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Recently, the cloud computing is a computing paradigm that constitutes an advanced computing environment that evolved from
the distributed computing. And the cloud computing provides acquired computing resources in a pay-as-you-go manner. For
example, Amazon EC2 offers the Infrastructure-as-a-Service (IaaS) instances in three different ways with different price, reliability,
and various performances of instances. Our study is based on the environment using spot instances. Spot instances can significantly
decrease costs compared to reserved and on-demand instances. However, spot instances give a more unreliable environment than
other instances. In this paper, we propose the workflow scheduling scheme that reduces the out-of-bid situation. Consequently,
the total task completion time is decreased. The simulation results reveal that, compared to various instance types, our scheme
achieves performance improvements in terms of an average combinedmetric of 12.76% over workflow scheme without considering
the processing rate. However, the cost in our scheme is higher than an instance with low performance and is lower than an instance
with high performance.

1. Introduction

In recent years, due to the increased interests in cloud
computing, many cloud projects and commercial systems
such as Amazon EC2 [1] have been implemented. Cloud
computing provides many benefits including easy access to
user data, ease of management for users, and the reduction
of costs. And cloud computing services provide a high level
of scalability of computing resources combined with internet
technology to many customers [2, 3]. In most cloud services,
the concept of an instance unit is used to provide users
with resources in a cost-efficient manner. There are many
different cloud computing providers and each offers different
layers of services. This paper focuses on Infrastructure-as-a-
Service (IaaS) platforms that allow clients access to massive
computational resources in the form of instances [4–7].

Generally, cloud computing resources use reliable on-
demand instances. On-demand instances allow the user
to pay for computing capacity by hour, with no long-term

commitments. This frees users from the costs and com-
plexities of planning, purchasing, and maintaining hardware
and transforms what are usually large fixed costs into much
smaller variable costs [1]. However, on-demand instance
may incur upper cost than other instances such as reserved
instance and spot instance. We focus on spot instances
in unreliable environment. For such a reason, if you have
time flexibility for executing applications, spot instances can
significantly decrease your Amazon EC2 costs [8, 9]. For task
completion, therefore, spot instances may incur lower cost
than on-demand instances.

The spot instance is configured by spot market-based
cloud environment. In the spot instance environment, varia-
tions of spot prices are dependent on the supply and demand
of spot instances. The environment affects the successful
completion or failure of tasks depending on the variation of
spot prices. Spot prices have a market structure and follow
the law of demand and supply. Therefore, cloud services
(AmazonEC2) canprovide a spot instancewhen a user’s bid is
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Figure 1: Price history of EC2’s spot instances.

higher than the current spot price. Further, a running
instance stops when a user’s bid becomes less than or equal
to the current spot price. After a running instance stops, it
restarts when a user’s bid becomes greater than the current
spot price [10–12].

In particular, the scientific application makes the cur-
rent common of workflow. However, the spot instance-
based cloud computing takes various performances. In spot
instance, an available execution time depends on a spot price.
The spot price changes periodically based on user’s demand
and supply. The completion time for the same amount of a
task varies according to the performance of an instance. In
particular, the failure time of each instance differs according
to the user’s bid and the performance in an instance. There-
fore, we solve the problem that a completion time of a task in
an instance increases when a failure occurs. For an efficient
execution of a task, the task is divided into subtasks on various
types of available instances. We analyze information of the
task and the instance from price history. We estimate the
size of task and the information of an available instance from
the analyzed data. We create workflow using each available
instance and the size of a task. As a consequence, we propose

the scheduling scheme using workflow to solve job execu-
tion problem and considering task processing rate. And we
execute user’s job at the boundary of selected instances and
expand the suggested user budget.

2. Background and Related Works

In this section, we begin by describing the workflow model
focusing on spot instances. Firstly, we explain the background
of spot instances in cloud environments. In the spot instances
environment [8, 9], there are numerous studies on fault
tolerance [10–12] and workflow scheduling [13, 14].

