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A comparative study about two models, Muskingum and integrator-delay (ID) models, for canal control is presented. The former is
a simplified hydrological model which is very simple and extensively used in hydraulic engineering for simulation and prediction.
The latter is also a model with physical meaning and is widely used for irrigation canals control. Due to a lack of general awareness
of Muskingum prediction model in regulation from the control community, authors present this comparative study with the ID
control model. Both models have been studied and analyzed for control purposes. This study has been carried out and validated in a
real irrigation canal, at Aghili irrigation district in Iran, using two traditional control approaches, PID with feedback and predictive
control. The results demonstrate the advantages and drawbacks of both models, showing the benefits and limitations of using the
widespread Muskingum model among the hydraulics scientific community for control design.

1. Introduction

Management of open-flow canal systems requires accurate
control models of flow transfer. Open-flow canals are large
parameter-distributed systems that can be described with
Saint-Venant equations [1, 2]. These nonlinear partial differ-
ential equations (PDE) represent water dynamics in a precise
and complete manner and, for an arbitrary geometry, there is
no analytical solution. Usually numerical methods [3, 4] have
been used to obtain a solution of the Saint-Venant equations.
The more typical numerical methods are the characteristic
method [5], the finite difference method [6], and Preissman
implicit scheme [7-9]. The implicit numerical schemes are
simpler than the other approaches. But the stability of their
solution cannot be guaranteed and depends on the discretiza-
tion time. Taking into account this fact, usually Muskingum
model has been used by hydraulic engineers as a prediction
model in rivers and in irrigation canals [10, 11] but so far not
as a control model. Nevertheless, Saint-Venant model is not
useful for automatic control purposes due to its complexity
(high number of states and high computational load, etc.).
Unfortunately, in control design or in the computation of
control actions, the complexity of the characteristic model is

directly proportional to the complexity of the control tech-
niques and their implementation. Modeling these systems for
control design is therefore not so easy to be devised, although
it is a crucial step. A classical way to control irrigation canals
is to design controllers based on linear models.

Therefore, in the literature several linear control models
have been already proposed for open-flow canal systems.
Corriga et al. [12, 13] proposed a model for open canal
networks related to the elevation of the gate. Papageorgiou
and Messmer [14, 15] and Ermolin [16] proposed an approx-
imation for uniform flow canals derived from linearized
Saint-Venant equations. Malaterre [7] used a state-space
model for canal systems derived from discretized Saint-
Venant equations. Baume et al. [17] obtained an infinite
dimensional state-space model from linearized Saint-Venant
equations. When the canal has prismatic geometry and it
is in permanent regime, Baume’s model has the advantage
that the solution of the linearized Saint-Venant equations
is exact. But usually, real canals do not fulfill the required
conditions assumed in the mentioned works. To palliate these
problems, Schuurmans et al. [18-20] formulated an analytical
model denoted as integrator delay (ID) that is composed of
two parameters: an integrator and a delay. This model is an
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approximation that relates input and output flow including
backwater effects when a reservoir-delay model is used. It is
very popular among the control community for its easiness
describing the more essential aspects of the canal frequential
behavior. However, in [21], it is demonstrated that the ID
model does not represent accurately the dynamics of a canal
for medium and high frequencies. Another extended model
for control purposes is the Hayami model [22, 23]. It is based
on a first order linearization of the diffusive wave equation
around the reference flow. This model is represented by a
second order transfer function with delay structure. The
model behaves accurately for abrupt and unexpected changes
of the reference signal. Its main drawback is its usefulness
only for canals with a specific geometry such as those with
a reduced set of diffusion and celerity coefficients and canal
length.

