.
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Proof. From the proof of Theorem 9, {𝑥
𝑛
} is bounded, and

lim
𝑛→∞

‖𝑥
𝑛
− 𝑇
𝑙
𝑥
𝑛
‖ = 0, for all 𝑙 = 1, 2, . . . 𝑁. We especially

have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇1𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (35)

By the assumption of Theorem 11, we may assume that 𝑇
1
is

semicompact, without loss of generality.Then, it follows from
(35) that there exists a subsequence {𝑥

𝑛𝑘
} of {𝑥

𝑛
} such that

{𝑥
𝑛𝑘
} converges strongly to 𝑝 ∈ 𝐾. Thus from (26) we have

󵄩󵄩󵄩󵄩𝑝 − 𝑇𝑙𝑝
󵄩󵄩󵄩󵄩 = lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑘
− 𝑇
𝑙
𝑥
𝑛𝑘

󵄩󵄩󵄩󵄩󵄩
= lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑙𝑥𝑛
󵄩󵄩󵄩󵄩 = 0,

∀𝑙 = 1, 2, . . . 𝑁.

(36)

This implies that 𝑝 ∈ 𝐹. In addition, since lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖

exists, therefore lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖ = 0; that is, {𝑥

𝑛
} converges

strongly to a fixed point of {𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑁
} in 𝐸. The proof is

completed.
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