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LetΩ ⊂ R𝑛 be a nonsmooth convex domain and let𝑓 be a distribution in the atomic Hardy space𝐻𝑝

𝑎𝑡
(Ω); we study the Schrödinger

equations –div(𝐴∇𝑢) + 𝑉𝑢 = 𝑓 in Ω with the singular potential 𝑉 and the nonsmooth coefficient matrix 𝐴. We will show the
existence of the Green function and establish the 𝐿𝑝 integrability of the second-order derivative of the solution to the Schrödinger
equation on Ω with the Dirichlet boundary condition for 𝑛/(𝑛 + 1) < 𝑝 ≤ 2. Some fundamental pointwise estimates for the Green
function are also given.

1. Introduction and Main Results

Theregularity theory is fundamental to the partial differential
equation in nonsmooth domain. Usually, the 𝐿𝑝 estimate of
the second-order derivative of the weak solution required
the smoothness of the coefficients and the smoothness of the
domain. Early in 1951, Ladyzhenskaya [1] found a solution
to the problem of describing the domain of the closure in
𝐿
2

(Ω) of an elliptic operator L with the Dirichlet boundary
condition.The solvability of the problems is based on a priori
estimate,

‖𝑢‖
𝑊
2,2

(Ω)
≤ 𝐶 (Ω) (‖L𝑢‖

𝐿
2
(Ω)

+ ‖𝑢‖
𝐿
2
(Ω)
) ; (1)

hereL is a second-order elliptic operator with smooth coeffi-
cients,Ω is a bounded domain inR𝑛 with smooth boundary,
and 𝑢 is a function in𝑊2,2

(Ω) that vanishes on the boundary
or satisfies a nondegenerate homogeneous boundary condi-
tion of the first order. The significance of this result for the
theory of differential operators, including the boundary value
problem and the spectral theory, can hardly be overestimated.

It’s certainly valuable and challenging to deduce the regu-
larity estimate (1) for elliptic operators with rough coefficients
in nonsmooth domain. In 1964, Kadlec [2] took use of the
geometric properties of the convex domain to show that ifΩ is
a bounded convex domain inR𝑛, 𝑛 > 2, and 𝑓 ∈ 𝐿

2

(Ω), then

there is a unique solution 𝑢 ∈ 𝑊
1,2

0
(Ω) solving the Laplace

equation −Δ𝑢 = 𝑓 in Ω, and further ‖∇2

𝑢‖
𝐿
2
(Ω)

≤ 𝐶‖𝑓‖
𝐿
2
(Ω)

.
In 1993, Adolfsson [3] extended Kadlec’s results to get the 𝐿𝑝

integrability of ∇2

𝑢 whenever 𝑓 ∈ 𝐿
𝑝

(Ω) for 1 < 𝑝 ≤ 2.
In the present paper, let Ω be a bounded or unbounded

convex domain in R𝑛, 𝑛 > 2, we consider the following sin-
gular Schrödinger operator:

L𝑢 := − div (𝐴∇𝑢) + 𝑉𝑢, (2)

in Ω, where 𝑉 is a nonnegative singular potential belonging
to the class B

𝑞
for some 𝑞 ≥ 𝑛/2, and 𝐴(𝑥) = (𝑎

𝑖𝑗

(𝑥)) is a
real symmetric matrix. We call that the potential 𝑉 satisfies
the reverse Hölder classB

𝑞
for 1 < 𝑞 < ∞, if 𝑉 ≥ 0 belongs

to 𝐿𝑞

loc(R
𝑛

) and there exists a positive constant𝐾
𝑞
such that

(
1

|𝐵|
∫
𝐵

𝑉(𝑥)
𝑞

𝑑𝑥)

1/𝑞

≤

𝐾
𝑞

|𝐵|
∫
𝐵

𝑉 (𝑥) 𝑑𝑥, (3)

for all balls 𝐵 ⊂ R𝑛. One sees thatB
𝑝
⊆ B

𝑞
for 1 < 𝑞 ≤ 𝑝 ≤

∞.
Recently, the regularity for the Schrödinger operator

𝐻𝑢 =: −Δ𝑢 + 𝑉𝑢 in R𝑛, rather than in domain Ω, has been
studied in [4, 5]. Shen [4] proved that if 𝑉 belongs to the
reverse Hölder classB

𝑛/2
, then ∇2

(−Δ + 𝑉)
−1 is a Calderón-

Zygmundoperator inR𝑛, whichmeans that if𝑢 is the solution
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to 𝐻𝑢 = 𝑓 in R𝑛, then ‖∇
2

𝑢‖
𝐿
𝑝
(R𝑛) ≤ 𝐶‖𝑓‖

𝐿
𝑝
(R𝑛) for 1 <

𝑝 < ∞. We also remark that Ladyzhenskaya, see Theorem
III.9.1 in [6], had found the estimate ‖∇2

𝑢‖
𝐿
2
(Ω)

≤ 𝐶‖𝑓‖
𝐿
2
(Ω)

if Ω is a bounded convex domain and 𝑉 ∈ 𝐿
𝑞

(Ω) for some
𝑞 > max (2, 𝑛/2).

To discuss the singular Schrödinger equationL𝑢 = 𝑓, we
need to introduce the following assumptions (A1) and (A2)
for the matrix 𝐴(𝑥):

(A1) there exists a constant 𝜆 > 1 such that

𝜆
−1󵄨󵄨󵄨󵄨𝜉

󵄨󵄨󵄨󵄨

2

≤ 𝑎
𝑖𝑗

(𝑥) 𝜉
𝑖
𝜉
𝑗
≤ 𝜆

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

2

, for any 𝑥 ∈ Ω, 𝜉 ∈ R
𝑛

;

(4)

(A2) there exists a positive constant𝑀 such that
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

(𝑥) − 𝑎
𝑖𝑗

(𝑦)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑀

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 , for any 𝑥, 𝑦 ∈ Ω,

𝑖, 𝑗 = 1, 2, . . . , 𝑛,

𝑛

∑

𝑖=1

𝜕𝑎
𝑖𝑗

(𝑥)

𝜕𝑥
𝑖

= 0 ∀𝑗 = 1, 2, . . . , 𝑛.

(5)

The last assumption above in (A2) means that we can
rewrite the operator as L𝑢(𝑥) = −∑

𝑖,𝑗
𝑎
𝑖𝑗

(𝑥)(𝜕
2

𝑢(𝑥)/

𝜕𝑥
𝑖
𝜕𝑥

𝑗
) + 𝑉(𝑥)𝑢(𝑥). In the case Ω = R𝑛, by the Calderón-

Zygmund singular integral theory, Avellaneda and Lin [7]
showed the 𝐿𝑝

(R𝑛

)-boundedness of the operator ∇2L−1 for
1 < 𝑝 < ∞ under assumptions (A1), (A2), and

(A3) there is 0 < 𝛼 ≤ 1 such that

𝑎
𝑖𝑗

∈ 𝐶
1+𝛼

, 𝑎
𝑖𝑗

(𝑥) = 𝑎
𝑖𝑗

(𝑥 + 𝑧) for any 𝑥 ∈ R
𝑛

, 𝑧 ∈ Z
𝑛

.

(6)

Kurata and Sugano [8] also obtained the weighted 𝐿𝑝

(R𝑛

)-
boundedness of the operator ∇2L−1 for 1 < 𝑝 < ∞ under
the assumptions (A1), (A2), and (A3).

Herewe remark that for general convex domainΩ and the
nonsmooth coefficient matrix 𝐴(𝑥), the associated operator
∇

2L−1 is not always a Calderón-Zygmund operator, and the
methods used in [4, 5, 7, 8] cannot be applied to these cases.

The purpose of the paper is to give an elemental proof
of the 𝐿𝑝

(Ω) boundedness and the 𝐻𝑝

(Ω) boundedness for
the operator ∇2L−1 on the convex domain Ω ⊂ R𝑛 without
assumption (A3). Equivalently, we will study the existence
and the regularity of the weak solution 𝑢 = L−1

𝑓 to the fol-
lowing Dirichlet problem in the convex domainΩ, that is

L𝑢 = 𝑓 in Ω, 𝛾𝑢 = 0 on 𝜕Ω, (7)

for 𝑓 ∈ 𝐻
𝑝

𝑎𝑡
(Ω)with 𝑛/(𝑛+1) < 𝑝 ≤ 1, the atomic Hardy spa-

ces, or𝑓 ∈ 𝐿
𝑝

(Ω)with 1 < 𝑝 ≤ 2, where 𝛾 is the trace operator
on the boundary 𝜕Ω of the domainΩ.