To overcome the drawbacks of the mentioned models
so far, some relatively recent works have been developed.
Improvements to the ID model have been also proposed in
[24] and its LPV extension [25]. Moreover, in [26, 27], an
IDZ (integrator delay zero) model is proposed. This novel
model extends the ID model by adding a zero in the high
frequencies leading to a better fit in this range. This fact
improves the accuracy in time domain simulations, and all
model parameters can be analytically computed leading to a
simpler implementation. This modelling approach has been
also used to generate state-space MIMO models in [28-
31]. In [32], a new computational method is provided in
order to obtain a frequency domain model of Saint-Venant
equations linearized around any stationary regime. In [33],
a mathematical model of a gate to automatically control the
upstream water level is proposed in order to operate under
free and submerged flows conditions (called the Vlugter
gate). Munier and his colleagues, in [34], proposed a new
model, called LBLR for Linear Backwater Lag-and-Route,
which approximates the Saint-Venant equations linearized
around a nonuniform flow in a finite channel (with a
downstream boundary condition) taking into account the
backwater effect. Next in [35], a new approach to compute
the response time is proposed, accounting explicitly for the
backwater and the feedback effects due to the downstream
cross structure. The method provides a distributed analytical
expression of the response time as a function of the char-
acteristics of the canal (geometry and roughness) and the
downstream cross structure.

As an alternative to the above approaches, in [36-39],
linear black-box models for the canal control design have
been used. These models are estimated by classical linear esti-
mation methods [40]. They do not have hydraulic meaning
and they are based only on experiments. In this case, the main
drawback is the necessity of a high number of experiments,
especially in the multivariable case. For this reason, some
authors carried out a subspace identification [41, 42].

Interestingly, there is a model widely used in hydraulic
engineering for prediction that has been barely used as a
control model for controller design. This is the Muskingum
model. After his experiments in the Muskingum River,
McCarthy proposed a hydrological model suitable only in
rivers (Muskingum model, [10, 43]) operating with input
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and output flows. The model does not require a geometrical
definition for the riverbed because the geometry is included
in its parameters.

Muskingum model is a hydrological model and is widely
used for simulation by hydraulic engineers due to its simplic-
ity and its good results for prediction; nevertheless, it has been
almost never applied in the control of flow-open channels.
On the other hand, ID model is a mere control model widely
used in this kind of systems and with satisfactory results. Both
models are simple and simplified and, moreover, they have
physical meaning. And this is the motivation that pushed this
research to analyze and validate this hydrological model in
the canal control and compare it with ID model. Muskingum
model is very interesting for control because it is a discrete
model that can be used with the most known real canal
control methods based on PID and predictive control. In
engineering, Muskingum model is not used mainly because
it is an unknown approach and the objective of this work is
also to reveal, investigate, and study the advantages and draw-
backs of Muskingum model (typically used in prediction) as
an open-flow canal control model. To reach this objective,
a comparative study between both models (ID model and
Muskingum model) has been carried out. It is well worth to
note that in [44], the Muskingum model is used in predictive
control. It would be of interest that hydraulic engineers as
well as control engineers could use the same mathematical
tools to share experiences and knowledge, because at the end
they are performing complementary works in water resource
management. Moreover, both communities could approach
and create synergies with a higher efficacy and efficiency.

The main contribution of this research is to analyze and
study whether Muskingum hydrological model is suitable
as control model for typical controller design in water
management as feedback control with PID and predictive
control. The present paper is organized as follows. Section 2
gives a system description of Aghili irrigation canal used in
our study. In Section 3, a brief explanation of Muskingum
model and its relationship with the ID model is presented.
Specifically, the Muskingum prediction model has been
studied as a control model. To do so, it has been analyzed
in open loop (in continuous time as well as in discrete time)
and in closed loop (considering the effect of ZOH and sample
time). In Section 4, a comparison is also performed with
the ID model widely used in controller design. In Section 5,
the closed-loop behaviour in continuous and discrete time is
also analyzed specially when using such a model to design
a feedback controller. In Section 6, both models are tested
and validated in Aghili irrigation canal using two control
methods: PID control with a SP scheme and predictive
control. Finally, the conclusions of using the Muskingum and
ID models for control are presented.

