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We consider the linear programming problem with uncertainty set described by (𝑝, 𝑤)-norm. We suggest that the robust
counterpart of this problem is equivalent to a computationally convex optimization problem. We provide probabilistic guarantees
on the feasibility of an optimal robust solution when the uncertain coefficients obey independent and identically distributed normal
distributions.

1. Introduction

Robust optimization is a rapidly developing methodology to
address the optimization problems under uncertainty. Com-
pared with sensitivity analysis and stochastic programming,
the robust optimization approach can handle cases where
fluctuations of the data may be large and can guarantee
satisfaction of hard constraints which are required in some
practical settings. The advantage of the robust optimization
is that it could prevent the optimal solution against any
realization of the uncertainty in a given bounded uncertainty
set. The robust linear optimization problem where the data
are uncertain was first introduced by Soyster [1]. The basic
idea is to assume that the vector of uncertain data can be
any point (scenario) in the uncertainty set, to find a solution
that satisfies all the constraints for any possible scenario from
the uncertainty set, and to optimize the worst-case value of
the objective function. Ben-Tal and Nemirovski [2, 3] and
El Ghaoui et al. [4, 5] addressed the overconservatism of
robust solutions by allowing the uncertainty sets for the data
to be ellipsoids and proposed some efficient algorithms to
solve convex optimization problems under data uncertainty.
Bertsimas et al. [6, 7] proposed a different approach to
control the level of conservatism on the solution that has the
advantage that leads to a linear optimizationmodel. Formore
about the robust optimization, we refer to [8–15].

Consider the following linear programming problem:
max 𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏,

𝑥 ∈ 𝑃𝑥,

(1)

where 𝑥 ∈ 𝑅𝑛×1, 𝐴 ∈ 𝑅𝑚×𝑛 is a uncertain matrix which
belongs to an uncertainty set 𝑈, 𝑐 ∈ 𝑅𝑛×1, and 𝑃𝑥 is a given
set. The robust counterpart of problem (1) is

max 𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏,

𝑥 ∈ 𝑃𝑥,

𝐴 ∈ 𝑈.

(2)

An optimal solution 𝑥∗ is said to be a robust solution if
and only if it satisfies all the constraints for any 𝐴 ∈ 𝑈.

In this paper, we consider the linear optimization problem
(1) with uncertainty set described by (𝑝, 𝑤)-norm for the
reason not only tomake up the disadvantages of the uncertain
parameters of all possible values that will give the same
weight, but also to consider the robust cost of the robust
optimization model which is mentioned in [6]. We suggest
the robust counterpart of problem (1) that is a compu-
tationally convex optimization problem. We also provide
probabilistic guarantees on the feasibility of an optimal robust
solution when the uncertain coefficients obey independent
and identically distributed normal distributions.
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Here is the structure of this paper. In Section 2, we
introduce the (𝑝, 𝑤)-norm and its dual norm and give the
comparison with the Euclidean norm. In Section 3, we show
that the linear optimization problem (1) with uncertainty set
described by (𝑝, 𝑤)-norm is equivalent to a convex program-
ming. In Section 4, we provide probabilistic guarantees on the
feasibility of an optimal robust solution when the uncertainty
set 𝑈 is described by the (𝑝, 𝑤)-norm.

2. The (𝑝,𝑤)-Norm

In this section, we introduce the (𝑝, 𝑤)-norm and its dual
norm. Furthermore, we show worst-case bounds on the
proximity of the (𝑝, 𝑤)-norm as opposed to the Euclidean
norm considered in Ben-Tal and Nemirovski [2, 10] and El
Ghaoui et al. [4, 5].

2.1. The (𝑝,𝑤)-Norm and Its Dual. We consider the 𝑖th
constraint of the problem (1), 𝑎󸀠

𝑖
𝑥 ≤ 𝑏

𝑖
. We denote by 𝐽

𝑖
the

set of coefficients 𝑎
𝑖𝑗
, and 𝑎

𝑖𝑗
, 𝑗 ∈ 𝐽

𝑖
takes values in the interval

[𝑎
𝑖𝑗
− 𝑎
𝑖𝑗
, 𝑎
𝑖𝑗
+ 𝑎
𝑖𝑗
] according to a symmetric distribution with

mean equal to the nominal value 𝑎
𝑖𝑗
. For every 𝑖, we introduce

a parameter 𝑝
𝑖
, which takes values in the interval [0, |𝐽

𝑖
|]. It is

unlike the case that all of the 𝑎
𝑖𝑗
, 𝑗 ∈ 𝐽

𝑖
will change, which is

proposed by [1]. Our goal is to protect the cases that are up to
⌈𝑝
𝑖
⌉ of these coefficients which are allowed to change and take

theworst-case values at the same time.Next, we introduce the
following definition of (𝑝, 𝑤)-norm.