2.1. Spot Instances. Amazon EC2 offers the IaaS instances in
three different ways with different price, reliability, and vari-
ous performances of instances. Those are reserved instances,
on-demand instances, and spot instances. In case of reserved
instances, a user pays a yearly fee and receives a discount on
hourly rates. And, in case of on-demand instances, a user pays
the fee on hourly rate. In spot instances, a user determines
the user’s bid and spot price decides spot market based on the
user’s demand and supply.Our scheduling focuses on offering
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services at the boundary of spot instances. Spot instances
give an unreliable environment compared to reserved and on-
demand instances. However, spot instances can significantly
decrease user’s costs compared to other instances. The spot
price in spot instance is based on market structure and law
of demand and supply.Therefore, cloud service can provide a
spot instance when a user’s bid is higher than the current spot
price. If the user’s bid exceeds the current market price, the
user runs the instance. However, if the market price exceeds
the user’s bid, the instance is terminated and the partial
hours are not charged. And the spot system immediately
stops the spot instance without any notice to the user. After
a running instance stops, the instance restarts when a user’s
bid is greater than the current spot price. An example of
spot history is shown in Figure 1. This figure shows examples

of fluctuations of spot price for standard instance (m1-small
and m1-large) and high-CPU instance (c1-medium and c1-
xlarge) during 7 days in October 2010 [15].

2.2. Fault Tolerance. On the fault tolerance side, two similar
studies (hour-boundary checkpointing [10] and rising edge-
driven checkpointing [11]) proposed enforcing fault tolerance
in cloud computing with spot instance. Based on the actual
price history of EC2 spot instances, they compared several
adaptive checkpointing schemes in terms of monetary costs
and job execution time. In hour-boundary checkpointing, the
checkpointing operation is performed in the hour boundary,
and a user pays the biding price on an hourly basis. In
rising edge-driven checkpointing, checkpointing operation is
performed when the price of the spot instance is raised and
the price is less than the user’s bid. However, two schemes
have problems that the costs and task completion time are
increased due to increase of the number of checkpoints. To
solve these problems, in our previous study [12], we pro-
posed the checkpointing scheme using checkpoint thresholds
based on rising-driven checkpointing. The checkpointing is
basically performed using two thresholds, price and time,
based on the expected execution time according to the price
history.Therefore, we propose a workflow system to apply the
previous proposed checkpointing.

2.3. Workflow Scheduling. A workflow is a model that rep-
resents complex problems with structures such as directed
acyclic graphs (DAG). Workflow scheduling is a kind of
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Figure 4: The recalculation operation of the assigned task.

global task scheduling as it focuses onmapping andmanaging
the execution of interdependent tasks on shared resources.
However, the existing workflow schedulingmethods have the
limited scalability and are based on centralized scheduling
algorithm. Consequently, these methods are not suitable
for spot instance-based cloud computing. In spot instance,
the job execution has to consider available time and cost
of an instance. Fully decentralized workflow scheduling
system determines the instance to use the chemistry-inspired
model in community cloud platform [13]. A throughput
maximization strategy is designed for transaction-intensive
workflow scheduling that does not support multiple work-
flows [14]. Our proposed scheduling guarantees an equal
task distribution to available instances in spot instance-based
cloud computing. And the scheduling method performs
redistribution of the tasks based on task processing rate.