2. Description of the Irrigation Canal

In this section, a real irrigation canal system (Aghili canal) is
described. The complete behaviour of the water in this system
is represented by Saint-Venant equations as a simulation
model.
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FIGURE 1: (a) Map of Khuzestan Province in Iran where the Aghili irrigation map is located; (b) Aghili irrigation canal and its spillway, West
and East branches start at this point (32.169147 and 48.734554 coordinates) (from Google Maps); (c) aerial picture of the start of the canal at
Karun River (from Google Maps); (d) sluice gate at Karun river where the 2 km canal starts.

2.1. System Description. Aghili irrigation district (AID) is
located in southwest Iran, in the north of Khuzestan Province
(see Figurel(a)). AID is a part of the Gotvand irrigation
network. The annual (maximum versus minimum) air tem-
peratures range from 53° to 3°C and precipitation rates from
582 mm to 152 mm, respectively. The net cultivated area in
AID is about 4000 ha. The annual mean distributed water in
the irrigation area is about 150 MCM (million cubic meters).
AID includes a short main canal, 2km long, along with
two subsidiary canals, right branch at a length of 14.9km
and left branch at a length of 18.6km. In this study, the
2km canal is treated. In Figure 1(b), an aerial picture of the
spillway can be seen where both branches depart from the
canal. The right branch (west branch) has been studied in
[45]. The total irrigation canal is composed of a main small
pool equipped with an upstream sluice gate that takes water
from Karun River (Figure 1(c)) with two subsidiary reaches
(Figure 2(a)), as previously cited. Upstream of this gate (u)
is a dam (Figure 1(d)) of constant level H = 3.5m and the
total length of the pool (L) is 2km (Figure 2(b)). For more
information about Karun River, see [46]. This main pool is
used for the control study of this paper.

To reproduce the real behaviour of this irrigation canal,
a simulator developed by the group of “Modelling and
Control of Hydraulic Systems” at the UPC is used [47]. It
solves numerically Saint-Venant equations [1, 3, 48] which
accurately describe water dynamics.

2.2. Saint-Venant Model. Saint-Venant model can be
expressed by the conservation of mass and momentum
principles equations in a one-dimensional free surface flow.

Main reach

Main reach

(®)

FIGURE 2: (a) Canal scheme and (b) scheme of the main reach.
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where Q = Q(x,t) is the flow (m?/s), y(x,t) is the level
(m), A = A(x,t) is the cross-sectional area (m?), t is the
time variable (s), x is the spatial variable (m) measured in the
direction and the sense of the movement, y is the water level,
g is the gravity (m/s*), I, is the bottom slope, and I ¢ is the
friction slope.

This pair of partial differential equations (1)-(2) consti-
tutes a nonlinear and hyperbolic system for an arbitrary
geometry and it lacks analytical solution [1, 3]. These equa-
tions can be solved by different numerical methods, such as
Preissman, finite differences, and characteristics [48, 49]. The
Saint-Venant model describes in detail the canal dynamics,
and it is very useful in simulation. However, this model is
too complex for controller design and furthermore it cannot
be used for control design using analytical methods. As
previously said, these equations are used as simulation model
(solved numerically using the method of characteristics) to
reproduce the complex dynamics of Aghili irrigation canal.

3. Physical Canal Models: Muskingum Model
versus ID model

3.1. Muskingum Model. The Muskingum model [1, 10] relates
the inflow (I) with the outflow (Q) of a free surface hydraulic
system. This model uses the following continuity equation
and a linear storage-discharge relationship:

_av(y)
Io-Q)=—-, 3)
V() =KQHI®+(1-x)Q®), (4)

where V (m?) is the volume of water stored in the hydraulic
system and K and y are parameters that depend on the
hydraulic system. K is considered as the average pool travel
time, and y shows the influence of the downstream condition
in the hydrograph propagation with 0 < y < 0.5 (see
Figure 3).