Definition 1. For a given nonzero vector,𝑤 ∈ 𝑅𝑛 with𝑤
𝑗
> 0,

𝑗 = 1, . . . , 𝑛, we define the (𝑝, 𝑤)-norm as

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝,𝑤 = max

{𝑆|𝑆⊆𝐽,|𝑆|≤⌈𝑝⌉}

{
{
{

∑
𝑗∈𝑆

𝑤
𝑗

󵄨󵄨󵄨󵄨󵄨𝑦𝑗
󵄨󵄨󵄨󵄨󵄨
}
}
}

, (3)

with 𝑦 ∈ 𝑅𝑛.

Remark 2. Obviously, ‖𝑦‖
𝑝,𝑤

is indeed a norm, since

(1) ‖𝑦‖
𝑝,𝑤
≥ 0, and ‖𝑦‖

𝑝,𝑤
= 0 if and only if 𝑦 = 0, since

𝑤 is not a zero matric, with 𝑤
𝑗
> 0, 𝑗 = 1, . . . , 𝑛;

(2)

󵄩󵄩󵄩󵄩𝛼𝑦
󵄩󵄩󵄩󵄩𝑝,𝑤 = max

{𝑆|𝑆⊆𝐽,|𝑆|≤⌈𝑝⌉}

{
{
{

∑
𝑗∈𝑆

𝑤
𝑗

󵄨󵄨󵄨󵄨󵄨𝛼𝑦𝑗
󵄨󵄨󵄨󵄨󵄨
}
}
}

= |𝛼| max
{𝑆|𝑆⊆𝐽,|𝑆|≤⌈𝑝⌉}

{
{
{

∑
𝑗∈𝑆

𝑤
𝑗

󵄨󵄨󵄨󵄨󵄨𝑦𝑗
󵄨󵄨󵄨󵄨󵄨
}
}
}

= |𝛼| 󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝,𝑤;

(4)

(3)
󵄩󵄩󵄩󵄩𝑥 + 𝑦

󵄩󵄩󵄩󵄩𝑝,𝑤

= max
{𝑆|𝑆⊆𝐽,|𝑆|≤⌈𝑝⌉}

{
{
{

∑
𝑗∈𝑆

𝑤
𝑗

󵄨󵄨󵄨󵄨󵄨𝑥𝑗 + 𝑦𝑗
󵄨󵄨󵄨󵄨󵄨
}
}
}

≤ max
{𝑆|𝑆⊆𝐽,|𝑆|≤⌈𝑝⌉}

{
{
{

∑
𝑗∈𝑆

𝑤
𝑗

󵄨󵄨󵄨󵄨󵄨𝑦𝑗
󵄨󵄨󵄨󵄨󵄨
}
}
}

+ max
{𝑆|𝑆⊆𝐽,|𝑆|≤⌈𝑝⌉}

{
{
{

∑
𝑗∈𝑆

𝑤
𝑗

󵄨󵄨󵄨󵄨󵄨𝑥𝑗
󵄨󵄨󵄨󵄨󵄨
}
}
}

≤ ‖𝑥‖𝑝,𝑤 +
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝,𝑤.

(5)

Remark 3. (1) Supposed that

(i) 𝑦
1
≥ 𝑦
2
≥ ⋅ ⋅ ⋅ ≥ 𝑦

𝑛
≥ 0;

(ii) 𝑤
1
= 𝑤
2
= ⋅ ⋅ ⋅ = 𝑤

⌊𝑝⌋
= 1, 𝑤

⌈𝑝⌉
= 𝑝 − ⌊𝑝⌋, 𝑤

𝑖
≤ 𝑤
⌈𝑝⌉

,
⌈𝑝⌉ < 𝑖 ≤ 𝑛;

then the (𝑝, 𝑤)-norm degenerates into 𝐷-norm studied by
Bertsimas and Sim [6]; that is,

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝 = max

{𝑆∪𝑡|𝑆⊆𝐽,|𝑆|≤⌊𝑝⌋,𝑡∈𝐽\𝑆}

{
{
{

∑
𝑗∈𝑆

󵄨󵄨󵄨󵄨󵄨𝑦𝑗
󵄨󵄨󵄨󵄨󵄨 + (𝑝 − ⌊𝑝⌋)

󵄨󵄨󵄨󵄨𝑦𝑡
󵄨󵄨󵄨󵄨
}
}
}

. (6)

(2) If 𝑤 = (1, . . . , 1)𝑇 and 𝑝 = 𝑛, then (𝑝, 𝑤)-norm
degenerates into 𝐿1, and we can get ‖𝑦‖

𝑝,𝑤
= ‖𝑦‖

𝑛,𝑒
= ∑𝑛
𝑖=1
𝑦
𝑖
,

𝑖 = 1, . . . , 𝑛.
(3) If 𝑤 = (1, . . . , 1)𝑇 and 𝑝 = 1, then (𝑝, 𝑤)-norm

degenerates into 𝐿∞, and we have ‖𝑦‖
𝑝,𝑤
= ‖𝑦‖

1,𝑒
= max |𝑦

𝑖
|,

𝑖 = 1, . . . , 𝑛.
Next we derive the dual norm.

Proposition 4. The dual norm of the (𝑝, 𝑤)-norm is

‖𝑠‖∗
𝑝,𝑤
= max{

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑠

𝑤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞
,
‖𝑠/𝑤‖1
⌈𝑝⌉

} , (7)

with 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)𝑇, 𝑤
𝑗
> 0, 𝑗 = 1, . . . , 𝑛.