For our purpose, let 𝑘 be the integer and let 0 < 𝑝 < ∞,
we denote by

𝑊
𝑘,𝑝

(Ω) = {𝑓 ∈ 𝐿
𝑝

(Ω) :

𝑘

∑

𝑙=0

(∫
Ω

󵄨󵄨󵄨󵄨󵄨
∇

𝑙

𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑥)

1/𝑝

< ∞}

(8)

the Sobolev spaces, and denote by 𝑊𝑘,𝑝

0
(Ω) the closure of

𝐶
∞

0
(Ω) in𝑊𝑘,𝑝

(Ω).
We call 𝑎(𝑥) a 𝑝-atom, if 𝑎(𝑥) is a bounded measurable

function defined in Ω and the following conditions (i), (ii),
and (iii) hold:

(i) there is a cube 𝑄 ⊂ Ω satisfying supp 𝑎(𝑥) ⊂ 𝑄;
(ii) ‖𝑎‖

𝐿
2
(R𝑛) ≤ |𝑄|

1/2−1/𝑝;

(iii) ∫𝑥𝛽

𝑎(𝑥)𝑑𝑥 = 0 for any multi-index 𝛽 with |𝛽| ≤

[𝑛/𝑝 − 𝑛].

The atomic Hardy space in domain Ω, 𝐻𝑝

𝑎𝑡
(Ω), is then

defined as the collection of all 𝑓 = ∑𝜆
𝑗
𝑎
𝑗
in the sense of

distributions, where {𝑎
𝑗
} is a sequence of 𝑝-atoms and {𝜆

𝑗
} is

a sequence of real numbers with ∑ |𝜆
𝑗
|
𝑝

< ∞. The norm of
𝑓 is defined by

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻
𝑝

𝑎𝑡
(Ω)

= inf {(∑ 󵄨󵄨󵄨󵄨󵄨
𝜆

𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝

)

1/𝑝

: 𝑓 = ∑𝜆
𝑗
𝑎
𝑗
} . (9)

One might see [9] for𝐻𝑝 space over open subsets in R𝑛.
It’s worthy to point out that if Ω is a Lipschitz domain or a
convex domain then we can see from the works in [10, 11] that
𝐻

𝑝

𝑎𝑡
(Ω) = 𝐻

𝑝

𝑧
(Ω), where𝐻𝑝

𝑧
(Ω) is the following local Hardy

space in domain,

𝐻
𝑝

𝑧
(Ω) = {𝑓 ∈ S

󸀠

(Ω) : there is 𝐹 ∈ 𝐻
𝑝

(R
𝑛

)

such that 𝐹|
Ω
= 𝑓, 𝐹|

Ω
𝑐 = 0} .

(10)

We also notice that the dual space of𝐻𝑝

𝑎𝑡
(Ω) with 𝑛/(𝑛 +

1) < 𝑝 < 1 is the space of Hölder continuous functions,
𝐶

𝛼(𝑝)

(Ω), with the exponent 𝛼(𝑝) = 𝑛(1 − 𝑝)/𝑝. Thus the
paring between an element of 𝐻𝑝

𝑎𝑡
(Ω) and the function in

𝐶
𝛼(𝑝)

(Ω) is well defined. One could refer to [12] for related
𝐻

𝑝 boundary value problems.
For𝑓 ∈ 𝐻

𝑝

𝑎𝑡
(Ω), 𝑛/(𝑛+1) < 𝑝 < 1, we say 𝑢 is a solution to

the Dirichlet problem (7), if 𝑢 ∈ 𝑊1,2

0
(Ω) ∩ 𝑊

1,𝑝

(Ω) satisfies

∫
Ω

𝐴 (𝑥) ∇𝑢 (𝑥) ∇𝜓 (𝑥) 𝑑𝑥 + ∫
Ω

𝑉 (𝑥) 𝑢 (𝑥) 𝜓 (𝑥) 𝑑𝑥

= ∫
Ω

𝑓 (𝑥) 𝜓 (𝑥) 𝑑𝑥,

(11)

for any test function 𝜓(𝑥) ∈ 𝐶𝛼(𝑝)

(Ω) ∩𝑊
1,2

0
(Ω).

Applying the Lax-Milgram theorem, we will prove that
for the Lipschitz domainΩ and the function𝑓 ∈ 𝐿

2

(Ω), there
is a unique solution 𝑢 ∈ 𝑊

1,2

0
(Ω) to the Dirichlet problem

(7); seeTheorem 10 below.We will then show the existence of
the Green function related to the operatorL and the domain
Ω and give the point-wise estimates for the Green function
which is fundamental to us. Moreover, we will give the 𝐿2

boundedness for the second-order derivative of the solution,
󵄩󵄩󵄩󵄩󵄩
∇

2

𝑢
󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿2(Ω)

; (12)

see Theorems 20 and 21 below.
Our main aim is to further establish the second-order

regularity estimates for the equation L𝑢 = 𝑓 in Ω with
𝑓 ∈ 𝐻

𝑝

𝑎𝑡
(Ω).
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Theorem 1. Suppose thatΩ is a bounded convex domain, 𝑉 ∈

B
𝑛
and 𝐴 satisfies assumptions (A1) and (A2). If 𝑓 ∈ 𝐻

𝑝

𝑎𝑡
(Ω)

for 𝑛/(𝑛 + 1) < 𝑝 ≤ 1 and 𝑢 ∈ 𝑊1,2

0
(Ω) ∩ 𝑊

1,𝑝

(Ω) solves the
Dirichlet problem (7), then one has

󵄩󵄩󵄩󵄩󵄩
∇

2

𝑢
󵄩󵄩󵄩󵄩󵄩𝐿𝑝(Ω)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻
𝑝

𝑎𝑡
(Ω)
, (13)

with the constant 𝐶 independent of 𝑓.

Theorem 2. Let Ω be the region above a convex Lipschitz
graph, and let 𝑉 ∈ B

𝑛
. If 𝑓 ∈ 𝐻

𝑝

𝑎𝑡
(Ω) for 𝑛/(𝑛 + 1) < 𝑝 ≤ 1

and 𝑢 ∈ 𝑊1,2

0
(Ω) ∩𝑊

1,𝑝

(Ω) satisfies −Δ𝑢+𝑉𝑢 = 𝑓 inΩ, then
one has

󵄩󵄩󵄩󵄩󵄩
∇

2

𝑢
󵄩󵄩󵄩󵄩󵄩𝐿𝑝(Ω)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻
𝑝

𝑎𝑡
(Ω)
, (14)

with the constant 𝐶 independent of 𝑓.

By the interpolation argument between the 𝐿2-estimate
(12) and Theorems 1 and 2, we have the following 𝐿𝑝-reg-
ularity estimates for 1 < 𝑝 ≤ 2.

Corollary 3. Suppose thatΩ is a bounded convex domain,𝑉 ∈

B
𝑛
and 𝐴 satisfies assumptions (A1) and (A2). If 𝑓 ∈ 𝐿

𝑝

(Ω)

for 1 < 𝑝 ≤ 2 and 𝑢 ∈ 𝑊1,2

0
(Ω) ∩ 𝑊

1,𝑝

(Ω) solves the Dirichlet
problem (7), then one has

󵄩󵄩󵄩󵄩󵄩
∇

2

𝑢
󵄩󵄩󵄩󵄩󵄩𝐿𝑝(Ω)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(Ω)

, (15)

with the constant 𝐶 independent of 𝑓.

Corollary 4. Let Ω be the region above a convex Lipschitz
graph, and let 𝑉 ∈ B

𝑛
. If 𝑓 ∈ 𝐿

𝑝

(Ω) for 1 < 𝑝 ≤ 2 and
𝑢 ∈ 𝑊

1,2

0
(Ω) ∩𝑊

1,𝑝

(Ω) satisfies −Δ𝑢 +𝑉𝑢 = 𝑓 inΩ, then one
has

󵄩󵄩󵄩󵄩󵄩
∇

2

𝑢
󵄩󵄩󵄩󵄩󵄩𝐿𝑝(Ω)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(Ω)

, (16)

with the constant 𝐶 independent of 𝑓.

Remark 5. One can see from Theorem 10 in Section 2 and
the arguments for the proof of Theorems 1 and 2 that the
condition 𝑉 ∈ B

𝑛
couldn’t be reduced for the second-order

derivative estimates of the solution, but the condition 𝑉 ∈

B
𝑛/2

is enough for the existence of 𝑊1,2

0
(Ω)-solution to the

Dirichlet problem (7).

The paper is organized in the following way. In Section 2,
after recalling some properties for the classB

𝑛
, we will show

the solvability and uniqueness of the 𝑊1,2

0
(Ω) solution to

the Dirichlet problem (7); see Theorem 10 below. We will
also give some useful point-wise estimates for the Green
function 𝐺(𝑥, 𝑦) and its gradient ∇

𝑥
𝐺(𝑥, 𝑦) related to the

singular Schrödinger operatorL in the convex domainΩ; see
Lemmas 12–16 below for details. In Section 3, we will deduce
some important estimates for the solution 𝑢 to L𝑢 = 𝑓

in Ω, especially, the local 𝐿2-estimates for the second-order
derivative of the solution 𝑢; seeTheorems 20 and 21 below. In
Section 4, we will give the proofs of Theorems 1 and 2.