3. Proposed Workflow System

3.1. System Architecture. Our proposed scheme is expanded
from our previous work [12] and includes a workflow
scheduling algorithm. Figure 2(a) presents the relation of
workflows and instances and Figure 2(b) shows the constitu-
tion of coordinator andmanager. Figure 2 illustrates the roles
of the instance information manager, the workflow manager,
and the resource scheduler. The instance information man-
ager obtains information for the job allocation and resource
management.The information includes VM specifications in
each instance and the execution-related information such as
the execution costs, execution completion time, and failure
time. The execution-related information is calculated by
using the selected VM based on spot history. The work-
flow manager and resource scheduler extract the needed
execution-related information from the instance information
manager. Frist, theworkflowmanager generates theworkflow
for the requested job.The generated workflow determines the
task size according to the VM performance, the execution
time and costs, and the failure time when the selected
instance is used. Secondly, the resource scheduler manages
the resource and allocates the task to handle the job. Resource
and task managements are needed in order to reallocate tasks
when the resource cannot get the information for the task and
when the task has a fault during execution.

3.2. Workflow Scheduling Technique considering Task Pro-
cessing Rate. The scheduling scheme is depicted in Figure 3.

The instances 𝐼
𝑖
, 𝐼
𝑡
, and 𝐼

𝑘
mean high, medium, and low

performance, respectively. The instance 𝐼
𝑘
belongs to a

positive group and the other two instances (𝐼
𝑖
, 𝐼
𝑗
) belong

to a negative group. The scheduler distributes a task size
to allocate available instances and considers performance of
instances. Task size recalculation points divide the fourth
quarter based on the expected task execution time and
recalculate each quarter except for the last quarter. The task
size rate is determined based on the average of task execution
time of each instance within the recalculated point. And the
modified task size in each instance is allocated to consider the
task size rate.

Figure 4 shows the recalculation point of the task size
from the 𝑃

1
position in Figure 3. In Figure 4, we assume

that the processing rate of instances is proportional to the
performance of instances. The left side of Figure 4, “before
recalculation,” represents the tasks assigned to each instance.
The right side, “after recalculation with relocation,” shows the
result of task migration based on the average task execution
time in each instance. After a recalculation operation, we
perform the rearrangement of tasks. The rearrangement
method sorts tasks in increasing order of their indices.

To design the above model, our proposed scheme uses
the workflow in spot instance and its purpose is to minimize
job processing time within the suggested cost of user. The
task size is determined by considering the availability and
performance of each instance in order to minimize the job
processing time.The available time is estimated by the execu-
tion time and cost using the price history of spot instances to
improve the performance and stability of task processing.The
estimated data is determined to assign the amount of tasks to
each instance. Our proposed scheme reduces the out-of-bid
situation and improves the job execution time. However, total
cost is higher than when not using workflow.

Our task distribution method determines the task size
in order to allocate a task to a selected instance. Based on
a compute-unit and an available state, the task size of an
instance 𝐼

𝑖
(𝑇
𝐼𝑖
) is calculated as follows:

𝑇
𝐼𝑖
= (

𝑈
𝐼𝑖
× 𝐴
𝐼𝑖

∑
𝑁

𝑖=1
(𝑈
𝐼𝑖
× 𝐴
𝐼𝑖
)

) ×
1

𝑈
𝐼𝑖

× 𝑇request × 𝑈baseline, (1)

where 𝑇request represents the total size of tasks required for
executing a user request. In an instance 𝐼

𝑖
, 𝑈
𝐼𝑖
and 𝐴

𝐼𝑖
rep-

resent the compute-unit and the available state, respectively.
The available state 𝐴

𝐼𝑖
can be either 0 (unavailable) or 1

(available).
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(1) Boolean S flag = false // a flag representing occurrence of a task execution
(2) while (search user’s job) do
(3) if (require job execution by the user) then
(4) take the cost and total execution time by the user;
(5) S flag = true;
(6) end if
(7) if (S flag) then
(8) invoke initial workflow ( ); // thread function
(9) while (task execution does not finish) do
(10) if (meet the recalculation point by instance) then
(11) invoke recalculation workflow ( ); // thread function
(12) end if
(13) end while
(14) end if
(15) end while

Algorithm 1: Workflow scheduling algorithm.