The inflow I is the input variable, also noted as g,,; the
outflow Q is the output variable, also noted gg4,,,. The Musk-
ingum model works only with upstream and downstream
flows and it is not possible to obtain the water level with any
direct relationship. Normally, an empirical approximation is
used (e.g., Manning, Chezy or Darcy-Weisbach; in this paper,
the Manning approximation is used) to relate the flow and
level, adding imprecision to the results. Replacing (3) with (4)
and using the Laplace transform, the relation between output
flow and input flow is obtained:

(1 - Kxs)
9dns (S) = Gm (5) qups (S) = mqups (S) . (5)

3.2. ID Model. Canals are systems that can be decomposed
in many dynamic elements, usually of first order, so the full
model is of an order equal to the number of elements. Then,
the resulting model will have an order equal to the number
of pieces used to model the canal, that is, a very high order
model. As discussed in [50], this very high order model would
be difficult to use for control purposes but, fortunately, it is
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Wedge-shaped
storage = Ky(I - Q)

Prismatic storage = KQ

FIGURE 3: Prismatic storage and wedge-shaped storage in a pool.

possible to approximate the behaviour of such high order
processes by a system with one time constant and a dead
time, that is, a FOPDT. This will be shown in the following
subsection.

The complete water dynamics of a single-pool irrigation
canal is classically modeled with the Saint-Venant equations.
However, as discussed in the previous section, for control
purposes, the ID (integrator delay) model is considered as
proposed by Litrico and Fromion [32] for low frequen-
cies. The single canal reach dynamics has a relationship
between downstream level y4 . and downstream flow gg
and upstream flow q,,,; for low frequencies. This relation can
be approximated by

Yans (8) = Py (s) ups (8) + P, () Ggns () (6)
with
PR
P (s) = >
A
! )
P, (s) = A_ds’

where 7, is the downstream transport delay and A, is
the downstream backwater area. Taking into account the
linearized relationship between the downstream flow g4,
and level yg4¢ in the spillway, the following equality can be
established:

9dns (S) = Aydns (S) > (8)

where A is a constant.
Combining (6) and (8), the following first order plus time
delay (FOPDT) model can be obtained:

P (s)

Gans (s) = mqups (s)

T4

= —qups (S) (9)

with a gain k = 1 and a time constant T' = AA ;.
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The delay, 7, can be estimated based on physical laws by

L
v+cC

where L is the canal length, v is the current water velocity, and
c is the current celerity: ¢ = 1/gy. For more details about this
modelling approach, see [22-24, 26, 32].

3.3. Relation between Both Models. Comparing the ID and
Muskingum model structure, it can be shown that Musk-
ingum model can be obtained from the ID model through
an approximation using the McLaren approach [51]. Then, if
G,,, is the open-flow canal transfer function, we obtain

1 o 1-1s
Ts+1 T Ts+1

G, (s) = (1)

Although the delay is neither close to zero nor it can
be neglected considering the system dynamics, the error
produced by the approximation is not significant when G,,
is discretized by a convenient sampling time; see Section 3.2.
This approximated transfer function has the same structure
as that of the hydrological original continuous Muskingum
model, considering T = Ky and T = K(1 - y).

4. Open-Loop Behaviour of
the Muskingum Model

4.1. Continuous-Time Open-Loop Behaviour. The behaviour
of the Muskingum model in open-loop will be compared
with the ID model and with the real behaviour reproduced
by means of solving the Saint-Venant equations [1] using the
open-flow canal presented in Section 2 of this paper. The
estimated parameters of the Muskingum model for this canal
are K = 1200 and y = 0.2 while in the case of ID model they
arek = 1,T = 12.09 min, and 7 = 8.28 min.

