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We study the lubrication process with incompressible fluid taking into account the dependence of the viscosity on the pressure.
Assuming that the viscosity-pressure relation is given by the well-known Barus law, we derive an effective model using asymptotic
analysis with respect to the film thickness.The key idea is to conveniently transform the governing system and then apply two-scale
expansion technique.

1. Introduction

Fluid film bearings are machine elements usually studied
in the broader context of tribology. Simply speaking, they
consist of two surfaces in relative motion, separated by a
thin fluid film, that lubricates the device and minimizes the
friction and, consequently, the wear of the device. In our case,
the fluid is an incompressible liquid and the two surfaces
are rigid. Such elements are very important in mechanical
engineering since they provide the reliability of the system
and are crucial factor in limiting the dissipation of energy,
that is, increasing the efficiency. If a fluid film bearing is well
designed, the wear is not an issue, since two surfaces are
completely separated by lubricant. It is therefore important
to understand the behavior of the fluid film in the bearing.
For a systematic treatment of the fundamentals of fluid film
lubrication and fluid film bearings we refer the reader to [1].

The foundations of the theoretical treatment of lubrica-
tion have been laid already by Rayleigh and Stokes and in
particular by the famous work of Reynolds [2]. Assuming
that the viscosity is constant and using the thickness as a
small parameter, a simple asymptotic approximation can be
easily derived providing a well-known Reynolds equation for
the pressure of the fluid. However, if the pressures generated
in the lubrication flow exceed the range where the viscosity
can be considered independent of the pressure, the effects of

pressure-dependent viscosity should be taken into account.
As reported by numerous researchers (see, e.g., [3–6]), for
technological applications in elastohydrodynamic lubrication
and in journal bearing applications, where the lubricant is
forced through a very narrow gap leading to very high pres-
sures, it is essential to include the variation of the viscosity
with pressure. (When considering fluid film lubrication of
highly loaded contacts, it is necessary to consider both the
viscosity-pressure dependence and the elastic deformation
of the surfaces. This case is essential for elastohydrodynamic
lubrication. In this paper, for simplicity, we will address
the lubrication regime appearing in applications that exhibit
pressures high enough to effectively change the lubricant’s
viscosity, but not so high to initiate significant elastic defor-
mation in the bearingmaterial. Such regime is known as rigid-
piezoviscous regime.)

Several models have been used to describe the viscosity-
pressure relation. Barus [7] proposed an exponential law for
the viscosity in the form

𝜇 (𝑝) = 𝜇
0
𝑒
𝛼𝑝

. (1)

Here 𝜇
0
represents viscosity at atmospheric pressure while

𝛼 > 0 is the pressure-viscosity coefficient. For lubricants, the
coefficient 𝛼 typically varies from 10 to 70MPa−1 (see, e.g.,
[8]). It is important to emphasize that Barus formula (1) has
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been extensively used in the engineering practice, sometimes
combined with temperature dependence.

The exponential law (1) rules out the possibility of
deriving the analytical solutions (even for simple flows) and,
thus, it has been avoided in theoretical analyses presented
in the literature. The other reason lies in the fact that not
much has been done in proving the well-posedness of the
corresponding boundary-value problems in case of viscosity
law (1). Indeed, the existence results for incompressible fluid
flows with pressure-dependent viscosity have been provided
only under certain technical assumptions on the viscosity
which are not fulfilled by the Barus formula. We refer
the reader to [9–11]. Recently, however, the first author of
the present paper made significant progress on the subject
under very general assumption on 𝜇(𝑝) satisfied by (1) and
other empiric laws. First, in [12] he proved the existence
and uniqueness of the solution for the stationary Reynolds
equation assuming only that the function 𝑝 󳨃→ 𝜇(𝑝) is of
class 𝐶

1 and 𝜇 > 0 for any value of 𝑝. After that, in [13], he
managed to prove the well-posedness of the stationary Stokes
system (describing the real physical problem) assuming that
the growth of the function 𝑝 󳨃→ 𝜇(𝑝) and its derivative is at
most exponential:

0 < 𝜇 (𝑝) ≤ 𝐶
1
𝑒
𝛼𝑝

, 0 ≤ 𝜇
󸀠

(𝑝) ≤ 𝐶
2
𝑒
𝛼𝑝

,

(𝐶
1
, 𝐶
2

= const. > 0) .

(2)

It is shown that the corresponding Dirichlet problem has a
solution, which is unique under some technical condition
which does not rule out the Barus formula. (It is well known
that in classical Stokes (or Navier-Stokes) system the pressure
is determined only up to constant. To assure uniqueness we
need to impose some additional condition, like prescribing
the value of its integral over a specified domain. According to
[13], it turns out that similar, slightlymore technical condition
is also needed here to fix the pressure.) For the sake of reader’s
convenience, we present the key steps of the existence and
uniqueness proof in the appendix of this paper.

The result from [13] enables us to investigate the asymp-
totic behavior of the solution of the lubrication problem with
viscosity obeying (1) and that is the goal of this paper. We
study the situation appearing naturally in fluid film bearings:
two rigid surfaces being in relative motion are separated by a
thin layer of fluid; lower surface is assumed to be perfectly
smooth, while the upper one is rough with roughness
described by some function ℎ. Starting from stationary Stokes
system with boundary conditions applicable to lubrication
flowproblem,we perform a rigorous asymptotic analysis with
respect to the film thickness. The key idea is to conveniently
transform the original problem into the Stokes system with
small nonlinear perturbation. As a result, we obtain the
effective pressure in the form of the explicit formula clearly
acknowledging the viscosity-pressure dependence. To our
knowledge, such result cannot be found in the literature and
we believe that it could be instrumental for improving the
known engineering practice.
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Figure 1: The domain.