(1)Thread Function initial workflow ( ) begin
(2) forall instance 𝐼

𝑖
∈ Ins do

(3) retrieve an instance information to meet the user’s requirement in an
instance 𝐼

𝑖
;

(4) analyze an available execution time and cost in an instance 𝐼
𝑖
;

(5) store the analyzed available instance to a queueinstance;
(6) end forall
(7) calculate on priority list for the priority job allocation;
(8) forall instance 𝐼

𝑖
∈ queueinstance do

(9) allocate tasks to the instance 𝐼
𝑖
;

(10) end forall
(11) endThread Function
(12)Thread Function recalculation workflow ( ) begin
(13) forall instance 𝐼

𝑖
∈ Ins do

(14) retrieve the information 𝑇𝐼𝑖rate to an instance 𝐼
𝑖
;

(15) calculate the modified task size;
(16) end forall
(17) endThread Function

Algorithm 2: Workflow recalculation function.

We use the instance rate 𝑇𝐼𝑖rate for determining the criteria
to divide groups. 𝑇𝐼𝑖rate represents the unit taken for the
processing of a task size in the instance 𝐼

𝑖
. Consider

𝑇
𝐼𝑖

rate =
𝑇
𝐼𝑖

execution + 𝑇
𝐼𝑖

failure

𝑇
𝐼𝑖

execution

, (2)

where 𝑇𝐼𝑖executionand 𝑇
𝐼𝑖

failure represent the task execution time
and the task failure time, respectively.

And we define the avg to classify groups. The avg is the
average of available instances such as 𝑇avgrate and 𝑇avg which
represent the average of the 𝑇𝐼𝑖rate and 𝑇

𝐼𝑖
, respectively. The

set of instances is classified into two groups, positive and
negative, based on 𝑇avgrate. The positive group 𝐺

𝑃
is the set of

instances with 𝑇𝐼𝑖rate greater than 𝑇
avg
rate. Consider

𝐺
𝑃
= {𝐼
𝑖
𝑇
𝐼𝑖

rate ≥ 𝑇
avg
rate, 1 ≤ 𝑖 ≤ 𝑁} . (3)

We calculate the task size to transfer from instance 𝐼
𝑖

(𝑇𝑟
𝐼𝑖
) in 𝐺

𝑃
as follows:

𝑇𝑟
𝐼𝑖
=

[(𝑇
𝐼𝐼
− 𝑇
𝐼𝑖

execution) × 𝐼
𝐼𝑖

rate − (𝑇avg − 𝑇
avg
execution) × 𝐼

avg
rate]

𝐼
𝐼𝑖

rate
,

1 ≤ 𝑖 ≤ 𝑁.

(4)

In group 𝐺
𝑃
, the task size of each instance 𝐼

𝑖
is given as

𝑇
󸀠

𝐼𝑖∈𝐺𝑃
. We are able to get 𝑇󸀠

𝐼𝑖∈𝐺𝑃
by considering 𝑇𝑟

𝐼𝑖
after the

transfer operation:

𝑇
󸀠

𝐼𝑖∈𝐺𝑃
= 𝑇
𝐼𝑖∈𝐺𝑃
− 𝑇𝑟
𝐼𝑖
, 1 ≤ 𝑖 ≤ 𝑁. (5)

The negative group 𝐺
𝑁
is the set of instances 𝐼

𝑖
with 𝑇𝐼𝑖rate

less than 𝑇avgrate. Consider

𝐺
𝑁
= {𝐼
𝑖
𝑇
𝐼𝑖

𝑟𝑎𝑡𝑒
< 𝑇

base
rate , 1 ≤ 𝑖 ≤ 𝑁} . (6)
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Table 1: Information of resource types.