2. The 𝑊1,2

0
(Ω) Solutions and

the Green Function

In this section, wewill show the existence of the𝑊1,2

0
(Ω) solu-

tion to the singular Schrödinger equation L𝑢 = 𝑓 in Lips-
chitz domainΩ for 𝑓 ∈ 𝐿

2

(Ω) and give some estimates about
the Green function related to the operator L in Ω. To this
end, we need to use an auxiliary function and some properties
for the singular potential 𝑉. Let 𝑉 ∈ B

𝑛/2
, we can define the

auxiliary function𝑚(𝑉, 𝑥) by

1

𝑚 (𝑉, 𝑥)
= sup

𝑟>0

{𝑟 :
1

𝑟𝑛−2
∫
𝐵(𝑥,𝑟)

𝑉 (𝑦) 𝑑𝑦 ≤ 1} . (17)

Recall that 𝑉 ∈ B
𝑛/2

implies that 𝑉(𝑥)𝑑𝑥 is a doubling
measure, and 𝑉 ∈ B

𝑞
for some 𝑞 > 𝑛/2. Thus, by the Hölder

inequality, for any 0 < 𝑟 ≤ 𝑅 < ∞,

∫
𝐵(𝑥,𝑟)

𝑉 (𝑦) 𝑑𝑦 ≤ 𝐶(
𝑟

𝑅
)

𝑛−2+𝛿

∫
𝐵(𝑥,𝑅)

𝑉 (𝑦) 𝑑𝑦, (18)

with some 𝛿 > 0. Therefore, the auxiliary function𝑚(𝑉, 𝑥) is
well defined and 0 < 𝑚(𝑉, 𝑥) < ∞. For example, if 𝑃(𝑥) is a
polynomial of degree 𝑘 and 𝑉(𝑥) = |𝑃(𝑥)|, then

𝑚(𝑉, 𝑥) ≃ ∑

|𝛽|≤𝑘

󵄨󵄨󵄨󵄨󵄨
𝜕
𝛽

𝑥
𝑃(𝑥)

󵄨󵄨󵄨󵄨󵄨

1/(|𝛽|+2)

. (19)

Lemma 6 (see [4]). Let 𝑉 ∈ B
𝑞
for 𝑞 ≥ 𝑛/2, then there exist

constants 𝐶 > 0, 𝑐 > 0 and 𝑘
0
> 0 such that for any 𝑥, 𝑦 inR𝑛,

(i) 𝑚(𝑉, 𝑥) ∼ 𝑚(𝑉, 𝑦), if |𝑥 − 𝑦| ≤ 1/𝑚(𝑉, 𝑥);

(ii) 𝑚(𝑉, 𝑦) ≤ 𝐶{1 + |𝑥 − 𝑦|𝑚(𝑉, 𝑥)}𝑘0𝑚(𝑉, 𝑥);

(iii) 𝑚(𝑉, 𝑦) ≥ (𝑐𝑚(𝑉, 𝑥)/{1 + |𝑥 − 𝑦|𝑚(𝑉, 𝑥)}𝑘0/(𝑘0+1));

(iv) 𝑐{1 + |𝑥 − 𝑦|𝑚(𝑉, 𝑥)}1/(𝑘0+1) ≤ 1 + |𝑥 − 𝑦|𝑚(𝑉, 𝑦) ≤

𝐶{1 + |𝑥 − 𝑦|𝑚(𝑉, 𝑥)}
𝑘
0
+1.

The estimates of (i), (ii), and (iii) in Lemma 6were proved
in [4], while the estimate (iv) can be derived from the
estimates (ii) and (iii).

Lemma 7 (see [13]). Let 𝑞 > 𝑠 ≥ 0, 𝑞 ≥ max{1, 𝑠𝑛/𝛼}, 𝛼 > 0,
and 𝑘 is sufficiently large, then there are positive constants 𝑘

0
,

𝐶, and 𝐶
𝑘
such that

∫
|𝑥−𝑦|<𝑟

𝑉(𝑦)
𝑠

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−𝛼
𝑑𝑌 ≤ 𝐶𝑟

𝛼−2𝑠

{1 + 𝑟𝑚 (𝑉, 𝑥)}
𝑠𝑘
0 ,

∫
𝑅
𝑛

𝑉(𝑦)
𝑠

𝑑𝑌

{1 + 𝑚(𝑉, 𝑥)
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨}
𝑘󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝑛−𝛼

≤ 𝐶
𝑘
𝑚(𝑉, 𝑥)

2𝑠−𝛼

,

(20)

for any 𝑟 > 0, 𝑥 ∈ R𝑛 and 𝑉 ∈ B
𝑞
.

Lemma 8 (see [8]). Let Γ(𝑥, 𝑦) denote the fundamental solu-
tion to equationL𝑢 = 0 inR𝑛. Then for any integer 𝑘 > 0, one
has that
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(i) if 𝑉 ∈ B
𝑛/2

, then there exists a constant 𝐶
𝑘
such that

0 ≤ Γ (𝑥, 𝑦) ≤
𝐶

𝑘

{1 +
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 𝑚 (𝑉, 𝑥)}
𝑘󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝑛−2

, (21)

for any 𝑥, 𝑦 in R𝑛;
(ii) if 𝑉 ∈ B

𝑛
, also we assume 𝑎

𝑖𝑗

(𝑥) satisfies
‖𝑎

𝑖𝑗

(𝑥)‖
𝐶
𝛼
(𝑅
𝑛
)
≤ 𝐶

1
with constant 𝐶

1
> 0 and 𝛼 ∈

(0, 1], then there exists a constant 𝐶
𝑘
such that

󵄨󵄨󵄨󵄨∇𝑥
Γ (𝑥, 𝑦)

󵄨󵄨󵄨󵄨 ≤
𝐶

𝑘

{1 +
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 𝑚 (𝑉, 𝑥)}
𝑘󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝑛−1

, (22)

for any 𝑥, 𝑦 in R𝑛.

The following lemma is useful for proving the 𝐿2 solvabil-
ity to the Dirichet problem, which extends the Fefferman-
Phong inequality and has been showed in [14] for the case
Ω = R𝑛. Here we thank the referee for pointing out that
Lemma 9 below can be generalized to more general domains
by applying the embedding estimates in [15] among others.

Lemma 9. Let Ω be a convex domain in R𝑛 and let 𝑉 ∈ B
𝑞

for 𝑞 ≥ 𝑛/2. Then, for 𝑢 ∈ 𝐶1

0
(Ω),

∫
Ω

|𝑢 (𝑥)|
2

𝑚(𝑉, 𝑥)
2

𝑑𝑥

≤ 𝐶{∫
Ω

|∇𝑢|
2

𝑑𝑥 + ∫
Ω

|𝑢 (𝑥)|
2

𝑉 (𝑥) 𝑑𝑥} ,

∫
Ω

|𝑢 (𝑥)|
2

𝑉 (𝑥) 𝑑𝑥

≤ 𝐶{∫
Ω

|∇𝑢|
2

𝑑𝑥 + ∫
Ω

|𝑢 (𝑥)|
2

𝑚(𝑉, 𝑥)
2

𝑑𝑥} ,

(23)

with the absolute constant 𝐶 = 𝐶(𝑛, 𝜆, 𝐾
𝑞
).

Proof. Along the same lines as that in [14], we can claim the
following Poincaré inequality:

∬
𝐷
𝑟

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)
󵄨󵄨󵄨󵄨

2

𝑉 (𝑦) 𝑑𝑦 𝑑𝑥

≤ 𝐶𝑟
2

∫
𝐷
𝑟

𝑉 (𝑦) 𝑑𝑦∫
𝐷
𝑟

|∇𝑢 (𝑥)|
2

𝑑𝑥,

(24)

where 𝐷
𝑟
= 𝐵(𝑥

0
, 𝑟) ∩ Ω for 𝑥

0
∈ Ω. The inequality (24) for

caseΩ = R𝑛 was founded in [14]; here we adapt the argument
and give the simple lines of the proof for completeness. In fact,
for 𝑥, 𝑦 ∈ 𝐷

𝑟
, one notes that 𝐷

𝑟
is a convex domain and so

one can write that

𝑢 (𝑥) − 𝑢 (𝑦) = ∫

|𝑥−𝑦|

0

∇𝑢(𝑦 + 𝑡
𝑥 − 𝑦

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

) ⋅
𝑥 − 𝑦

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑑𝑡. (25)

Let 𝑓 = ∇𝑢 and, for 𝑥, 𝑦 ∈ 𝐷
𝑟
, we define

𝑇
𝑗
𝑓 (𝑥, 𝑦) = ∫

0<𝑡<|𝑥−𝑦|

2
−𝑗

𝑟≤𝑡<2
−𝑗+1

𝑟

𝑓(𝑦 + 𝑡
𝑥 − 𝑦

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

) 𝑑𝑡,

𝑗 = 0, 1, 2, . . .