Proof. The norm ‖𝑦‖
𝑝,𝑤

is equivalent to

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝,𝑤 = max

𝑛

∑
𝑗=1

𝜇
𝑗
𝑤
𝑗

󵄨󵄨󵄨󵄨󵄨𝑦𝑗
󵄨󵄨󵄨󵄨󵄨

s.t.
𝑛

∑
𝑗=1

𝜇
𝑗
≤ ⌈𝑝⌉ ,

0 ≤ 𝜇
𝑗
≤ 1,

𝑤
𝑗
> 0, 𝑗 = 1, . . . , 𝑛.

(8)

According to linear programming strong duality, we have

min ⌈𝑝⌉ 𝑟 +
𝑛

∑
𝑗=1

𝑡
𝑗
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s.t. 𝑟 + 𝑡
𝑗
≥ 𝑤
𝑗

󵄨󵄨󵄨󵄨󵄨𝑦𝑗
󵄨󵄨󵄨󵄨󵄨 ,

𝑟 ≥ 0,

𝑡
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛,

𝑤
𝑗
> 0, 𝑗 = 1, . . . , 𝑛.

(9)

Then, ‖𝑦‖
𝑝,𝑤
≤ 1 if and only if

⌈𝑝⌉ 𝑟 +
𝑛

∑
𝑗=1

𝑡
𝑗
≤ 1, 𝑟 + 𝑡

𝑗
≥ 𝑤
𝑗

󵄨󵄨󵄨󵄨󵄨𝑦𝑗
󵄨󵄨󵄨󵄨󵄨 ,

𝑟 ≥ 0, 𝑡
𝑗
≥ 0, 𝑤

𝑗
> 0, 𝑗 = 1, . . . , 𝑛,

(10)

is feasible.
We give the following dual norm ‖𝑠‖∗

𝑝,𝑤
by

‖𝑠‖∗
𝑝,𝑤
= max
‖𝑦‖𝑝,𝑤≤1

𝑠󸀠𝑦. (11)

From (10) we obtain that

‖𝑠‖∗
𝑝,𝑤
= max 𝑠󸀠𝑦

s.t. ⌈𝑝⌉ 𝑟 +
𝑛

∑
𝑗=1

𝑡
𝑗
≤ 1,

𝑤
𝑗
𝑦
𝑗
− 𝑟 − 𝑡

𝑗
≤ 0, 𝑗 = 1, . . . , 𝑛,

− 𝑤
𝑗
𝑦
𝑗
− 𝑟 − 𝑡

𝑗
≤ 0, 𝑗 = 1, . . . , 𝑛,

𝑟 ≥ 0,

𝑡
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛,

𝑤
𝑗
> 0, 𝑗 = 1, . . . , 𝑛.

(12)

Using the LP duality again we have

‖𝑠‖∗
𝑝,𝑤
= min 𝜃

s.t. ⌈𝑝⌉ 𝜃 −
𝑛

∑
𝑗=1

𝜇
𝑗
−
𝑛

∑
𝑗=1

]
𝑗
≥ 0,

𝜃 − 𝜇
𝑗
− ]
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛,

(𝜇
𝑗
− ]
𝑗
)𝑤
𝑗
= 𝑠
𝑗
, 𝑗 = 1, . . . , 𝑛,

𝜃 ≥ 0, 𝜇
𝑗
≥ 0, ]

𝑗
≥ 0,

𝑗 = 1, . . . , 𝑛,

𝑤
𝑗
> 0, 𝑗 = 1, . . . , 𝑛.

(13)

Thus,

‖𝑠‖∗
𝑝,𝑤
= min 𝜃

s.t. 𝜃 ≥
󵄨󵄨󵄨󵄨󵄨𝑠𝑗
󵄨󵄨󵄨󵄨󵄨

𝑤
𝑗

, 𝑗 = 1, . . . , 𝑛

𝜃 ≥
∑𝑛
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑠𝑗
󵄨󵄨󵄨󵄨󵄨 /𝑤𝑗

⌈𝑝⌉
,

𝑤
𝑗
> 0, 𝑗 = 1, . . . , 𝑛,

(14)

and we obtain that

‖𝑠‖∗
𝑝,𝑤
= max{

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑠

𝑤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞
,
‖𝑠/𝑤‖1
⌈𝑝⌉

} . (15)

Remark 5. (1) When the (𝑝, 𝑤)-norm degenerates into 𝐷-
norm, we can get its dual norm:

‖𝑠‖∗
𝑝
= max (‖𝑠‖∞, ‖𝑠‖1/𝑝) . (16)

(2)When the (𝑝, 𝑤)-normdegenerates into 𝐿1, we can get
its dual norm:

‖𝑠‖∗
𝑛,𝑒
= ‖𝑠‖∞. (17)

(3) When the (𝑝, 𝑤)-norm degenerates into 𝐿∞, we can
get its dual norm:

‖𝑠‖∗
1,𝑒
= ‖𝑠‖1. (18)

2.2. Comparison with the Euclidean Norm. The uncertainty
sets in the related literatures have been described using the
Euclidean norm and it is of interest to study the proximity
between the (𝑝, 𝑤)-norm and the Euclidean norm.