2. Description of the Problem

We consider an incompressible fluid flow in a three-
dimensional thin domain Ω

𝜀 defined by

Ω
𝜀

= {𝑥 = (𝑥
󸀠
, 𝑥
3
) ∈ R3 : 𝑥

󸀠
∈ O, 0 < 𝑥

3
< 𝜀ℎ (𝑥

󸀠
)} . (3)

HereO ⊂ R2 is a bounded domain and ℎ : O → ⟨0, +∞⟩ is a
given smooth positive function such that 0 < ℎ

0
≤ ℎ(𝑥

󸀠
) ≤ ℎ
1

while 𝜀 ≪ 1 is a small parameter representing the domain
thickness.

We denote by Γ
𝜀

0
, Γ
𝜀

1
, and Γ

𝜀

ℓ
the lower, the upper, and the

lateral boundary of Ω
𝜀 (see Figure 1); namely,

Γ
𝜀

0
= {(𝑥
󸀠
, 𝑥
3
) ∈ R3 : 𝑥

󸀠
∈ O, 𝑥

3
= 0} ,

Γ
𝜀

1
= {(𝑥
󸀠
, 𝑥
3
) ∈ R3 : 𝑥

󸀠
∈ O, 𝑥

3
= 𝜀ℎ (𝑥

󸀠
)} ,

Γ
𝜀

ℓ
= {(𝑥
󸀠
, 𝑥
3
) ∈ R3 : 𝑥

󸀠
∈ 𝜕O, 0 < 𝑥

3
< 𝜀ℎ (𝑥

󸀠
)} .

(4)

In view of the application we want to model, we can assume a
small Reynolds number and neglect the inertial terms in the
governing equations. Thus, we assume that the flow in Ω

𝜀 is
governed by the following system:

− div [2𝜇 (𝑝
𝜀
)D (u𝜀)] + ∇𝑝

𝜀
= 0 in Ω

𝜀
,

div u𝜀 = 0 in Ω
𝜀
,

(5)

where D(u𝜀) = (1/2)[∇u𝜀 + (∇u𝜀)𝑇]. The vector field u𝜀
denotes the fluid velocity whereas the pressure is given by
the scalar field 𝑝

𝜀. Throughout the text, the superscript 𝜀 is
added in order to stress the dependence of the solution on
the small parameter. We assume that the pressure-viscosity
dependence is given by the Barus law:

𝜇 (𝜉) = 𝜇
0
𝑒
𝛼𝜉

, 𝜇
0
, 𝛼 = const. > 0. (6)
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The choice of boundary conditions highly depends on the
devices to be considered. Here we want to study the lubri-
cation process where two rigid surfaces are in relative motion
and are separated by a thin layer of fluid.Thus, we impose the
following boundary conditions:

u𝜀 = 0 on Γ
𝜀

1
, u𝜀 = w

0
on Γ
𝜀

0
,

u𝜀 × n = 0 on Γ
𝜀

ℓ
, 𝑝

𝜀
= 𝑝
0

on Γ
𝜀

ℓ
,

(7)

for given outer pressure𝑝
0
and constant velocityw

0
of relative

motion of two surfaces. Note that w
0

⋅ k = 0 implying
𝑢
𝜀

3
|
𝑥3=0

= 0. Throughout the text, (i, j, k) will denote the
standard Cartesian basis. The unit outward normal on Γ

𝜀

ℓ
is

denoted by n.
As mentioned in the Introduction section, the well-

posedness of the above problem has been recently established
by the first author. For reader’s convenience and in order to
understand the concept of the solution and its properties, we
provide the essential parts of the existence and uniqueness
proof in the appendix.

3. Asymptotic Analysis

3.1. Transformation Procedure. Our main goal is to find an
effective law describing the asymptotic behavior of the flow
governed by (5)–(7). Following [14], first we rewrite the gov-
erning system by introducing the appropriate transformation
for the pressure. Taking into account (6), the momentum
equation can be written as

0 = − div [2𝜇
0
𝑒
𝛼𝑝
𝜀

D (u𝜀)] + ∇𝑝
𝜀

= −𝜇
0
𝑒
𝛼𝑝
𝜀

Δu𝜀 − 2𝜇
0
𝛼𝑒
𝛼𝑝
𝜀

D (u𝜀) ∇𝑝
𝜀

+ ∇𝑝
𝜀
.

(8)

Dividing the above equation by 𝑒
𝛼𝑝
𝜀

we obtain

−𝜇
0
Δu𝜀 + 𝑒

−𝛼𝑝
𝜀

∇𝑝
𝜀

= 2𝜇
0
𝛼D (u𝜀) ∇𝑝

𝜀
. (9)

Thatmotivates us to introduce a new function, denoted by 𝑞
𝜀,

such that

𝑒
−𝛼𝑝
𝜀

∇𝑝
𝜀

= ∇𝑞
𝜀
. (10)

Obviously, there exists a continuum of such functions given
by

𝑞
𝜀

=
1

𝛼
(𝑒
−𝛼𝑞0 − 𝑒

−𝛼𝑝
𝜀

) , (11)

with 𝑞
0

∈ R being arbitrary. The liberty in choice of
the parameter 𝑞

0
is crucial for further asymptotic analysis.