(26)

It’s clear that 𝑦 + 𝑡((𝑥 − 𝑦)/|𝑥 − 𝑦|) ∈ 𝐷
𝑟
for 0 < 𝑡 < |𝑥 − 𝑦|,

and so
󵄨󵄨󵄨󵄨󵄨
𝑇
𝑗
𝑓 (𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨
≤ 2

−𝑗

𝑟
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿∞(𝐷

𝑟
,𝑑𝑥)

. (27)

Also, by the Fubini theorem, the doubling property of mea-
sure 𝑉𝑑𝑦, and the inequality (18), one can deduce that (see
page 527 in [14])

∬
𝐷
𝑟

󵄨󵄨󵄨󵄨󵄨
𝑇
𝑗
𝑓 (𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨
𝑉 (𝑦) 𝑑𝑦 𝑑𝑥

≤ 𝐶2
−𝑗(𝛿−1)

𝑟 ∫
𝐵(𝑥
0
,𝑟)

𝑉 (𝑦) 𝑑𝑦 ⋅
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿1(𝐷

𝑟
,𝑑𝑥)

.

(28)

Combining the inequalities (27) and (28), we get
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿2(𝐷

𝑟
×𝐷
𝑟
,𝑉(𝑦)𝑑𝑦 𝑑𝑥)

≤ 𝐶(√2)
−𝑗𝛿

𝑟(∫
𝐵(𝑥
0
,𝑟)

𝑉 (𝑦) 𝑑𝑦)

1/2

⋅
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿1(𝐷

𝑟
,𝑑𝑥)

,

(29)

by interpolation. By summation and the Minkowski inequal-
ity, we have

∬
𝐷
𝑟

󵄨󵄨󵄨󵄨𝑢 (𝑥) − 𝑢 (𝑦)
󵄨󵄨󵄨󵄨

2

𝑉 (𝑦) 𝑑𝑦 𝑑𝑥

≤ 𝐶𝑟
2

∫
𝐵(𝑥
0
,𝑟)

𝑉 (𝑦) 𝑑𝑦∫
𝐷
𝑟

|∇𝑢 (𝑥)|
2

𝑑𝑥.

(30)

Since Ω is a Lipschitz domain and 𝑥
0
∈ Ω, there exists

𝐵(𝑦
0
, 𝑐𝑟) ⊂ 𝐷

𝑟
for some 𝑦

0
∈ 𝐷

𝑟
and 𝑐 > 0, depending only

on the Lipschitz character of Ω. Thus, by the doubling
property of 𝑉𝑑𝑦,

∫
𝐵(𝑥
0
,𝑟)

𝑉 (𝑦) 𝑑𝑦 ≤ ∫
𝐵(𝑦
0
,2𝑟)

𝑉 (𝑦) 𝑑𝑦

≤ 𝐶∫
𝐵(𝑦
0
,𝑐𝑟)

𝑉 (𝑦) 𝑑𝑦 ≤ 𝐶∫
𝐷
𝑟

𝑉 (𝑦) 𝑑𝑦.

(31)

This, together with (30), implies (24).
Let 𝑟

0
= 1/𝑚(𝑉, 𝑥

0
), by (31) and the definition of𝑚(𝑉, 𝑥

0
),

one sees that

∫
𝐷
𝑟0

𝑉 (𝑦) 𝑑𝑦 ≃ ∫
𝐵(𝑥
0
,𝑟
0
)

𝑉 (𝑦) 𝑑𝑦 ≃ 𝑟
𝑛−2

0
. (32)

Now applying the Poincaré inequality (24), we obtain that

1

𝑟
𝑛+2

0

∫
𝐷
𝑟0

|𝑢 (𝑥)|
2

𝑑𝑥

≤
𝐶

𝑟
𝑛

0

∫
𝐷
𝑟0

|∇𝑢 (𝑥)|
2

𝑑𝑥 +
𝐶

𝑟
𝑛

0

∫
𝐷
𝑟0

|𝑢 (𝑥)|
2

𝑉 (𝑥) 𝑑𝑥,

(33)

1

𝑟
𝑛

0

∫
𝐷
𝑟0

|𝑢 (𝑥)|
2

𝑉 (𝑥) 𝑑𝑥

≤
𝐶

𝑟
𝑛

0

∫
𝐷
𝑟0

|∇𝑢 (𝑥)|
2

𝑑𝑥 +
𝐶

𝑟
𝑛+2

0

∫
𝐷
𝑟0

|𝑢 (𝑥)|
2

𝑑𝑥.

(34)
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We integrate both sides of (33) and (34), respectively, with
respect to 𝑥

0
overΩ. By the Fubini theorem and Lemma 6 we

will obtain the inequalities (23). The lemma is proved.

Next we letH(Ω) be the class of all functions𝑢 ∈ 𝑊1,2

0
(Ω)

such that
‖𝑢‖H(Ω)

:= (∫
Ω

|∇𝑢 (𝑥)|
2

𝑑𝑥 + ∫
Ω

𝑚(𝑉, 𝑥)
2

|𝑢 (𝑥)|
2

𝑑𝑥)

1/2

< ∞.

(35)

Then H(Ω) is a Hilbert space and 𝐶1

0
(Ω) is dense in H(Ω).

Let

𝑎 (𝑢, V) = ∫
Ω

𝐴 (𝑥) ∇𝑢 (𝑥) ∇V (𝑥) 𝑑𝑥

+ ∫
Ω

𝑉 (𝑥) 𝑢 (𝑥) V (𝑥) 𝑑𝑥,
(36)

then we can see from the elliptic condition of thematrix𝐴(𝑥)
and Lemma 9 that

|𝑎 (𝑢, V)| ≤ 𝐶‖𝑢‖H(Ω)
‖V‖H(Ω)

, (37)

for all 𝑢, V ∈ H(Ω); and by Lemma 9, there is a positive con-
stant 𝛿 independent of 𝑢 such that

𝑎 (𝑢, 𝑢) ≥ 𝜆
−1

∫
Ω

|∇𝑢|
2

𝑑𝑥 + ∫
Ω

|𝑢 (𝑥)|
2

𝑉 (𝑥) 𝑑𝑥 ≥ 𝛿‖𝑢‖
2

H(Ω)
.

(38)

Thus 𝑎(𝑢, V) is a bounded, coercive bilinear form on the
Hilbert spaceH(Ω).

On the other hand, for 𝑓
1
∈ 𝐿

2

(Ω) and 𝑚(𝑉, ⋅)
−1

𝑓
2
∈

𝐿
2

(Ω), let𝐹(V) = ∫
Ω

(𝑓
1
(𝑥)+𝑓

2
(𝑥))V(𝑥)𝑑𝑥 for V ∈ H(Ω).Then

by the Hölder inequality and the Poinceré inequality one gets

|𝐹 (V)| ≤ 󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐿2(Ω)
‖V‖

𝐿
2
(Ω)

+
󵄩󵄩󵄩󵄩󵄩
𝑚(𝑉, ⋅)

−1

𝑓
2

󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)

‖𝑚(𝑉, ⋅)V‖
𝐿
2
(Ω)

≤ (𝐶|Ω|
1/𝑛󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐿2(Ω)
+
󵄩󵄩󵄩󵄩󵄩
𝑚(𝑉, ⋅)

−1

𝑓
2

󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)

) ‖V‖H(Ω)
,

(39)

which means 𝐹 ∈ H∗

(Ω), a bounded linear functional on
H(Ω).

Thus using the Lax-Milgram theorem we obtain the
following 𝐿2 solvability of the Dirichlet problem (7).

Theorem10. Suppose thatΩ is a bounded convex domain, and
𝑉 ∈ B

𝑞
for 𝑞 ≥ 𝑛/2. Let 𝑓

1
∈ 𝐿

2

(Ω) and let 𝑚(𝑉, ⋅)−1𝑓
2
∈

𝐿
2

(Ω), then there is a unique weak solution 𝑢 ∈ 𝑊
1,2

0
(Ω) sol-

ving the singular Schrödinger equationL𝑢 = 𝑓
1
+𝑓

2
inΩ, and

further

∫
Ω

|∇𝑢 (𝑥)|
2

𝑑𝑥 + ∫
Ω

𝑉 (𝑥) |𝑢 (𝑥)|
2

𝑑𝑥

≤ 𝐶|Ω|
2/𝑛

∫
Ω

󵄨󵄨󵄨󵄨𝑓1
(𝑥)

󵄨󵄨󵄨󵄨

2

𝑑𝑥 + 𝐶∫
Ω

𝑚(𝑉, 𝑥)
−2󵄨󵄨󵄨󵄨𝑓2

(𝑥)
󵄨󵄨󵄨󵄨

2

𝑑𝑥,

(40)

with the absolute constant 𝐶 = 𝐶(𝑛, 𝜆, 𝐾
𝑞
).

Proof. The estimate (40) follows from Lemma 9, the inequal-
ities (38) and (39).

Remark 11. Checking the argument above, we note that if
𝑓
1
= 0 then the results of Theorem 10 are still true for any

unbounded convex domainΩ.