Proposition 6. For every 𝑦 ∈ 𝑅𝑛,

min{min
𝑗∈𝑆

{𝑤
𝑗
} ,
∑
𝑗∈𝑆
𝑤
𝑗

√𝑛
} ≤

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝,𝑤
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩2
≤ √∑
𝑗∈𝑆

𝑤2
𝑗
,

min
{{
{{
{

1

√∑
𝑘∈𝑁
𝑤2
𝑘

,
min
𝑘∈𝑁
{1/𝑤
𝑘
}

⌈𝑝⌉

}}
}}
}

≤

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
∗

𝑝,𝑤

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩2
≤ max

{{
{{
{

𝑛

√∑
𝑘∈𝑁
𝑤2
𝑘
⌈𝑝⌉
,min
𝑘∈𝑁

{
1

𝑤
𝑘

}
}}
}}
}

.

(19)

Proof. First, we will give a lower bound on ‖𝑦‖
𝑝,𝑤
/‖𝑦‖
2
by

solving the following problem:

max ∑
𝑗∈𝑁

𝑦2
𝑗

s.t. 󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝,𝑤 = 1,

(20)

where𝑁 = {1, . . . , 𝑛}.
Let 𝑆 = {1, . . . , ⌈𝑝⌉}; we can get that 𝑦

𝑗
≥ 𝑦
𝑡
, ∀𝑗 ∈ 𝑆, and

𝑦
𝑗
≤ 𝑦
𝑡
, ∀𝑗 ∈ 𝑁\𝑆. It is easy to see that the objective function
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can never decrease if we let 𝑦
𝑗
= 𝑦
𝑡
, ∀𝑗 ∈ 𝑁 \ 𝑆; then we have

that (20) is equivalent to the following problem:

max ∑
𝑗∈𝑆

𝑦2
𝑗
+ (𝑛 − ⌈𝑝⌉) 𝑦2

𝑡

s.t. ∑
𝑗∈𝑆

𝑤
𝑗

󵄨󵄨󵄨󵄨󵄨𝑦𝑗
󵄨󵄨󵄨󵄨󵄨 = 1,

𝑤
𝑗
> 0,

𝑦
𝑗
≥ 𝑦
𝑡
, 𝑗 ∈ 𝑆,

𝑦
𝑡
≥ 0.

(21)

Our goal is to maximize the convex function over a poly-
tope; then there exists an extreme point optimal solution for
the above problem. We can get the |𝑆| + 1 extreme points:

𝑦𝑗 =
𝑒
𝑗

𝑤
𝑗

, 𝑗 ∈ 𝑆,

𝑦|𝑆|+1 =
𝑒

∑
𝑗∈𝑆
𝑤
𝑗

,

(22)

where 𝑒
𝑗
is the unit vector with the 𝑗th element equal to

one and the rest is equal to zero. Obviously, the problem can
get the optimum value of max{max

𝑗∈𝑆
{1/𝑤2
𝑗
}, 𝑛/(∑

𝑗∈𝑆
𝑤
𝑗
)2}.

Then the inequality follows as

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩2 ≤ max{max

𝑗∈𝑆

{
1

𝑤
𝑗

} ,
√𝑛

∑
𝑗∈𝑆
𝑤
𝑗

} 󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝,𝑤, (23)

by taking the square root.
By the same way, in order to obtain an upper bound of

‖𝑦‖
𝑝,𝑤
/‖𝑦‖
2
, by solving the following nonlinear optimization

problem:

min ∑
𝑗∈𝑁

𝑦2
𝑗

s.t. 󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝,𝑤 = 1,

(24)

clearly, the objective function can never increase with 𝑦
𝑗
=

0, ∀𝑗 ∈ 𝑁 \ 𝑆, and we can show that the above problem is
equivalent to the following problem:

min ∑
𝑗∈𝑆

𝑦2
𝑗

s.t. ∑
𝑗∈𝑆

𝑤
𝑗

󵄨󵄨󵄨󵄨󵄨𝑦𝑗
󵄨󵄨󵄨󵄨󵄨 = 1

𝑤
𝑗
> 0,

𝑦
𝑗
≥ 0, 𝑗 ∈ 𝑆.

(25)

Firstly, we use Lagrange multiplier methods reformulat-
ing the problem as

𝐿 (𝑦, 𝜇) = ∑
𝑗∈𝑆

𝑦2
𝑗
+ 𝜇(∑

𝑗∈𝑆

𝑤
𝑗
𝑦
𝑗
− 1) . (26)

Applying the KKT conditions for this problem, an opti-
mal solution can be found:

𝑦
𝑗
=

𝑤
𝑗

∑
𝑗∈𝑆
𝑤2
𝑗

, 𝑗 ∈ 𝑆; (27)

otherwise, 𝑦
𝑗
= 0. It is easy to see that the optimal objective

value is 1/∑
𝑗∈𝑆
𝑤2
𝑗
. By taking the square root, we have that

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩2 ≥

1

√∑𝑗∈𝑆𝑤
2

𝑗

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝,𝑤; (28)

that is,

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝,𝑤 ≤ √∑

𝑗∈𝑆

𝑤2
𝑗

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩2. (29)

Since

1 ≤
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩2
≤ √𝑛,

1

√𝑛
≤
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩∞
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩2
≤ 1.