Noticing that

∇𝑝
𝜀

= 𝑒
𝛼𝑝
𝜀

∇𝑞
𝜀

=
1

𝑒−𝛼𝑞0 − 𝛼𝑞𝜀
∇𝑞
𝜀
, (12)

equation (9) transforms into

−𝜇
0
Δu𝜀 + ∇𝑞

𝜀
=

2𝜇
0
𝛼

𝑒−𝛼𝑞0 − 𝛼𝑞𝜀
D (u𝜀) ∇𝑞

𝜀
. (13)

As a result, we arrive at the following transformed system
satisfied by (u𝜀, 𝑞

𝜀
):

−𝜇
0
Δu𝜀 + ∇𝑞

𝜀
=

2𝜇
0
𝛼

𝑒−𝛼𝑞0 − 𝛼𝑞𝜀
D (u𝜀) ∇𝑞

𝜀 inΩ
𝜀
, (14)

div u𝜀 = 0 inΩ
𝜀
, (15)

u𝜀 = 0 on Γ
𝜀

1
, u𝜀 = w

0
on Γ
𝜀

0
, (16)

u𝜀 × n = 0 on Γ
𝜀

ℓ
, (17)

𝑞
𝜀

=
1

𝛼
(𝑒
−𝛼𝑞0 − 𝑒

−𝛼𝑝0) on Γ
𝜀

ℓ
. (18)

Note that we obtained a nonlinear Stokes-like system, with
nonlinearity appearing on the right-hand side in (14) that
can be made as small as we need. Indeed, by choosing 𝑞

0

small enough (such assumption is entirely consistent with the
existence and uniqueness result provided in the appendix)
(i.e., 𝑞

0
< 0 and |𝑞

0
| large enough), we have

lim
𝑞0→−∞

2𝜇
0
𝛼

𝑒−𝛼𝑞0 − 𝛼𝑞𝜀
= 0. (19)

Consequently, we will be able to control the nonlinear term
(2𝜇
0
𝛼/(𝑒
−𝛼𝑞0 − 𝛼𝑞

𝜀
))D(u𝜀)∇𝑞

𝜀 in a way that it does not
contribute to themacroscopicmodel for transformed pressure
𝑞
𝜀.

Remark 1. It is important to emphasize that, by choosing 𝑞
0

large and negative, the pressure 𝑞
𝜀

= (1/𝛼)(𝑒
−𝛼𝑞0 − 𝑒

−𝛼𝑝
𝜀

)

becomes dominated by the large constant term. However,
that is only the transformed pressure (i.e., the pressure
satisfying the transformedproblem), not the original one.The
original pressure 𝑝

𝜀, satisfying the governing problem, will
remain in starting, physically relevant, range, no matter what
value we choose for 𝑞

0
. We simply choose the value of the

parameter 𝑞
0
, construct the asymptotic approximation for 𝑞

𝜀

(satisfying transformed Stokes-like problem (14)–(18)), and
then reconstruct the approximation for the original pressure
from (11). In fact, it can be easily shown by the formal
computation that the effective pressure obtained in such way
will not depend on 𝑞

0
at all. In view of that, we can conclude

that 𝑞
0
can be seen simply as an auxiliary parameter, and, as

such, it has no particular physicalmeaning. Choosing 𝑞
0
large

andnegative is, indeed, crucial for further asymptotic analysis
(coming after the transformation procedure), but it produces
no additional constraint to the viscosity law and does not
affect the applicability of the main result.

3.2. Approximation for the Transformed Problem. There are
several methods that enable us to study the processes in thin
domains and to find the asymptotic behavior of the fluid flow.
The most sophisticated and precise approach is based on the
fine asymptotic analysis with respect to the small parameter
𝜀, representing in our case the film thickness. Such method
was first applied in the 50s for deriving, formally, lower-
dimensional approximations mostly in theory of lubrication
(see [15–17] and the references therein). The method can be
roughly described as follows.
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(1) The problem originally posed in thin domain is
rewritten on domain with unit thickness by introduc-
ing new, dilated (fast) variable. To accomplish that,
the differential operator has to be replaced with the
new one, containing the derivatives with respect to
the fast variable. Consequently, the negative powers
of the domain thickness appear, singularly perturbing
the operator.

(2) On such, rescaled domain independent of the pertur-
bation parameter 𝜀, one seeks for the unknowns in the
form of the asymptotic expansion in powers of 𝜀.

(3) Substituting the expansions in the governing equa-
tions and collecting equal powers of 𝜀 lead to the
recursive sequence of linear problems yielding the
asymptotic model.

We apply the above method to construct the asymptotic
approximation for our transformed problem. We introduce
the fast variable 𝑦 = 𝑥

3
/𝜀 and in the sequel employ the

following notation for the partial differential operators:

∇
𝑥
󸀠𝜙 =

𝜕𝜙

𝜕𝑥
1

i +
𝜕𝜙

𝜕𝑥
2

j, Δ
𝑥
󸀠 f =

𝜕
2f

𝜕𝑥2
1

+
𝜕
2f

𝜕𝑥2
2

,

div
𝑥
󸀠 f =

𝜕𝑓
1

𝜕𝑥
1

+
𝜕𝑓
2

𝜕𝑥
2

,

(20)

for a scalar function𝜙 and a vector function f = 𝑓
1
i+𝑓
2
j+𝑓
3
k.