In this paper, we always let𝑉 ∈ B
𝑞
for some 𝑞 ≥ 𝑛/2, thus

by Theorem 10 and Remark 11, we have the Green function
𝐺(𝑥, 𝑦) defined onΩ×Ω for any convex domainΩ such that,
for each 𝑦 ∈ Ω and any 𝑟 > 0, 𝐺(⋅, 𝑦) ∈ 𝑊

1,2

(Ω \ 𝐵(𝑦, 𝑟)) ∩

𝑊
1,1

0
(Ω), andL𝐺(⋅, 𝑦) = 𝛿

𝑦
in the distribution sense. Noting

𝑉 ≥ 0, we know by maximal principle that for any 𝑥, 𝑦 ∈ Ω,

0 ≤ 𝐺 (𝑥, 𝑦) = 𝐺 (𝑦, 𝑥) ≤
𝐶

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−2
, (41)

with the constant 𝐶 = 𝐶(𝑛, 𝜆, 𝐾
𝑞
) independent of 𝑥, 𝑦 ∈

Ω. Moreover, we can show the following decay estimates as
Lemma 2.7 in [13] or Lemma 1.21 in [14]; here we omit the
details of the proof.

Lemma 12. Let 𝑘 > 0 be any integer, then

󵄨󵄨󵄨󵄨𝐺 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨 ≤

𝐶
𝑘

{1 +
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 𝑚 (𝑥, 𝑉)}
𝑘

1

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−2
, (42)

where𝐶
𝑘
= 𝐶(𝑘, 𝑛, 𝜆, 𝐾

𝑞
) is the constant independent of 𝑥, 𝑦 ∈

Ω.

Next in this section, we suppose that Ω is a bounded
convex domain or the region above a Lipschitz graph. Noting
that onemay take a cone of arbitrary height and fixed opening
angle at any boundary point of the Lipschitz graph, by similar
argument as that of Theorems 1.8 and 1.9 in [16], we can
deduce the following Hölder estimate for the Green function
𝐺(𝑥, 𝑦).

Lemma 13. Let 𝑘 > 0 be any integer, then there are constants
𝐶 = 𝐶(𝑛, 𝑘, 𝜆, 𝐾

𝑞
) and 𝛼 = 𝛼(𝑛, 𝜆), 0 < 𝛼 < 1, such that for all

𝑥, 𝑦, 𝑧 ∈ Ω,
󵄨󵄨󵄨󵄨𝐺 (𝑥, 𝑦) − 𝐺 (𝑧, 𝑦)

󵄨󵄨󵄨󵄨

≤
𝐶

{1 +
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 𝑚 (𝑉, 𝑦)}
𝑘

(
|𝑥 − 𝑧|

𝛼

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−2−𝛼
+

|𝑥 − 𝑧|
𝛼

󵄨󵄨󵄨󵄨𝑧 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−2−𝛼
) .

(43)

Using the similar arguments as that of Theorems 3.3(ii)
and 3.4(ii) in [16], we also have the following estimate.

Lemma 14. Let 𝑘 > 0 be any integer, then there is 𝐶 =

𝐶(𝑛, 𝑘, 𝜆, 𝐾
𝑞
,𝑀) > 0 such that, for all 𝑥, 𝑦, 𝑧 ∈ Ω,

󵄨󵄨󵄨󵄨𝐺 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨 ≤

𝐶

{1 +
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 𝑚 (𝑥
0
, 𝑉)}

𝑘

𝛿 (𝑥)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−1
, (44)

where 𝛿(𝑥) = dist(𝑥, 𝜕Ω).

In order to get the derivative estimates for the Green
function 𝐺(𝑥, 𝑦), we need to show the following lemma.
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Lemma 15. Suppose 𝑉 ∈ B
𝑛
. If 𝑤 ∈ 𝑊

1,2

(𝐵(𝑥
0
, 𝑟)) satisfies

the equation − div(𝐴(𝑥)∇𝑤(𝑥)) + 𝑉(𝑥)𝑤(𝑥) = 0 in 𝐵(𝑥
0
, 𝑟),

then there exists a positive constant 𝐶 = 𝐶(𝑛, 𝜆, 𝐾
𝑛
,𝑀) inde-

pendent of 𝑥
0
and 𝑟 such that

󵄨󵄨󵄨󵄨∇𝑤 (𝑥0
)
󵄨󵄨󵄨󵄨 ≤

𝐶

𝑟
sup

𝑥∈𝐵(𝑥0,𝑟)

|𝑤 (𝑥)| . (45)

Proof. Let 𝜙 ∈ 𝐶
∞

0
(𝐵(𝑥

0
, 𝑟)) be the cut-off function, then we

have

∫
𝐵(𝑥
0
,𝑟)

{𝐴∇𝑤 ⋅ ∇ (𝑤𝜙
2

) + 𝑉𝑤
2

𝜙
2

} 𝑑𝑥 = 0, (46)

and so

∫
𝐵(𝑥
0
,𝑟)

{𝐴∇ (𝑤𝜙) ⋅ ∇ (𝑤𝜙) + 𝑉𝑤
2

𝜙
2

} 𝑑𝑥

= ∫
𝐵(𝑥
0
,𝑟)

𝐴∇𝜙 ⋅ ∇𝜙𝑤
2

𝑑𝑥,

(47)

which implies the following Caccioppoli inequality:

∫
𝐵(𝑥
0
,𝑟
1
)

[|∇𝑤|
2

+ 𝑉|𝑤|
2

] 𝑑𝑥 ≤
𝐶𝜆

2

(𝑟
2
− 𝑟

1
)
2
∫
𝐵(𝑥
0
,𝑟
2
)

|𝑤|
2

𝑑𝑥,

(48)

with the absolute constant 𝐶 independent of 𝑟
1
and 𝑟

2
with

0 ≤ 𝑟
1
< 𝑟

2
≤ 𝑟.

Observing that

− div (𝐴∇ (𝑤𝜙)) + 𝑉𝑤𝜙 = −2𝐴∇𝑤∇𝜙 − div (𝐴∇𝜙)𝑤,
(49)

and letting the cut-off function 𝜙 ∈ 𝐶∞

0
(𝐵(𝑥

0
, 𝑟/2)) such that

𝜙 ≡ 1 on 𝐵(𝑥
0
, 𝑟/3) and |∇𝜙| ≤ 1/𝑟, then we have

∇𝑤 (𝑥
0
) = ∫∇

𝑥
Γ (𝑥

0
, 𝑦) [−2𝐴 (𝑦) ∇𝑤 (𝑦) ∇𝜙 (𝑦)

− div (𝐴 (𝑦) ∇𝜙 (𝑦))𝑤 (𝑦)] 𝑑𝑦.
(50)

Hence, from this, and using Lemma 8 and the Cacciop-
pli inequality (48), we obtain the desired estimate of the
lemma.

Lemma 16. Suppose 𝑉 ∈ B
𝑛
, and that 𝑘 > 0 is any integer.

Then

󵄨󵄨󵄨󵄨∇𝑥
𝐺 (𝑥, 𝑦)

󵄨󵄨󵄨󵄨 ≤
𝐶

𝑘

{1 +
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 𝑚 (𝑉, 𝑥)}
𝑘

1

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−1
, (51)

where 𝐶
𝑘
= 𝐶(𝑛, 𝑘, 𝜆, 𝐾

𝑛
,𝑀) is independent of 𝑥, 𝑦 ∈ Ω.

Proof. For 𝑥, 𝑦 ∈ Ω, we let 𝑟 = |𝑥 − 𝑦| and denote by 𝛿(𝑥) =
dist (𝑥, 𝜕Ω). If 𝛿(𝑥) > 𝑟/2, thus 𝐵(𝑥, 𝑟/2) ⊂ Ω. One notes that

𝐺
𝑦

:= 𝐺(⋅, 𝑦) satisfies 𝐿𝐺𝑦

= 0 in 𝐵(𝑥, 𝑟/2) for the fixed 𝑦. By
Lemmas 12 and 15, one can see that
󵄨󵄨󵄨󵄨∇𝐺

𝑦

(𝑥)
󵄨󵄨󵄨󵄨 ≤

𝐶

𝑟
sup

𝑧∈𝐵(𝑥,𝑟/2)

󵄨󵄨󵄨󵄨𝐺 (𝑧, 𝑦)
󵄨󵄨󵄨󵄨

≤
𝐶

𝑟
sup

𝑧∈𝐵(𝑥,𝑟/2)

𝐶
𝑘

{1 +
󵄨󵄨󵄨󵄨𝑧 − 𝑦

󵄨󵄨󵄨󵄨 𝑚 (𝑉, 𝑧)}
𝑘

1

󵄨󵄨󵄨󵄨𝑧 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−2

≤
𝐶

𝑘

{1 +
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 𝑚 (𝑉, 𝑥)}
𝑘

1

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−1
.