(30)

So we can deduce that

min
𝑘∈𝑁

{
1

𝑤
𝑘

} ≤
󵄩󵄩󵄩󵄩𝑦/𝑤

󵄩󵄩󵄩󵄩1
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩2

≤
𝑛

√∑
𝑘∈𝑁
𝑤2
𝑘

,

1

√∑
𝑘∈𝑁
𝑤2
𝑘

≤
󵄩󵄩󵄩󵄩𝑦/𝑤

󵄩󵄩󵄩󵄩∞
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩2

≤ min
𝑘∈𝑁

{
1

𝑤
𝑘

} ,

‖𝑠‖∗
𝑝,𝑤
= max{

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑠

𝑤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞
,
‖𝑠/𝑤‖1
⌈𝑝⌉

} ,

(31)

with 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)𝑇, 𝑤
𝑖
> 0, 𝑖 = 1, . . . , 𝑛.

Thus, we have

min
{{
{{
{

1

√∑
𝑘∈𝑁
𝑤2
𝑘

,
min
𝑘∈𝑁
{1/𝑤
𝑘
}

⌈𝑝⌉

}}
}}
}

≤

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
∗

𝑝,𝑤

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩2
≤ max

{{
{{
{

𝑛

√∑
𝑘∈𝑁
𝑤2
𝑘
⌈𝑝⌉
,min
𝑘∈𝑁

{
1

𝑤
𝑘

}
}}
}}
}

.

(32)

Therefore, the results hold.

Remark 7. (1) When ‖𝑦‖
𝑝,𝑤
= ‖𝑦‖

𝑝
, we obtain the compari-

son between𝐷-norm and Euclidean norm easily; that is,

min{1,
𝑝

√𝑛
} ≤

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩2
≤ √⌊𝑝⌋ + (𝑝 − ⌊𝑝⌋)

2
. (33)

The comparison between the duality of 𝐷-norm and
Euclidean norm is

min{ 1
𝑝
,
1

√𝑛
} ≤

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
∗

𝑝

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩2
≤ max{√𝑛

𝑝
, 1} . (34)
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(2) When (𝑝, 𝑤)-norm degenerates into 𝐿1 and 𝐿∞, the
comparison results are

1 ≤
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩2
≤ √𝑛,

1

√𝑛
≤
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩∞
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩2
≤ 1.

(35)

3. Robust Counterpart

In this section, we will show that the robust formulation of (1)
with the (𝑝, 𝑤)-norm is equivalent to a linear programming
problem.

We consider the following robust formulation of (1) with
the (𝑝, 𝑤)-norm:

max 𝑐𝑇𝑥

s.t.
𝑛

∑
𝑗=1

𝑎
𝑖𝑗
𝑥
𝑗
+ max
{𝑆𝑖|𝑆𝑖⊆𝐽𝑖 ,|𝑆𝑖|=⌈𝑝𝑖⌉}

{
{
{

∑
𝑗∈𝑆𝑖

𝑎
𝑖𝑗
𝑤
𝑗
𝑦
𝑗

}
}
}

≤ 𝑏
𝑖
, 𝑖 = 1, . . . , 𝑛,

− 𝑦
𝑗
≤ 𝑥
𝑗
≤ 𝑦
𝑗
, 𝑗 = 1, . . . , 𝑛,

𝑙 ≤ 𝑥 ≤ 𝑢,

𝑦
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛,

𝑤
𝑗
> 0, 𝑗 = 1, . . . , 𝑛.

(36)

If 𝑝
𝑖
is selected as an integer, the protection function of

the 𝑖th constraint is

𝛽
𝑖
(𝑥, 𝑝
𝑖
) = max
{𝑆𝑖|𝑆𝑖⊆𝐽𝑖 ,|𝑆𝑖|=𝑝𝑖}

{
{
{

∑
𝑗∈𝑆𝑖

𝑎
𝑖𝑗
𝑤
𝑗

󵄨󵄨󵄨󵄨󵄨𝑥𝑗
󵄨󵄨󵄨󵄨󵄨
}
}
}

. (37)

Note that when 𝑝
𝑖
= 0, 𝛽

𝑖
(𝑥, 𝑝
𝑖
) = 0, the constraints are

equivalent to the nominal problem. And if 𝑝
𝑖
= |𝐽
𝑖
|, 𝑤
𝑗
= 1,

∀𝑗, we have the method of Soyster [1]. Likewise, if we assume
that 𝑦

1
≥ 𝑦
2
≥ ⋅ ⋅ ⋅ ≥ 𝑦

𝑛
≥ 0 and 𝑤

1
= 𝑤
2
= ⋅ ⋅ ⋅ = 𝑤

⌊𝑝⌋
= 1,

𝑤
⌈𝑝⌉
= 𝑝 − ⌊𝑝⌋, we have the method of Bertsimas and Sim

[6]. Therefore, by varying 𝑝
𝑖
∈ [0, |𝐽

𝑖
|], we have the flexibility

of adjusting the robustness of the method against the level of
conservatism of the solution.