We seek for an asymptotic expansion of the unknowns u𝜀
and 𝑞
𝜀 in the form

u𝜀 = U0 (𝑥
󸀠
, 𝑦) + 𝜀U1 (𝑥

󸀠
, 𝑦) + 𝜀

2U2 (𝑥
󸀠
, 𝑦) + ⋅ ⋅ ⋅ ,

𝑞
𝜀

=
1

𝜀2
𝑄
0

(𝑥
󸀠
, 𝑦) +

1

𝜀
𝑄
1

(𝑥
󸀠
, 𝑦) + 𝑄

2
(𝑥
󸀠
, 𝑦) + ⋅ ⋅ ⋅ .

(21)

The leading powers in the expansions for u𝜀 and 𝑞
𝜀 are

suggested by the a priori estimateswhich can be easily derived
from the correspondingweak formulation.Nowwe substitute
the above expansions into the transformed system (14)–(18)
and collect the termswith equal powers of 𝜀. Due to (19), from
the momentum equation (14) we first deduce

1

𝜀3
:

𝜕𝑄
0

𝜕𝑦
= 0, (22)

implying 𝑄
0

= 𝑄
0
(𝑥
󸀠
). In view of that, the next term from the

momentum equation (14) gives

1

𝜀2
: −𝜇

0

𝜕
2U0

𝜕𝑦2
+ ∇
𝑥
󸀠𝑄
0

+
𝜕𝑄
1

𝜕𝑦
k = 0. (23)

Taking into account the boundary conditions for the velocity
(see (16))

U0 = 0 for𝑦 = ℎ, U0 = w
0

for𝑦 = 0, (24)

we deduce 𝑄
1

= 𝑄
1
(𝑥
󸀠
) and

U0 (𝑥
󸀠
, 𝑦) =

1

2𝜇
0

𝑦 (ℎ (𝑥
󸀠
) − 𝑦) k (𝑥

󸀠
) + (1 −

𝑦

ℎ (𝑥󸀠)
)w
0
,

k = V
1
i + V
2
j.

(25)

Observe that

k + ∇
𝑥
󸀠𝑄
0

= 0. (26)

On the other hand, from the divergence equation (15) we have

1

𝜀
: div

𝑥
󸀠U0 +

𝜕𝑈
1

3

𝜕𝑦
= 0. (27)

Integrating from 0 to ℎ(𝑥
󸀠
) with respect to 𝑦 yields

div
𝑥
󸀠 (∫

ℎ

0

U0𝑑𝑦) = div
𝑥
󸀠 (

ℎ
3

12𝜇
0

k +
ℎ

2
w
0
) = 0. (28)

As a consequence, we obtain the classical Reynolds equation
for 𝑄
0:

div
𝑥
󸀠 (ℎ
3

∇
𝑥
󸀠𝑄
0

) = 6𝜇
0
∇
𝑥
󸀠ℎ ⋅ w
0

in O. (29)

The boundary condition satisfied by 𝑄
0 reads (see (18))

𝑄
0

= 0 on 𝜕O. (30)

Thus, 𝑄
0 is given as the solution of (29) and (30), being a

Dirichlet boundary value problem for linear elliptic equation
of second order. The velocityU0 is then determined straight-
forward from (25) and (26).

3.3. Effective Pressure. So far, we have just constructed an
asymptotic approximation (U0, 𝜀

−2
𝑄
0
) for the transformed

problem (14)–(18). Now, we have to go back to the original
problem and reconstruct the asymptotic solution. In view
of (11), we deduce that the pressure distribution has the
following form:

𝑃
0

(𝑥
󸀠
) =

1

𝛼
ln(

1

𝑒−𝛼𝑞0 − (𝛼/𝜀2) 𝑄0 (𝑥󸀠)
) , 𝑥

󸀠
∈ O, (31)

where 𝑄
0 is given by (29) and (30). The asymptotic approxi-

mation for the velocity reads

u𝜀
0

(𝑥) =
1

2𝜇
0
𝜀2

𝑥
3

(𝜀ℎ (𝑥
󸀠
) − 𝑥
3
) k (𝑥

󸀠
) + (1 −

𝑥
3

𝜀ℎ (𝑥󸀠)
)w
0
,

𝑥 ∈ Ω
𝜀
,

(32)

with k = −∇
𝑥
󸀠𝑄
0.

From the mathematical point of view, we have to ensure
that the effective pressure𝑃

0 is well defined. Namely, employ-
ing classical weak maximum principle combined with the
result from [12], we are going to establish the precise upper
bound for 𝑞

0
ensuring that the obtained effective pressure is

well defined.
From (31) we conclude that the following condition

should be fulfilled:

𝑄
0

(𝑥
󸀠
) <

𝜀
2

𝛼
𝑒
−𝛼𝑞0 . (33)
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If ∇
𝑥
󸀠ℎ ⋅ w

0
< 0, we can simply apply the classical weak

maximum principle on (29) and (30) (see Theorem 8.1. from
[18]) providing that 𝑄

0
(𝑥
󸀠
) ≤ 0. Condition (33) is then

obviously satisfied for any 𝑞
0

∈ R. Note that it is not realistic
to assume that ∇

𝑥
󸀠ℎ ⋅w
0
does not change sign. In that case we

can use the special variant of the maximum principle proved
recently in [12]. It yields (see Theorem 1 in [12])

𝑄
0

(𝑥
󸀠
) ≤ Z, (34)

whereZ = Z(w
0
, ℎ,O, 𝜇

0
) is given by

Z = 6𝜇
0
3
8/5

(
3

2
)

28/5
(2𝜋)
1/4

ℎ
3

0

diamO
󵄨󵄨󵄨󵄨w0

󵄨󵄨󵄨󵄨 |O|
8/5

. (35)

In view of (34), we deduce that (33) will be satisfied if Z <

(𝜀
2
/𝛼)𝑒
−𝛼𝑞0 , that is, for

𝑞
0

<
1

𝛼
ln 𝜀
2

𝛼Z
. (36)

It means that, by choosing 𝑞
0
such that (36) holds, we are

positive that our effective pressure is well defined.