(52)

On the other hand, if 𝛿(𝑥) ≤ 𝑟/2, we observe that 𝐺𝑦

=

𝐺(⋅, 𝑦) satisfies 𝐿𝐺𝑦

= 0 in 𝐵(𝑥, 𝛿(𝑥)/2) for the fixed 𝑦. Thus
by Lemma 15 we have

󵄨󵄨󵄨󵄨∇𝐺
𝑦

(𝑥)
󵄨󵄨󵄨󵄨 ≤

𝐶

𝛿 (𝑥)
sup

𝑧∈𝐵(𝑥,𝛿(𝑥)/2)

󵄨󵄨󵄨󵄨𝐺 (𝑧, 𝑦)
󵄨󵄨󵄨󵄨 . (53)

We can choose a point 𝑧∗ ∈ 𝐵(𝑥, 𝛿(𝑥)/2) such that
󵄨󵄨󵄨󵄨𝐺 (𝑧

∗

, 𝑦)
󵄨󵄨󵄨󵄨 = sup

𝑧∈𝐵(𝑥,𝛿(𝑥)/2)

󵄨󵄨󵄨󵄨𝐺 (𝑧, 𝑦)
󵄨󵄨󵄨󵄨 (54)

and a point 𝑥∗

∈ 𝜕Ω satisfying 𝛿(𝑥) = |𝑥 − 𝑥∗

|. Then a direct
computation implies that

𝛿 (𝑧
∗

) ≤
󵄨󵄨󵄨󵄨𝑧

∗

− 𝑥
∗󵄨󵄨󵄨󵄨 ≤

3𝛿 (𝑥)

2
,

󵄨󵄨󵄨󵄨𝑧
∗

− 𝑦
󵄨󵄨󵄨󵄨 ∼

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 ≥ 2𝛿 (𝑥) .

(55)

From this and by using Lemma 14, we get that

󵄨󵄨󵄨󵄨∇𝐺
𝑦

(𝑥)
󵄨󵄨󵄨󵄨 ≤

𝐶

𝛿 (𝑥)

𝐶
𝑘

{1 +
󵄨󵄨󵄨󵄨𝑧

∗ − 𝑦
󵄨󵄨󵄨󵄨 𝑚 (𝑉, 𝑧

∗
)}

𝑘

𝛿 (𝑧
∗

)

󵄨󵄨󵄨󵄨𝑧
∗ − 𝑦

󵄨󵄨󵄨󵄨

𝑛−1

≤
𝐶

𝑘

{1 +
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 𝑚 (𝑉, 𝑥)}
𝑘

1

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−1
,

(56)

where we have used Lemma 6 in the last inequality.The proof
of the lemma is complete.

3. Local Second-Order Regularity for
the Dirichlet Problem

In this section, we will give some useful a priori 𝐿2 estimates
for the second-order derivative of the solution 𝑢 to the
Dirichlet problem (7), we will show in Theorems 20 and 21
some 𝐿2 estimates of𝜓∇2

𝑢 for the solution 𝑢 and any smooth
function 𝜓. This local second-order regularity will play an
important role in the 𝐿𝑝 regularity argument for the 𝐻𝑝

𝑎𝑡

Dirichlet problem.

Lemma 17. Suppose Ω is an open domain, 𝑉 ∈ B
𝑛
and 𝑓 ∈

𝐿
2

(Ω), then the solution 𝑢 ∈ 𝑊1,2

0
(Ω) of the Dirichlet problem

(7) satisfies the following uniform estimate:

∫
Ω

𝑉(𝑥)
2

|𝑢 (𝑥)|
2

𝑑𝑥 ≤ 𝐶∫
Ω

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

2

𝑑𝑥, (57)

with the constant 𝐶 = 𝐶(𝑛, 𝜆, 𝐾
𝑛
) > 0.
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Moreover, for any smooth function 𝜓 ∈ 𝐶
∞

(R𝑛

), the esti-
mate

∫
Ω

𝑉
2󵄨󵄨󵄨󵄨𝑢𝜓

󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ 𝐶∫
Ω

(
󵄨󵄨󵄨󵄨󵄨
∇

2

𝜓
󵄨󵄨󵄨󵄨󵄨

2

|𝑢|
2

+
󵄨󵄨󵄨󵄨∇𝜓

󵄨󵄨󵄨󵄨

2

|∇𝑢|
2

+
󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

2

) 𝑑𝑥

(58)

holds with the constant 𝐶 = 𝐶(𝑛, 𝜆, 𝐾
𝑛
,𝑀) > 0 independent

of 𝜓.

Proof. Applying the Green representation formula, the
Hölder inequality and Lemma 7, we have that

|𝑢 (𝑥)|
2

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω

𝐺(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ ∫
Ω

󵄨󵄨󵄨󵄨𝐺 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦∫

Ω

󵄨󵄨󵄨󵄨𝐺 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓(𝑦)

󵄨󵄨󵄨󵄨

2

𝑑𝑦

≤ 𝐶𝑚(𝑉, 𝑥)
−2

∫
Ω

󵄨󵄨󵄨󵄨𝐺 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓(𝑦)

󵄨󵄨󵄨󵄨

2

𝑑𝑦.

(59)

Hence,

∫
Ω

𝑉(𝑥)
2

|𝑢 (𝑥)|
2

𝑑𝑥

≤ 𝐶∫
Ω

(∫
Ω

󵄨󵄨󵄨󵄨𝐺 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓(𝑦)

󵄨󵄨󵄨󵄨

2

𝑑𝑦)𝑉(𝑥)
2

𝑚(𝑉, 𝑥)
−2

𝑑𝑥

≤ 𝐶∫
Ω

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨

2

(∫
Ω

𝑉(𝑥)
2

𝑚(𝑉, 𝑥)
−2

𝑑𝑥

{1 + 𝑚 (𝑉, 𝑥)
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨}
𝑘󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝑛−2

)𝑑𝑦

≤ 𝐶∫
Ω

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨

2

𝑑𝑦,

(60)

which is the desired inequality (57).
Noting 𝑢𝜓 ∈ 𝑊

1,2

0
(Ω) and L(𝑢𝜓) = − div(𝐴∇𝜓)𝑢 −

2𝐴∇𝑢∇𝜓 + 𝑓𝜓, and so by assumption (A2) for the matrix 𝐴,
we can obtain the estimate (58) from the inequality (57). The
lemma is proved.

The following a priori estimate is crucial to us.

Lemma 18. Suppose that Ω is a bounded convex domain or
an unbounded region above a convex Lipschitz graph, and 𝑓 ∈

𝐿
2

(Ω). Let 𝑢 ∈ 𝑊1,2

0
(Ω) be a solution of the Dirichlet problem

(7). Then 𝜓∇2

𝑢 ∈ 𝐿
2

(Ω) for any 𝜓 ∈ 𝐶
∞

0
(R𝑛

), and one has

∫
Ω

𝜓
2
󵄨󵄨󵄨󵄨󵄨
∇

2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝐶∫
Ω

(
󵄨󵄨󵄨󵄨∇𝜓

󵄨󵄨󵄨󵄨

2

+ 𝜓
2

) |∇𝑢|
2

𝑑𝑥

+ 𝐶∫
Ω

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2

(𝑉
2

|𝑢|
2

+
󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

2

) 𝑑𝑥,

(61)

with the constant 𝐶 = 𝐶(𝑛, 𝜆,𝑀) > 0.

Proof. Begin by assuming that Ω is a convex domain with
a 𝐶2 boundary. Let the vector field 𝑊 = 𝜓∇𝑢 and the ball
𝐵 ⊃⊃ supp𝜓, then𝑊 ⋅ 𝑇 = 0 for any tangent vector 𝑇 on the

boundary 𝜕Ω and𝑊 ≡ 0 near 𝜕𝐵, so the Kadlec formula on
page 134 in [17] implies

∫
Ω

(div (𝜓∇𝑢))2𝑑𝑥

=

𝑛

∑

𝑖,𝑗=1

∫
Ω

𝜕𝑊
𝑖

𝜕𝑥
𝑗

𝜕𝑊
𝑗

𝜕𝑥
𝑖

𝑑𝑥 − ∫
𝜕(Ω∩𝐵)

(trB) (𝑊 ⋅ 𝑁)
2

𝑑𝜎,

(62)

where 𝑁 is the normal vector and trB is the trace of the
second fundamental quadratic form on the boundary, that is,
themean curvature of the boundary. For a convex domain we
have trB ≤ 0, and consequently

𝑛

∑

𝑖,𝑗=1

∫
Ω

𝜕𝑊
𝑖

𝜕𝑥
𝑗

𝜕𝑊
𝑗

𝜕𝑥
𝑖

𝑑𝑥 ≤ ∫
Ω

(∇𝜓∇𝑢 + 𝜓Δ𝑢)
2

𝑑𝑥. (63)

After a direct computation and using the inequality 2𝑎𝑏 ≤

(1/𝐶)𝑎
2

+ 𝐶𝑏
2, we have that

∫
Ω

𝜓
2
󵄨󵄨󵄨󵄨󵄨
∇

2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝐶∫
Ω

󵄨󵄨󵄨󵄨∇𝜓
󵄨󵄨󵄨󵄨

2

|∇𝑢|
2

𝑑𝑥 + 2∫
Ω

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2

|Δ𝑢|
2

𝑑𝑥,

(64)

with the absolute constant 𝐶 = 𝐶(𝑛) > 0 independent of 𝜓.
Thus by the nonsingular change of variables, we get, for any
𝑥
0
∈ Ω,

∫
Ω

𝜓
2
󵄨󵄨󵄨󵄨󵄨
∇

2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝐶∫
Ω

󵄨󵄨󵄨󵄨∇𝜓
󵄨󵄨󵄨󵄨

2

|∇𝑢|
2

𝑑𝑥

+ 2∫
Ω

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑖,𝑗

𝜕

𝜕𝑥
𝑖

(𝑎
𝑖𝑗

(𝑥
0
)
𝜕𝑢

𝜕𝑥
𝑗

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥,

(65)

with the absolute constant 𝐶 = 𝐶(𝑛, 𝜆) > 0 independent of
𝑥
0
and 𝜓.
Applying the inequality (65) and using the standard

perturbation procedure, we have the absolute constant 𝐶 =

𝐶(𝑛, 𝜆) > 0 such that

∫
Ω

𝜓
2
󵄨󵄨󵄨󵄨󵄨
∇

2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ 𝐶∫
Ω

󵄨󵄨󵄨󵄨∇𝜓
󵄨󵄨󵄨󵄨

2

|∇𝑢|
2

𝑑𝑥 + 4∫
Ω

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2

|div (𝐴∇𝑢)|2𝑑𝑥

+ 4𝑀
2

∫
Ω

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨𝑥 − 𝑥0

󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨󵄨
∇

2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥.