We need the following proposition to reformulate (36) as
a linear programming problem.

Proposition 8. Given a vector 𝑥∗, the protection function of
the 𝑖th constraint,

𝛽
𝑖
(𝑥∗, 𝑝

𝑖
) = max
{𝑆𝑖|𝑆𝑖⊆𝐽𝑖,|𝑆𝑖|=⌈𝑝𝑖⌉}

{
{
{

∑
𝑗∈𝑆𝑖

𝑎
𝑖𝑗
𝑤
𝑗

󵄨󵄨󵄨󵄨󵄨𝑥
∗

𝑗

󵄨󵄨󵄨󵄨󵄨
}
}
}

, (38)

is equivalent to the following linear programming problem:

𝛽
𝑖
(𝑥∗, 𝑝

𝑖
) = max ∑

𝑗∈𝐽𝑖

𝑎
𝑖𝑗
𝑤
𝑗

󵄨󵄨󵄨󵄨󵄨𝑥
∗

𝑗

󵄨󵄨󵄨󵄨󵄨 𝑧𝑖𝑗

s.t. ∑
𝑗∈𝐽𝑖

𝑧
𝑖𝑗
≤ ⌈𝑝
𝑖
⌉ ,

0 ≤ 𝑧
𝑖𝑗
≤ 1, ∀𝑗 ∈ 𝐽

𝑖
,

𝑤
𝑗
> 0, 𝑗 = 1, . . . , 𝑛.

(39)

Proof. An optimal solution of problem (39) obviously con-
sists of ⌈𝑝

𝑖
⌉ variables at 1, which is equivalent to a subset

{𝑆
𝑖
| 𝑆
𝑖
⊆ 𝐽
𝑖
, 󵄨󵄨󵄨󵄨𝑆𝑖
󵄨󵄨󵄨󵄨 = ⌈𝑝𝑖⌉} . (40)

The objection function of problem (39) converts to

{
{
{

∑
𝑗∈𝑆𝑖

𝑎
𝑖𝑗
𝑤
𝑗

󵄨󵄨󵄨󵄨󵄨𝑥
∗

𝑗

󵄨󵄨󵄨󵄨󵄨
}
}
}

, (41)

which is equivalent to problem (38).

Next we will reformulate problem (36) as a linear pro-
gramming problem.

Theorem 9. Problem (36) is equivalent to the following linear
programming problem:

max 𝑐𝑇𝑥

s.t.
𝑛

∑
𝑗=1

𝑎
𝑖𝑗
𝑥
𝑗
+ 𝑧
𝑖
⌈𝑝
𝑖
⌉

+ ∑
𝑗∈𝐽𝑖

𝑡
𝑖𝑗
≤ 𝑏
𝑖
𝑖 = 1, . . . , 𝑛,

𝑧
𝑖
+ 𝑡
𝑖𝑗
≥ 𝑎
𝑖𝑗
𝑤
𝑗
𝑦
𝑗
∀𝑖, 𝑗 ∈ 𝐽

𝑖

− 𝑦
𝑗
≤ 𝑥
𝑗
≤ 𝑦
𝑗
𝑗 = 1, . . . , 𝑛,

𝑙
𝑗
≤ 𝑥
𝑗
≤ 𝑢
𝑗
𝑗 = 1, . . . , 𝑛,

𝑡
𝑖𝑗
≥ 0 ∀𝑖, 𝑗 ∈ 𝐽

𝑖
,

𝑦
𝑗
≥ 0 𝑗 = 1, . . . , 𝑛,

𝑧
𝑖
≥ 0 𝑖 = 1, . . . , 𝑛,

𝑤
𝑗
> 0 𝑗 = 1, . . . , 𝑛.

(42)

Proof. First, we consider the dual problem of (39):

min ∑
𝑗∈𝐽𝑖

𝑡
𝑖𝑗
+ ⌈𝑝
𝑖
⌉ 𝑧
𝑖

s.t. 𝑧
𝑖
+ 𝑡
𝑖𝑗
≥ 𝑎
𝑖𝑗
𝑤
𝑗

󵄨󵄨󵄨󵄨󵄨𝑥
∗

𝑗

󵄨󵄨󵄨󵄨󵄨 , ∀𝑖, 𝑗 ∈ 𝐽
𝑖
,

𝑡
𝑖𝑗
≥ 0, ∀𝑗 ∈ 𝐽

𝑖
,

𝑧
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑛,

𝑤
𝑗
> 0, 𝑗 = 1, . . . , 𝑛.

(43)

Since problem (39) is feasible and bounded for all 𝑝
𝑖
∈

[0, |𝐽
𝑖
|], by strong duality, we know that the dual problem

(43) is also feasible and bounded and their objective values
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coincide. By Proposition 8, we obtain that 𝛽
𝑖
(𝑥∗, 𝑝

𝑖
) is equiv-

alent to the objective function value of (43). Substituting in
problem (36), we have that problem (36) equals the linear
programming problem (42).