Instance type
name

Compute
unit

Virtual
cores

Spot price
min

Spot price
average

Spot price
max

m1.small
(Standard) 1 EC2 1 core

(1 EC2) $0.038 $0.040 $0.053

m1.large
(Standard) 4 EC2 2 cores

(2 EC2) $0.152 $0.160 $0.168

m1,xlarge
(Standard) 8 EC2 4 cores

(2 EC2) $0.076 $0.080 $0.084

c1.medium
(High-CPU) 5 EC2 2 cores

(2.5 EC2) $0.304 $0.323 $1.52

c1.xlarge
(High-CPU) 20 EC2 8 cores

(2.5 EC2) $0.532 $0.561 $0.588

m2.xlarge
(High-Memory) 6.5 EC2 2 cores

(3.25 EC2) $0.532 $0.561 $0.588

m2.2xlarge
(High-Memory) 13 EC2 4 cores

(3.25 EC2) $0.532 $0.561 $0.588

m2.4xlarge
(High-Memory) 26 EC2 8 cores

(3.25 EC2) $1.064 $1.22 $1.176

Table 2: Parameters and values for simulation.

Simulation
parameter

Task time
interval Baseline Distribution

time
Merge
time

Checkpoint
time

Recovery
time

Value 43,200 (s) m1.xlarge 300 (s) 300 (s) 300 (s) 300 (s)

The tasks are allocated according to the instance perfor-
mance𝑈

𝐼𝑖
.The task size to receive𝑅

𝐼𝑖
is allocated according to

the task size of each instance 𝐼
𝑖
. In the group𝐺

𝑁
, the task size

of each instance is given as𝑇󸀠
𝐼𝑖∈𝐺𝑁

. After the receive operation,
𝑅
𝐼𝑖
is added to 𝑇

𝐼𝑖∈𝐺𝑁
. Consider

𝑅
𝐼𝑖
=

𝑈
𝐼𝑖

∑
𝑖∈𝐺𝑁
𝑈
𝐼𝑖

× ∑

𝑖∈𝐺𝑃

(𝑇𝑟
𝐼𝑖
× 𝑈
𝐼𝑖
) ×
1

𝑈
𝐼𝑖

,

1 ≤ 𝑖 ≤ 𝑁,

𝑇
󸀠

𝐼𝑖∈𝐺𝑁
= 𝑇
𝐼𝑖∈𝐺𝑁
+ 𝑅
𝐼𝑖
, 1 ≤ 𝑖 ≤ 𝑁.

(7)

We propose a workflow scheduling algorithm based on
the above equations. Algorithms 1 and 2 show the workflow
scheduling algorithm and the workflow recalculation func-
tion, respectively.

4. Performance Evaluation

The simulations were conducted using the history data
obtained from Amazon EC2 spot instances [15]. The history
data before 10-01-2010 was used to extract the expected
execution time and failure occurrence probability for our
checkpointing scheme. The applicability of our scheme was
tested using the history data after 10-01-2010.

In the simulations, one type of spot instance was applied
to show the effect of an analysis—task time—on the per-
formance. Table 1 shows various resource types used in
Amazon EC2. In this table, resource types comprise a number
of different instance types. First, standard instances offer

a basic resource type. Second, high-CPU instances offer
more compute-units than other resources and can be used
for compute-intensive applications. Finally, high-memory
instances offer more memory capacity than other resources
and can be used for high-throughput applications, including
database and memory caching applications. Under the sim-
ulation environments, we compare the performance of our
proposed scheme with that of the existing schemes without
distributions of tasks in terms of various analyses according
to the task time.

Table 1 shows various information of resource type in
each instance and Table 2 shows the parameters and values
for simulation. The information of spot price is extracted
from 11-30-2009 to 01-23-2011 in spot history. The user’s bid
is taken by the spot price average from information of spot
price. The task size is decided by compute-unit rate based on
baseline. Initially, the baseline denotes an instance m1.xlarge.
For example, the task size of an instancem1.small is calculated
by the following:

𝑇m1.small =
𝑈m1.xlarge

𝑈m1.small
× 𝑇original task. (8)

4.1. Comparison Results of Each Instance before Applying
Workflow. Figure 5 shows the simulation results about
each instance. We consider performance condition of each
instance. Each instance sets user’s bid to take the spot price
average in Table 2. Figure 5 presents the execution time and
costs according to various instances types. The instance
with high performance reduces the execution time but
spends higher cost than the instance with low performance.
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Figure 5: Simulation result in each instance.