(66)

Now we decompose R𝑛 into a sequence of cubes {𝑄
𝑘
} such

that R𝑛

= ∪𝑄
𝑘
, 𝑄𝑜

𝑘
∩ 𝑄

𝑜

𝑖
= 0 for any 𝑘 ̸= 𝑖, and diam(2𝑄

𝑘
) =

𝑑 < (3𝑀)
−1 for all 𝑘. Let the cut-off functions 𝜒

𝑘
∈ 𝐶

∞

0
(2𝑄

𝑘
)

be the partition of the unity; namely, we can write that 𝜓 =

∑
∞

𝑘=1
𝜓𝜒

𝑘
. One can see from the inequality (66) that

∫
Ω

󵄨󵄨󵄨󵄨𝜓𝜒𝑘

󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨󵄨
∇

2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝐶∫
Ω

󵄨󵄨󵄨󵄨∇ (𝜓𝜒𝑘
)
󵄨󵄨󵄨󵄨

2

|∇𝑢|
2

𝑑𝑥

+ 𝐶∫
Ω

󵄨󵄨󵄨󵄨𝜓𝜒𝑘

󵄨󵄨󵄨󵄨

2

|div (𝐴∇𝑢)|2𝑑𝑥,
(67)
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with the constant 𝐶 independent of 𝜓 and 𝑘. Noting that the
sequence of cubes {2𝑄

𝑘
} has the finite intersect property, thus

there are constants 𝑁 > 0 and 𝐶 > 0 such that, for every
𝑥 ∈ Ω,

(

∞

∑

𝑘=1

󵄨󵄨󵄨󵄨𝜒𝑘
(𝑥)

󵄨󵄨󵄨󵄨)

2

≤ 𝑁

∞

∑

𝑘=1

󵄨󵄨󵄨󵄨𝜒𝑘
(𝑥)

󵄨󵄨󵄨󵄨

2

,

∞

∑

𝑘=1

(
󵄨󵄨󵄨󵄨𝜒𝑘

(𝑥)
󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨∇𝜒𝑘

(𝑥)
󵄨󵄨󵄨󵄨

2

) ≤ 𝐶.

(68)

From this and the inequality (67), we can deduce the inequal-
ity (61).

A routine limiting argument, see [17] for example, yields
the inequality (61) for all convex bounded domains or the
unbounded region above a convex Lipschitz graph. The lem-
ma is proved.

We also need the following lemma about the local esti-
mates of the derivatives.

Lemma 19. Suppose that Ω is a bounded convex domain or
an unbounded region above a convex Lipschitz graph, and 𝑓 ∈

𝐿
2

(Ω). Let 𝑢 ∈ 𝑊1,2

0
(Ω) be a solution of the Dirichlet problem

(7). Then, for any 𝜓 ∈ 𝐶
∞

0
(R𝑛

), one has

∫
Ω

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2

|∇𝑢|
2

𝑑𝑥 + ∫
Ω

𝑉
󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2

|𝑢|
2

𝑑𝑥

≤ 𝐶∫
Ω

󵄨󵄨󵄨󵄨∇𝜓
󵄨󵄨󵄨󵄨

2

|𝑢|
2

𝑑𝑥 + 𝐶∫
Ω

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨𝑢𝑓
󵄨󵄨󵄨󵄨 𝑑𝑥,

(69)

∫
Ω

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2

|∇𝑢|
2

𝑑𝑥 + ∫
Ω

𝑉
󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2

|𝑢|
2

𝑑𝑥

≤ 𝐶∫
Ω

󵄨󵄨󵄨󵄨∇𝜓
󵄨󵄨󵄨󵄨

2

|𝑢|
2

𝑑𝑥 + 𝐶𝑅
2

∫
Ω

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

2

𝑑𝑥,

(70)

with the constant 𝐶 = 𝐶(𝑛, 𝜆) > 0 independent of 𝜓, and 𝑅 =

diam(Ω ∩ supp𝜓).

Proof. Noting that 𝑢 ∈ 𝑊1,2

0
(Ω) satisfies

∫
Ω

(𝐴∇𝑢∇ (𝑢𝜓
2

) + 𝑉𝑢
2

𝜓
2

) 𝑑𝑥 = ∫
Ω

𝑓𝑢𝜓
2

𝑑𝑥, (71)

which, togetherwith the ellipticity of thematrix𝐴, follows the
inequality (69). Moreover, by this and the Cauchy inequality
and the Poincaré inequality, we have that

∫
Ω

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2

|∇𝑢|
2

𝑑𝑥 + ∫
Ω

𝑉
󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2

|𝑢|
2

𝑑𝑥

≤ 𝐶∫
Ω

󵄨󵄨󵄨󵄨∇𝜓
󵄨󵄨󵄨󵄨

2

|𝑢|
2

𝑑𝑥 + 𝐶∫
Ω

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨𝑢𝑓
󵄨󵄨󵄨󵄨 𝑑𝑥

≤ 𝐶∫
Ω

󵄨󵄨󵄨󵄨∇𝜓
󵄨󵄨󵄨󵄨

2

|𝑢|
2

𝑑𝑥 +
𝐶

𝜀
∫
Ω

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

2

𝑑𝑥 + 𝜀∫
Ω

󵄨󵄨󵄨󵄨𝜓𝑢
󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ 𝐶∫
Ω

󵄨󵄨󵄨󵄨∇𝜓
󵄨󵄨󵄨󵄨

2

|𝑢|
2

𝑑𝑥+
𝐶

𝜀
∫
Ω

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

2

𝑑𝑥 + 𝜀𝑅
2

∫
Ω

󵄨󵄨󵄨󵄨∇ (𝜓𝑢)
󵄨󵄨󵄨󵄨

2

𝑑𝑥.

(72)

Taking 𝜀 = (2𝑅)
−2 in the inequality above, we deduce the

inequality (70).

From Lemmas 17–19, we have the following local esti-
mates of the second-order derivatives of the solution 𝑢 for the
Dirichlet problem (7).

Theorem 20. Suppose that Ω is a bounded convex domain or
an unbounded region above a convex Lipschitz graph, 𝑉 ∈ B

𝑛

and 𝑓 ∈ 𝐿
2

(Ω). Let 𝑢 ∈ 𝑊
1,2

0
(Ω) be a solution of Dirichlet

problem (7). Then 𝜓∇2

𝑢 ∈ 𝐿
2

(Ω) for any 𝜓 ∈ 𝐶
∞

0
(R𝑛

), and
one has

∫
Ω

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨󵄨
∇

2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ 𝐶∫
Ω

(
󵄨󵄨󵄨󵄨󵄨
∇

2

𝜓
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨∇𝜓

󵄨󵄨󵄨󵄨

2

) |𝑢|
2

𝑑𝑥

+ 𝐶∫
Ω

(
󵄨󵄨󵄨󵄨∇𝜓

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2

)
󵄨󵄨󵄨󵄨𝑢𝑓

󵄨󵄨󵄨󵄨 𝑑𝑥 + 𝐶∫
Ω

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

2

𝑑𝑥,

(73)

∫
Ω

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨󵄨
∇

2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ 𝐶∫
Ω

(
󵄨󵄨󵄨󵄨󵄨
∇

2

𝜓
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨∇𝜓

󵄨󵄨󵄨󵄨

2

) |𝑢|
2

𝑑𝑥

+ 𝐶𝑅
2

∫
Ω

(
󵄨󵄨󵄨󵄨∇𝜓

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2

)
󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

2

𝑑𝑥 + 𝐶∫
Ω

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

2

𝑑𝑥,

(74)

with the constant 𝐶 = 𝐶(𝑛, 𝜆, 𝐾
𝑛
,𝑀) > 0 independent of 𝜓,

and 𝑅 := diam(Ω ∩ supp𝜓).
Particularly, if Ω is a bounded convex domain, one has

∫
Ω

󵄨󵄨󵄨󵄨󵄨
∇

2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝐶 (Ω)∫
Ω

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

2

𝑑𝑥, (75)

with the constant 𝐶(Ω) = 𝐶(𝑛, 𝜆, 𝐾
𝑛
,𝑀, diam(Ω)) > 0.