Remark 2. In [19] a two-dimensional plane flow with a
pressure-dependent viscosity obeying Barus law is consid-
ered. An approximate system describing the effective flow is
formally derived. The idea is to write the governing system
in nondimensional form and to estimate the order of mag-
nitude of the unknowns and their derivatives. Under some
additional simplifying assumptions concerning this order
of magnitudes, a corrected Reynolds equation is directly
obtained taking into account the pressure dependence of
the lubricant’s viscosity. Here we employ different approach.
Starting from the original 3D problem, we first construct the
asymptotic approximation of the transformed system (14)–
(18). The transformation procedure is based on the introduc-
tion of new unknown (transformed pressure) satisfying (10).
Motivated by the recent existence result (see the appendix),
we observe that the nonlinear term appearing on the right-
hand side in the transformed system does not contribute
to the macroscopic model leading to a classical Reynolds
equation for the transformed pressure. Original pressure,
explicitly acknowledging the viscosity-pressure dependence,
is then reconstructed using the inverse transformation based
on (11). Both results clearly indicate that, in developing
lubrication approximation associated to rigid-piezoviscous
regime, the pressure dependence of viscosity should be
recognized in the process, not a posteriori.

4. Concluding Remarks

In this section we give additional important remarks regard-
ing the considered problem and its possible generalizations.

(i) Justification by Error Estimate. In the previous section,
we derived an asymptotic model describing the lubrication
process with viscosity obeying Barus formula (6). Though
the derivation was formal, it provides a good platform for
understanding the direct influence of the viscosity-pressure

dependence on the effective flow of the lubricant. From
the strictly mathematical point of view, formally derived
model should be rigorously justified by proving some kind
of convergence of the original solution (which we cannot
find) towards the asymptotic one. Our aim here is to evaluate
the difference between those two solutions in the appropriate
norm and to obtain the satisfactory error estimates. By doing
that, we validate our formally derived asymptotic model and
justify its usage. It is important to notice that the domain
Ω
𝜀 is shrinking so that the integral 𝐿

𝑟
(Ω
𝜀
) norms are not

appropriate for the error estimate. Indeed, the convergence of
u𝜀 − u𝜀

0
to zero in 𝐿

𝑟
(Ω
𝜀
) norm does not mean anything since

any 𝐿
∞-bounded function converges to zero in such norm.

Therefore, the appropriate convergence is that on the rescaled
𝜀-independent domain. It is well known (see [20–22]) that
for the Reynolds pressure 𝑄

0 the error of approximation
(expressed in the rescaled𝐿

2 norm) is of order𝑂(√𝜀); namely,

1

√|Ω𝜀|

󵄩󵄩󵄩󵄩󵄩
𝜀
2
𝑞
𝜀

− 𝑄
0󵄩󵄩󵄩󵄩󵄩𝐿2(Ω𝜀)

≤ 𝐶√𝜀, (37)

where |Ω
𝜀
| = 𝑂(√𝜀) and 𝐶 > 0 constant independent of 𝜀. In

our case, due to the continuity of the inverse transformation,
it immediately follows that for 𝑃

0 the error of approximation
is of the same order. For the velocity, we have

1

√|Ω𝜀|

󵄩󵄩󵄩󵄩u
𝜀

− u𝜀
0

󵄩󵄩󵄩󵄩𝐿2(Ω𝜀) ≤ 𝐶√𝜀. (38)

(ii) Correctors for the Transformed Problem. We can continue
with the computation and obtain the corrector for the
Reynolds model (29) and (30) satisfied by the transformed
pressure. More precisely, we can derive second-order model
for (k, 𝑄

0
) in the form of Brinkman-type system, as recently

proposed by the authors in [23]. However, being very similar
to 2D Navier-Stokes system, it prevents us from applying
the above maximum principles in order to deduce that the
effective pressure is well defined (as we did for 𝑃

0). That will
be the subject of our future work.

(iii) General Viscosity-Pressure Relation. Similar approach can
be used to extend the analysis to a case of general viscosity-
pressure dependence such that

0 < 𝜇 (𝜉) ≤ 𝐶
1
𝑒
𝛼𝜉

, 0 ≤ 𝜇
󸀠

(𝜉) ≤ 𝐶
2
𝑒
𝛼𝜉

, (39)

where 𝐶
1
, 𝐶
2
, 𝛼 = const. > 0. The idea is to introduce 𝑞

𝜀 as

𝐵 (𝑝
𝜀
) = ∫

𝑝
𝜀

𝑞0

𝑑𝜉

𝜇 (𝜉)
(40)

andwrite the governing system in terms of the newunknown.
As a consequence, we will obtain a Stokes-like system with
small nonlinear perturbation which can be handled in a
similar manner as presented above. For details we refer the
reader to [14].
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Appendix

The Existence and Uniqueness Result

Let Ω ⊂ R𝑑, 𝑑 = 2, 3, be a bounded smooth domain. We
assume that the boundary is at least of class 𝐶

2. We consider
the following system:

−2 div [𝜇 (𝑝)Du] + ∇𝑝 = 0, div u = 0 in Ω,

u = g on 𝜕Ω.