Remark 10. When (𝑝, 𝑤)-norm degenerates into𝐷-norm, we
have the following robust counterpart of problem (36) [6]:

max 𝑐𝑇𝑥

s.t.
𝑛

∑
𝑗=1

𝑎
𝑖𝑗
𝑥
𝑗
+ 𝑧
𝑖
Γ
𝑖

+ ∑
𝑗∈𝐽𝑖

𝑝
𝑖𝑗
≤ 𝑏
𝑖
, 𝑖 = 1, . . . , 𝑛,

𝑧
𝑖
+ 𝑝
𝑖𝑗
≥ 𝑎
𝑖𝑗
𝑦
𝑗
, ∀𝑖, 𝑗 ∈ 𝐽

𝑖
,

− 𝑦
𝑗
≤ 𝑥
𝑗
≤ 𝑦
𝑗
, 𝑗 = 1, . . . , 𝑛,

𝑙
𝑗
≤ 𝑥
𝑗
≤ 𝑢
𝑗
, 𝑗 = 1, . . . , 𝑛,

𝑝
𝑖𝑗
≥ 0, ∀𝑖, 𝑗 ∈ 𝐽

𝑖
,

𝑦
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛,

𝑧
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑛.

(44)

4. Probabilistic Guarantees

In this section, wewill provide probabilistic guarantees on the
feasibility of an optimal robust solution when the uncertainty
set 𝑈 is described by the (𝑝, 𝑤)-norm.

Proposition 11. We denote by 𝑆∗
𝑖
and 𝑡∗
𝑖
the set and the index,

respectively, which achieve the maximum for 𝛽
𝑖
(𝑥∗, 𝑝

𝑖
) in (38).

Assume that 𝑥∗ is an optimal solution of problem (42). The
violated probability of the 𝑖th constraint satisfies

Pr(∑
𝑗

𝑎
𝑖𝑗
𝑥∗
𝑗
> 𝑏
𝑖
) ≤ Pr(∑

𝑗∈𝐽𝑖

𝛾
𝑖𝑗
𝜂
𝑖𝑗
≥ Ξ) , (45)

where

𝛾
𝑖𝑗
=
{{
{{
{

1, if 𝑗 ∈ 𝑆∗
𝑖
,

𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨𝑥
∗

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑟
∗

󵄨󵄨󵄨󵄨𝑥
∗

𝑟
∗

󵄨󵄨󵄨󵄨
, if 𝑗 ∈ 𝐽

𝑖
\ 𝑆∗
𝑖
,

𝑟∗ = argmin
𝑟∈𝑆
∗
𝑖

𝑎
𝑖𝑟

󵄨󵄨󵄨󵄨𝑥
∗

𝑟

󵄨󵄨󵄨󵄨 .

(46)

Proof. Let 𝑥∗, 𝑆∗
𝑖
be the solution of problem (36). Then the

violated probability of the 𝑖th constraint is

Pr(∑
𝑗

𝑎
𝑖𝑗
𝑥∗
𝑗
> 𝑏
𝑖
)

= Pr(∑
𝑗

𝑎
𝑖𝑗
𝑥∗
𝑗
+ ∑
𝑗∈𝐽𝑖

𝜂
𝑖𝑗
𝑎
𝑖𝑗
𝑥∗
𝑗
> 𝑏
𝑖
)

≤ Pr(∑
𝑗∈𝐽𝑖

𝜂
𝑖𝑗
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨𝑥
∗

𝑗

󵄨󵄨󵄨󵄨󵄨 > ∑
𝑗∈𝑆
∗
𝑖

𝑎
𝑖𝑗
𝑤
𝑗

󵄨󵄨󵄨󵄨󵄨𝑥
∗

𝑗

󵄨󵄨󵄨󵄨󵄨)

= Pr( ∑
𝑗∈𝐽𝑖\𝑆

∗
𝑖

𝜂
𝑖𝑗
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨𝑥
∗

𝑗

󵄨󵄨󵄨󵄨󵄨 > ∑
𝑗∈𝑆
∗
𝑖

𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨𝑥
∗

𝑗

󵄨󵄨󵄨󵄨󵄨 (𝑤𝑗 − 𝜂𝑖𝑗))

≤ Pr( ∑
𝑗∈𝐽𝑖\𝑆

∗
𝑖

𝜂
𝑖𝑗
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨𝑥
∗

𝑗

󵄨󵄨󵄨󵄨󵄨 > 𝑎𝑖𝑟∗
󵄨󵄨󵄨󵄨𝑥
∗

𝑟
∗

󵄨󵄨󵄨󵄨 ∑
𝑗∈𝑆
∗
𝑖

(𝑤
𝑗
− 𝜂
𝑖𝑗
))