Proof. Applying Lemmas 17–19, we obtain the inequality (73)
from (58), (61), and (69) and get the inequality (74) from (58),
(61), and (70). Letting 𝜓(𝑥) ≡ 1 for 𝑥 ∈ Ω in the inequality
(74), we obtain the inequality (75).

Theorem 21. Suppose that Ω is an unbounded region above
a convex Lipschitz graph, 𝑉 ∈ B

𝑛
and 𝑓 ∈ 𝐿

2

(Ω). Let 𝑢 ∈

𝑊
1,2

0
(Ω) be a solution to −Δ𝑢 + 𝑉𝑢 = 𝑓 in Ω. Then ∇2

𝑢 ∈

𝐿
2

(Ω), and for any 𝜓 ∈ 𝐶
∞

0
(R𝑛

), and one has

∫
Ω

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨󵄨
∇

2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ 𝐶∫
Ω

󵄨󵄨󵄨󵄨󵄨
∇

2

𝜓
󵄨󵄨󵄨󵄨󵄨

2

|𝑢|
2

𝑑𝑥

+ 𝐶∫
Ω

󵄨󵄨󵄨󵄨∇𝜓
󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨𝑢𝑓
󵄨󵄨󵄨󵄨 𝑑𝑥 + 𝐶∫

Ω

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

2

𝑑𝑥,

(76)

with the constant𝐶 = 𝐶(𝑛, 𝜆, 𝐾
𝑛
) > 0 independent of𝜓. More-

over,

∫
Ω

󵄨󵄨󵄨󵄨󵄨
∇

2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝐶∫
Ω

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

2

𝑑𝑥. (77)
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Proof. Repeating the proof of Theorem 20, and using the
inequality (64) in place of the inequality (61), we can then
deduce estimate (76). Next, by choosing𝜓 = 1 on 𝐵(0, 𝑅) and
|∇𝜓| ≤ 𝑅

−1, |∇2

𝜓| ≤ 𝑅
−2, and by taking the limit as 𝑅 tends

to infinity, we find that ∇2

𝑢 ∈ 𝐿
2

(Ω) and the global estimate
(77) holds.

4. The Proof of the Main Theorems

Proof of Theorem 1. By the atomic decomposition theory, it
suffices to show the uniform estimates for the solution 𝑢 of
the equationL𝑢 = 𝑎 inΩ with the 𝑝-atom 𝑎 and 𝑛/(𝑛 + 1) <
𝑝 ≤ 1.

Without loss of generality, we assume that ∫
Ω

𝑎(𝑥)𝑑𝑥 = 0,
supp 𝑎 ⊂ 𝑄(0, 𝑟) ⊂ Ω and ‖𝑎‖

𝐿
2 ≤ |𝑄(0, 𝑟)|

1/2−1/𝑝, where
𝑄(0, 𝑟) denotes the cubewith center 0 and side length 𝑟. Using
the inequality (75) ofTheorem20 and the size condition of the
atom 𝑎, we see that, for 𝑛/(𝑛 + 1) < 𝑝 ≤ 1,

∫
Ω∩𝑄(0,2𝑟)

󵄨󵄨󵄨󵄨󵄨
∇

2

𝑢
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑥 ≤ |𝑄 (0, 2𝑟)|
1−𝑝/2

(∫
Ω

󵄨󵄨󵄨󵄨󵄨
∇

2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥)

𝑝/2

≤ 𝐶,

(78)

with the constant 𝐶 independent of 𝑟.
Recall the inequality (74) of Theorem 20 and let the cut-

off function𝜓 ∈ 𝐶
∞

0
(𝑄(0, 2

𝑗+2

𝑟)\𝑄(0, 2
𝑗−1

𝑟)) satisfy𝜓 = 1 in
𝑄(0, 2

𝑗+1

𝑟)\𝑄(0, 2
𝑗

𝑟) and |𝜓|+2𝑗𝑟|∇𝜓|+(2𝑗𝑟)2|∇2

𝜓| ≤ 𝐶with
an absolute constant 𝐶 independent of 𝑟 and 𝑗, 𝑗 = 1, 2, . . .,
thenwe see from theHölder inequality and the support of the
atom 𝑎 that, for 𝑛/(𝑛 + 1) < 𝑝 ≤ 1,

∫
Ω∩(𝑄(0,2

𝑗+1
𝑟)\𝑄(0,2

𝑗
𝑟))

󵄨󵄨󵄨󵄨󵄨
∇

2

𝑢
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑥

≤
󵄨󵄨󵄨󵄨󵄨
𝑄 (0, 2

𝑗+1

𝑟)
󵄨󵄨󵄨󵄨󵄨

1−𝑝/2

(∫
Ω∩(𝑄(0,2

𝑗+1
𝑟)\𝑄(0,2

𝑗
𝑟))

󵄨󵄨󵄨󵄨󵄨
∇

2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥)

𝑝/2

≤ 𝐶(2
𝑗

𝑟)
𝑛−𝑛𝑝/2

(((2
𝑗

𝑟)
−2

+ (2
𝑗

𝑟)
−4

)

×∫
Ω∩(𝑄(0,2

𝑗+2
𝑟)\𝑄(0,2

𝑗−1
𝑟))

|𝑢|
2

𝑑𝑥)

𝑝/2

≤ 𝐶(2
𝑗

𝑟)
𝑛−𝑛𝑝/2−2𝑝

(∫
Ω∩(𝑄(0,2

𝑗+2
𝑟)\𝑄(0,2

𝑗−1
𝑟))

|𝑢|
2

𝑑𝑥)

𝑝/2

.

(79)

Observing

𝑢 (𝑥) = ∫
Ω

[𝐺 (𝑦, 𝑥) − 𝐺 (0, 𝑥)] 𝑎 (𝑦) 𝑑𝑦, (80)

and using the estimates for the Green function, Lemma 16
and the size condition of the 𝑝-atom 𝑎, we can estimate the
last integral in the inequality (79) above. Then we have that

∫
Ω∩(𝑄(0,2

𝑗+1
𝑟)\𝑄(0,2

𝑗
𝑟))

󵄨󵄨󵄨󵄨󵄨
∇

2

𝑢
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑥 ≤ 𝐶(2
𝑗

)
𝑛−𝑝−𝑛𝑝

. (81)

The inequalities (78) and (81) follow that

∫
Ω

󵄨󵄨󵄨󵄨󵄨
∇

2

𝑢 (𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑥 ≤ 𝐶 + 𝐶

𝐽

∑

𝑗=1

(2
𝑗

)
𝑛−𝑝−𝑛𝑝

≤ 𝐶, (82)

with the constant 𝐶 independent of 𝑎, which implies the
theorem.

Proof of Theorem 2. It’s enough to consider the case 𝑓(𝑥) =
𝑎(𝑥), a 𝑝-atom with its support cube 𝑄(0, 𝑟) ⊂ R𝑛. Then the
Hölder inequality and the𝐿2-estimate (77) inTheorem21 give
that

∫
Ω∩𝑄(0,2𝑟)

󵄨󵄨󵄨󵄨󵄨
∇

2

𝑢
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑥

≤ 𝐶|𝑄 (0, 2𝑟)|
1−𝑝/2

(∫
Ω∩𝑄(0,𝑟)

|𝑎 (𝑥)|
2

𝑑𝑥)

𝑝/2

≤ 𝐶.

(83)

On the other hand, if we use the inequality (76) and
take the cut-off function 𝜓 ∈ 𝐶

∞

0
(𝑄(0, 2

𝑗+2

𝑟) \ 𝑄(0, 2
𝑗−1

𝑟))

satisfying𝜓 = 1 in𝑄(0, 2𝑗+1𝑟)\𝑄(0, 2𝑗𝑟) and (2𝑗𝑟)2|∇2

𝜓| ≤ 𝐶

with the constant 𝐶 independent of 𝑟 and 𝑗, then we have

∫
Ω∩(𝑄(0,2

𝑗+1
𝑟)\𝑄(0,2

𝑗
𝑟))

󵄨󵄨󵄨󵄨󵄨
∇

2

𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ 𝐶(2
𝑗

𝑟)
−4

∫
Ω∩(𝑄(0,2

𝑗+2
𝑟)\𝑄(0,2

𝑗−1
𝑟))

|𝑢|
2

𝑑𝑥.

(84)

Now using the Hölder inequality and the estimates of the
𝑢, by the similar arguments as that in the proof ofTheorem 1,
we obtain that

∫
Ω

󵄨󵄨󵄨󵄨󵄨
∇

2

𝑢 (𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑥 ≤ 𝐶 + 𝐶

∞

∑

𝑗=1

(2
𝑗

)
𝑛−𝑝−𝑛𝑝

≤ 𝐶, (85)

with the constant 𝐶 independent of the 𝑝-atom 𝑎, which
implies the theorem.
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