(A.1)

We assume that the function g satisfies the following regular-
ity and compatibility conditions:

g ∈ 𝑊
2−1/𝛽,𝛽

(Ω)
𝑑
, for some 𝛽 > 𝑑,

∫
𝜕Ω

g ⋅ n = 0.

(A.2)

For the dependence of the viscosity on the pressure we
assume that 𝑝 󳨃→ 𝜇(𝑝) is given by the Barus law

𝜇 (𝑝) = 𝜇
0
𝑒
𝛼𝑝

. (A.3)

In the following we prove that the above problem has a
solution, which is unique, under some technical conditions.
In standard Stokes (or Navier-Stokes) system the pressure
is obviously determined only up to a constant, so it is not
unique unless we impose some additional condition, like
prescribing the value of its integral over Ω or prescribing
the value of the pressure in some point of the domain
Ω. That is less obvious here, since the pressure appears in
the viscosity formula. However, it turns out that similar
condition is needed here to fix the pressure. Note that we
prescribe velocity on the whole boundary 𝜕Ω. That is just
to be able to clearly present the main ideas of the existence
and uniqueness proof by avoiding unnecessary notational
confusion. In the governing system (5)–(7) we prescribed
pressure on the lateral part of the boundary in order to
treat the situation naturally arising in the applications. Since
we neglected the inertial term in the momentum equation,
prescribing pressure boundary condition does not represent
a serious obstacle (see, e.g., [24]), so the adaptation of the
presented proof is just technical, but straightforward.

TheoremA.1 (existence result). Let g satisfy (A.2). Assume in
addition that (A.3) holds.Then the problem (A.1) has a solution
(u, 𝑝) ∈ X = 𝑊

2,𝛽
(Ω)
𝑑

× 𝑊
1,𝛽

(Ω).

Before proving the above assertion let us conveniently
transform the governing system. For some 𝜎 ∈ R we define
two mappings. The first one is

𝐵 (𝑝, 𝜎) = ∫

𝑝

𝜎

𝑑𝑠

𝜇 (𝑠)
=

1

𝛼𝜇
0

(𝑒
−𝛼𝜎

− 𝑒
−𝛼𝑝

) . (A.4)

𝐵 is of class 𝐶
1 and the function 𝐵(⋅, 𝜎) : R 󳨃→ R

isstrictly increasing (and thus injective), for any parameter 𝜎.

Furthermore Im𝐵(⋅, 𝜎) = [𝑀
−

𝜎
, 𝑀
+

𝜎
] , where 𝑀

+

𝜎
=

lim
𝑝→+∞

𝐵(𝑝, 𝜎) = 𝑒
−𝛼𝜎

/𝛼𝜇
0
and 𝑀

−

𝜎
= lim

𝑝→+∞
𝐵(𝑝, 𝜎) =

−∞. We can now define the second one as

𝐻 (⋅, 𝜎) = 𝐵
−1

(⋅, 𝜎) 󳨐⇒ 𝐻 (𝑞, 𝜎) =
1

𝛼
ln(

1

𝑒−𝛼𝜎 − 𝛼𝜇
0
𝑞

) .

(A.5)

Thus 𝑞 󳨃→ 𝐻(𝑞, 𝜎) is an inverse of the function 𝑝 󳨃→ 𝐵(𝑞, 𝜎),
while 𝜎 is treated only as a parameter. Obviously 𝐻(⋅, 𝜎) :

[𝑀
−

𝜎
, 𝑀
+

𝜎
] → R is well defined, strictly increasing, and

smooth. Furthermore (𝜕𝐻/𝜕𝑞)(𝑞, 𝜎) = 𝜇(𝑝) = 𝜇(𝐻(𝑞, 𝜎)).
Next we define the function

𝑏 (𝑞, 𝜎) = 𝜇
󸀠

(𝑝) = 𝜇
󸀠

(𝐻 (𝑞, 𝜎)) =
𝛼𝜇

𝑒−𝛼𝜎 − 𝛼𝜇
0
𝑞

(A.6)

that we need in the sequel. It is defined only on [𝑀
−

𝜎
, 𝑀
+

𝜎
] and

continuous. Using the assumptions on 𝜇 it is an easy exercise
to prove the following technical result.

LemmaA.2. Let 𝜇 : R → R satisfy the Barus law (A.3).Then

lim
𝜎→−∞

𝑏 (𝑞, 𝜎) = 0, for any 𝑞 ∈ R. (A.7)

We now define the new unknown

𝑞 = 𝐵 (𝑝, 𝜎) . (A.8)

We can now rewrite our system in terms of that newunknown
and it reads

−Δu + ∇𝑞 = 𝑏 (𝑞, 𝜎)Du∇𝑞, div u = 0 in Ω,

u = g on 𝜕Ω.