≤ Pr( ∑
𝑗∈𝐽𝑖\𝑆

∗
𝑖

𝜂
𝑖𝑗
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨𝑥
∗

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑟
∗

󵄨󵄨󵄨󵄨𝑥
∗

𝑟
∗

󵄨󵄨󵄨󵄨
+ ∑
𝑗∈𝑆
∗
𝑖

𝜂
𝑖𝑗
>
⌈𝑝𝑖⌉

∑
𝑗=1

𝑤
𝑗
)

= Pr(∑
𝑗∈𝐽𝑖

𝛾
𝑖𝑗
𝜂
𝑖𝑗
>
⌈𝑝𝑖⌉

∑
𝑗=1

𝑤
𝑗
)

≤ Pr(∑
𝑗∈𝐽𝑖

𝛾
𝑖𝑗
𝜂
𝑖𝑗
≥
⌈𝑝𝑖⌉

∑
𝑗=1

𝑤
𝑗
) .

(47)

Let Ξ = ∑⌈𝑝𝑖⌉
𝑗=1
𝑤
𝑗
; we get the result.

Remark 12. Clearly, Ξ is related to 𝑝
𝑖
and 𝑤 = (𝑤

1
, 𝑤
2
, . . . ,

𝑤
𝑛
)𝑇; the role of the parameter 𝑋

𝑖
or 𝑝
𝑖
(for 𝑤 is a given

vector) is to adjust the robustness of the proposed method
against the level of conservatism of the solution. We define Ξ
and 𝑝

𝑖
as robust cost and protection level, which control the

tradeoff between the probability of violation and the effect to
the objective function of the nominal problem.

Naturally we want to bound the probability
Pr(∑
𝑗∈𝐽𝑖
𝛾
𝑖𝑗
𝜂
𝑖𝑗

≥ Ξ). The following result provides a
bound that is independent of the solution 𝑥∗.

Theorem 13. Let 𝜂
𝑖𝑗
, 𝑗 ∈ 𝐽

𝑖
be independent and symmetrically

distributed random variables in [−1, 1]; then we have

Pr(∑
𝑗∈𝐽𝑖

𝛾
𝑖𝑗
𝜂
𝑖𝑗
≥ Ξ) ≤ exp(− (Ξ)

2

2 󵄨󵄨󵄨󵄨𝐽𝑖
󵄨󵄨󵄨󵄨
) . (48)

Proof. Let 𝜃 > 0. Then we obtain that

Pr(∑
𝑗∈𝐽𝑖

𝛾
𝑖𝑗
𝜂
𝑖𝑗
≥ 𝜉)

≤
𝐸 [exp (𝜃∑

𝑗∈𝐽𝑖
𝛾
𝑖𝑗
𝜂
𝑖𝑗
)]

exp (𝜃Ξ)

=
∏
𝑗∈𝐽𝑖
𝐸 [exp (𝜃𝛾

𝑖𝑗
𝜂
𝑖𝑗
)]

exp (𝜃Ξ)

=
∏
𝑗∈𝐽𝑖
2 ∫
1

0
∑∞
𝑘=0
((𝜃𝛾
𝑖𝑗
𝜂)
2𝑘

/ (2𝑘)!) 𝑑𝐹𝜂𝑖𝑗 (𝜂)

exp (𝜃Ξ)
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≤
∏
𝑗∈𝐽𝑖
∑∞
𝑘=0
((𝜃𝛾
𝑖𝑗
)
2𝑘

/ (2𝑘)!)

exp (𝜃Ξ)

≤
∏
𝑗∈𝐽𝑖

exp (𝜃2𝛾2
𝑖𝑗
/2)

exp (𝜃Ξ)

≤ exp(󵄨󵄨󵄨󵄨𝐽𝑖
󵄨󵄨󵄨󵄨
𝜃2

2
− 𝜃Ξ) ,

(49)

where we use the knowledge of Markov’s inequality, the
independence and symmetric distribution, and 𝛾

𝑖𝑗
≤ 1.

Selecting 𝜃 = Ξ/|𝐽
𝑖
|, we obtain the result of Theorem 13.

5. Conclusions

In this paper, we introduce the definition of (𝑝, 𝑤)-norm, its
dual, and some propositions to show a new uncertainty set.
We suggest that the robust counterpart of linear program-
ming problem described by (𝑝, 𝑤)-norm is a computationally
convex optimization problem.We provide probabilistic guar-
antees on the feasibility of an optimal robust solution when
the uncertain coefficients obey independent and identically
distributed normal distributions.
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[13] E. Erdoǧan and G. Iyengar, “Ambiguous chance constrained
problems and robust optimization,” Mathematical Program-
ming, vol. 107, no. 1-2, pp. 37–61, 2006.

[14] A.-L. Yan, G.-Y.Wang, andN.-H. Xiu, “Robust solutions of split
feasibility problem with uncertain linear operator,” Journal of
Industrial andManagement Optimization, vol. 3, no. 4, pp. 749–
761, 2007.

[15] H.-M. Zhao, X.-Z. Xu, and N.-J. Huang, “Robust solutions of
uncertain extended weighted steiner problems with applica-
tions,” Communications on Applied Nonlinear Analysis, vol. 16,
no. 4, pp. 15–26, 2009.