As, in Figure 5(a), the total execution time increases,
Figure 5(c) describes that the failure time increases.
Figure 5(d) shows the rollback time in each instance.
Rollback time is the time interval between a failure
occurrence time and the last checkpoint time.

4.2. Comparison Results after Applying Workflow. Figure 6
shows the simulation results about the task distribution.
Figure 6(a) shows the total execution time for each instance
and Total. In the figures, Total

𝑇
denotes the total time taken

for distributing andmerging tasks. Total
𝐶
denotes the sum of

costs of task execution in each instance. The total execution
time of the Total

𝑇
achieves performance improvements in

terms of an average execution time of 81.47%over the shortest
execution time in each task time interval. In Figure 6(b), the
cost in our scheme increases an average of $11.64 compared

to an instance m1.small and reduces an average of $32.87
compared to an instance m2.4xlarge. A failure time of
Figure 6(c) and a rollback time of Figure 6(d) are smaller than
those of Figures 5(c) and 5(d).

Figure 7 shows the execution results of workflowbased on
the task processing rate after applying our proposed scheme.
Figures 6(a) and 7(a) show that the total execution time is
reduced by an average of 18.8% after applying our scheme
compared to not applying it. Figures 6(c) and 7(c) show
that the failure time after applying our proposed scheme was
increased by 6.68% compared to before applying it. However,
in Figures 6(d) and 7(d), the rollback time after applying our
proposed scheme showed an average performance improve-
ment of 4.3% when compared to the rollback time without
applying it.The rollback time is calculated froma failure point
to the last checkpoint time. Figures 6(b) and 7(b) show that
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Figure 6: Simulation result in task distribution.

the total costs after applying our scheme decreased by an
average of $0.37 when compared to the cost before applying
it. There are two facts deduced from these results. One is the
increase of failure time.The other is the improvement of total
execution time through an efficient task distribution. And the
task execution loss was reducedwhen the out-of-bid situation
occurred. In addition, we compare experiments to consider
the execution time and costs.

Figure 8 shows the combined performancemetric and the
product of the total task execution time and cost. According
to the task time interval, there is a little difference between the
basic and the applying schemes, compared to each instance.
In the figure, the basic scheme denotes the workflow product
that applies only task distribution without considering a task
processing rate. The applying scheme denotes the workflow
product considering the task processing rate. The product
of the basic scheme achieves performance improvements

in the average combined metric of 87.71% over the average
product instance in each task time interval. The applying
scheme achieves performance improvements in the average
combined metric of 12.76%, compared to the basic scheme.

5. Conclusion

In this paper, we proposed a workflow scheduling tech-
nique considering task processing rate in unreliable cloud
computing environments. The workflow scheduling scheme
recalculates the task size based on task processing rate within
the recalculated point. In addition, our previously proposed
checkpoint scheme takes a checkpointing based on two kinds
of thresholds: price and time. Our scheme reduces a failure
time and an absolute time through the checkpoint scheme.
The rollback time of our scheme can be less than that of
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Figure 7: Simulation result in task distribution considering task processing rate.
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Figure 8: Comparison of combined metrics (total task execution time and cost).
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the existing scheme without workflow because our scheme
adaptively performs task distribution operation according to
available instances. The simulation results showed that the
average execution time in our scheme was improved by 17.8%
after applying our proposed scheme as compared to before
applying it. And our proposed scheme represented approxi-
mately the same cost as compared to before applying it. Other
simulation results reveal that, compared to various instance
types, our scheme achieves performance improvements in
terms of an average combinedmetric of 12.76%overworkflow
scheme without considering task processing rate.
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