(A.9)

Proof of Theorem A.1. The idea is to construct the sequence
(u
𝑛
, 𝑞
𝑛
) by taking u

1
= 0, 𝑞

1
= 0 and for 𝑛 > 1

−Δu
𝑛

+ ∇𝑞
𝑛

= 𝑏 (𝑞
𝑛−1

, 𝜎)Du
𝑛−1

∇𝑞
𝑛−1

in Ω,

div u
𝑛

= 0 in Ω, u
𝑛

= g on 𝜕Ω.

(A.10)

The classical result by Cattabriga [25] implies for any 𝛽 > 𝑑

and any (u
𝑛−1

, 𝑞
𝑛−1

) ∈ 𝑊
2,𝛽

(Ω)
𝑑

× 𝑊
1,𝛽

(Ω) the existence of
such (u

𝑛
, 𝑞
𝑛
) ∈ 𝑊

2,𝛽
(Ω) × 𝑊

1,𝛽
(Ω). Furthermore, for some

𝐶
𝛽

> 0

󵄨󵄨󵄨󵄨u𝑛
󵄨󵄨󵄨󵄨𝑊2,𝛽(Ω) +

󵄨󵄨󵄨󵄨𝑞𝑛
󵄨󵄨󵄨󵄨𝑊1,𝛽(Ω)

≤ 𝐶
𝛽

(
󵄨󵄨󵄨󵄨𝑏 (𝑞
𝑛−1

, 𝜎)Du
𝑛−1

∇𝑞
𝑛−1

󵄨󵄨󵄨󵄨𝐿𝛽(Ω) +
󵄨󵄨󵄨󵄨g

󵄨󵄨󵄨󵄨𝑊2−1/𝛽,𝛽(𝜕Ω)) .

(A.11)

If, for given 𝜆 ∈ R and 𝑥
0

∈ Ω, we impose

𝑞
𝑛

(𝑥
0
) = 𝜆, (A.12)

then the solution is unique. Furthermore, assuming that
󵄨󵄨󵄨󵄨u𝑛−1

󵄨󵄨󵄨󵄨𝑊2,𝛽(Ω) ≤ 𝑀,

󵄨󵄨󵄨󵄨𝑞𝑛−1
󵄨󵄨󵄨󵄨𝑊1,𝛽(Ω) ≤ 𝑀, 𝑞

𝑛−1
(𝑥
0
) = 𝜆

(A.13)
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and denoting 𝐶(𝛽, ∞) as the imbedding constant 𝑊
1,𝛽

(Ω) ⊂

𝐿
∞

(Ω), we obtain
󵄨󵄨󵄨󵄨𝑞𝑛

󵄨󵄨󵄨󵄨𝑊1,𝛽(Ω)

≤ 𝐶
𝛽

(
󵄨󵄨󵄨󵄨𝑏 (𝑞
𝑛−1

, 𝜎)
󵄨󵄨󵄨󵄨𝐿∞(Ω)

󵄨󵄨󵄨󵄨Du
𝑛−1

󵄨󵄨󵄨󵄨𝐿∞(Ω)
󵄨󵄨󵄨󵄨∇𝑞
𝑛−1

󵄨󵄨󵄨󵄨𝐿𝛽(Ω)

+
󵄨󵄨󵄨󵄨g

󵄨󵄨󵄨󵄨𝑊2−1/𝛽,𝛽(𝜕Ω))

≤ 𝐶
𝛽

(𝑀
2
𝐶(𝛽, ∞)

2󵄨󵄨󵄨󵄨𝑏 (𝑞
𝑛−1

, 𝜎)
󵄨󵄨󵄨󵄨𝐿∞(Ω) +

󵄨󵄨󵄨󵄨g
󵄨󵄨󵄨󵄨𝑊2−1/𝛽,𝛽(𝜕Ω)) .

(A.14)

For any 𝑥 ∈ Ω, |𝑞
𝑛−1

(𝑥)| ≤ 𝐶(𝛽, ∞) 𝑀 ≡ 𝑀 . For any 𝜎 such
that 𝑒
−𝛼𝜎

> 𝛼𝜇
0
𝑀, we have

𝑏 (𝑞
𝑛−1 (𝑥) , 𝜎) =

𝛼𝜇

𝑒−𝛼𝜎 − 𝛼𝜇
0
𝑞
𝑛−1

(𝑥)
<

𝛼𝜇

𝑒−𝛼𝜎 − 𝛼𝜇
0
𝑀

.

(A.15)

Thus, for any 𝑥 ∈ Ω and 𝑛 ∈ N and for any 𝜀 > 0, there exists
𝜎
0
such that for any 𝜎 < 𝜎

0

󵄨󵄨󵄨󵄨𝑏 (𝑞
𝑛−1 (𝑥) , 𝜎)

󵄨󵄨󵄨󵄨𝐿∞(Ω) ≤
𝜀

𝐶
𝛽

𝑀2𝐶(𝛽, ∞)
2

. (A.16)

It is important to notice that 𝜎
0
does not depend neither on

𝑥 nor on 𝑛. For 𝐺 = |g|
𝑊
2−1/𝛽,𝛽
(𝜕Ω)

we choose 𝑀 = 2𝐶
𝛽

𝐺 and
for 𝜀 < 𝐺 (A.13) and (A.14) imply that

󵄨󵄨󵄨󵄨u𝑛
󵄨󵄨󵄨󵄨𝑊2,𝛽(Ω) ≤ 𝑀,

󵄨󵄨󵄨󵄨𝑞𝑛
󵄨󵄨󵄨󵄨𝑊1,𝛽(Ω) ≤ 𝑀. (A.17)

That proves the boundness of the sequence (u
𝑛
, 𝑞
𝑛
). Then, up

to a subsequence,

u
𝑛

⇀ u weakly in 𝑊
2,𝛽

(Ω)
𝑑
,

𝑞
𝑛

⇀ 𝑞 weakly in 𝑊
1,𝛽

(Ω) .

(A.18)

Compact embedding 𝑊
1,𝛽

(Ω) ⊂ 𝐶(Ω) and (A.17) implies the
strong convergence

u
𝑛

󳨀→ u in 𝑊
1,𝜎

(Ω)
𝑑
, 𝜎 <

𝑑𝛽

𝑑 − 𝛽
in 𝐶
1
(Ω)
𝑑

,

𝑞
𝑛

󳨀→ 𝑞 in 𝐿
𝜎

(Ω) in 𝐶 (Ω) .

(A.19)

That is enough to pass to the limit in (A.10) and to prove
the existence of solution of the transformed system (A.9).
Furthermore,

|u|
𝑊
2,𝛽
(Ω)

≤ 𝑀,
󵄨󵄨󵄨󵄨𝑞

󵄨󵄨󵄨󵄨𝑊1,𝛽(Ω) ≤ 𝑀. (A.20)

Due to (A.12) we have in addition 𝑞(𝑥
0
) = 𝜆. To prove that

(u, 𝑝), 𝑝 = 𝐻(𝑞, 𝜎), with 𝐻 defined by (A.5), is the solution to
the original system (A.1), we need to verify that 𝑞(𝑥) is in the
range of function 𝐻(⋅, 𝜎), Im𝐻(⋅, 𝜎) = ⟨−∞, 𝑀

+

𝜎
], for some

𝜎 < 0. We thus need to verify that 𝑞(𝑥) ≤ 𝑀
+

𝜎
= 𝑒
−𝛼𝜎

/𝛼𝜇
0
,

∀𝑥 ∈ Ω, which is fulfilled (see Lemma A.2) for sufficiently
large negative 𝜎. Indeed, we know that 𝑞(𝑥) ≤ 𝑀. It is
therefore sufficient to choose 𝜎 such that 𝑀

+

𝜎
≥ 𝑀.

Theorem A.3 (uniqueness result). Assume that the viscosity
function satisfies the Barus law (A.3). Let (u, 𝑝) ∈ X =

𝑊
2,𝛽

(Ω)
𝑑

× 𝑊
1,𝛽

(Ω) be the solution to the problem (A.1)
whose existence is guaranteed by Theorem A.1. If in addition
we prescribe the value of the pressure in some point 𝑥

0
∈ Ω,

that is, for some 𝜅 ∈ R, we impose

𝑝 (𝑥
0
) = 𝜅, (A.21)

then there are no other solutions in X.

Proof. Suppose that the problem has two solutions
(u, 𝑝), (w, 𝜋) in X. We apply the transformation procedure as
in the existence proof and take 𝑞 = 𝐵(𝑝, 𝜎), 𝜂 = 𝐵(𝜋, 𝜎). We
denote by E = u−w, 𝑒 = 𝑞−𝜂.Then, obviously E = 0 on 𝜕Ω

and the difference (E, 𝑒) satisfies the Stokes system

−ΔE + ∇𝑒 = 𝑏 (𝑞, 𝜎) ∇𝑞𝐷u − 𝑏 (𝜂, 𝜎) ∇𝜂𝐷w ≡ R. (A.22)

Thus, the standard a priori estimate (see, e.g., [25]) implies

|E|
𝑊
2,𝛽
(Ω)

+ |𝑒|
𝑊
1,𝛽
(Ω)/R ≤ 𝐶

𝛽|R|
𝐿
𝛽
(Ω)

. (A.23)

On the other hand, due to (A.6), (A.7), for given 𝜀 > 0 we can
choose 𝜎 in definition of 𝑏 such that

󵄨󵄨󵄨󵄨𝑏 (𝑞, 𝜎) ∇𝑞𝐷u󵄨󵄨󵄨󵄨𝐿𝛽(Ω) ≤
𝜀

2𝐶
𝛽

,

󵄨󵄨󵄨󵄨𝑏 (𝜂, 𝜎) ∇𝜂𝐷w󵄨󵄨󵄨󵄨𝐿𝛽(Ω) ≤
𝜀

2𝐶
𝛽

(A.24)

and thus |E|
𝑊
2,𝛽
(Ω)

+ |𝑒|
𝑊
1,𝛽
(Ω)/R ≤ 𝜀. As 𝜀 was arbitrary,

we conclude that E = 0 and 𝑒 = const. That proves the
uniqueness of the velocity since it is independent of choice
of 𝜎. On the other hand, 𝑞 and 𝜂 do depend on 𝜎. However,
their difference does not since

𝑒 (𝑥) = 𝑞 (𝑥) − 𝜂 (𝑥) =
1

𝛼𝜇
0

(𝑒
−𝛼𝜋(𝑥)

− 𝑒
−𝛼𝑝(𝑥)

) . (A.25)

Then, if we prescribe the value of the pressure in some point
𝑥
0

∈ Ω, that is, if for given 𝜅 ∈ R we put 𝑝(𝑥
0
) = 𝜋(𝑥

0
) =

𝜅, we have 𝑒 = 0 so that 𝑒
−𝛼𝜋(𝑥)

= 𝑒
−𝛼𝑝(𝑥) implying 𝑝(𝑥) =

𝜋(𝑥).
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