Equation (11) shows that the continuous Muskingum
model is a model with a zero in the right half-plane (RHP),
that is, with unstable inverse model (nonminimum phase
model, NMP). This implies that for either step-input or
instantaneous unit hydrograph response will present negative
flows (i.e., when the input increases the output decreases)
lacking physical meaning. This problem has been already
reported in [52]. In Figure 4, the step-input response of the
canal system for the case of the Muskingum and ID model
is compared against the real behaviour simulated using the
Saint-Venant equations. It can be noticed that continuous ID
behaviour resembles the real one (simulated with the Saint-
Venant equations). On the other hand, the nonminimum
phase behaviour of the continuous Muskingum model is
present at the beginning, although it reaches the correct
steady state at the end.

4.2. Discrete-Time Open-Loop Behaviour. When obtaining
the discrete-time Muskingum model to predict the behaviour
of an open flow sewer in open-loop, the bilinear transform
is usually used in the hydraulic literature. Then, applying the

0.8t

0.6

0.4 |

0.2}

Flow (m®/s)

0 20 40 60 80 100 120
Time (min)
Downstream flow
- -~ Continuous ID model

Continuous Muskingum model
—— Real canal (S.-V. Eq.)

—— Upstream flow

FIGURE 4: Real-step response (Saint-Venant equations) and
estimated-step responses with continuous Muskingum model and
continuous ID model.

bilinear transformation with sampling time T to (1) and (2),
the following expression is obtained:

Qk)=cl(k)+ql(k-1)+¢Q((k-1), (12)

where
T,/K -2y
S 2(1-p) + TYK
B T,/K +2x
-+ T/K (13)
~2(1-x)-TJ/K
2(1-x)+T./K
with the condition
2Ky <T, <K (14)

in order to provide hydrological meaning to the model. This
selection guarantees that the sampling time T will be larger
than the delay and the propagated hydrograph does not take
negative values.

Then, the following transfer function can be obtained
from (12)

Q(z) _QZta
1(2) zZ-¢

(15)

that corresponds to a first-order linear system with a zero
and a pole. According to (15), in fact the parameters will
be ¢, ¢, and ¢, and using the expressions in (13) it will
be possible to compute Muskingum parameters K and y
(bilinear transformation, see Table 1).
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TABLE 1: Muskingum parameters.

Discretization type

Muskingum coeficients

% G )
With ZOH X <L> + (1K) o~ To/K(-p)
(1-x 1-x
T -2K 2K(1-x)-T T +2K
With bilinear transform . S % e
2K(1-x)+T 2K(1-x)+T 2K(1-x)+T
1 a PI controller synthesized by the pole placement method [53]
) and using the same canal system in case of the open-loop
o8l response (Section 4). The PI controller has been designed
’ in order to obtain the following specifications: steady-state
0.6 L zero error for step responses, no overshoot, and desired time
constant of 800s.
mé 04}
e 5.1 Structure. As discussed in Section 3.1, the Muskingum
2 02¢ model introduces a nonminimum phase zero. The effect of
such zero in closed loop is the degradation of the performance
0 because the controller has been adjusted considering that
the canal behaves as a nonminimum phase plant but the
-02 real canal does not behave in such a way. In particular, the
0 20 20 50 30 100 120 desired closed-loop behaviour is not obtained, appearing

Time (min)

Downstream flow
—— Continuous ID model
Continuous Muskingum model
+  Discrete Muskingum model
+ Discrete ID model
—— Real canal (S.-V. Eq.)

—— Upstream flow

FIGURE 5: Real-step response (Saint-Venant equations) and
estimated-step responses with continuous and discrete (bilinear,
T, = 600 s) Muskingum models and continuous and discrete (ZOH,
T, = 60s) ID model.

In Figure 5, the open-loop response of the discrete-time
Muskingum model to a unit step input is compared with
the one obtained using an ID model and the real behaviour
simulated using Saint-Venant equations. It can be noticed
that using the sampling time suggested by rule equation
(14) and the bilinear discretization method, the discrete-
time Muskingum model produces good prediction results,
avoiding the negative values that presented the continuous-
time model.

5. Closed-Loop Behaviour of
the Muskingum Model

The use of the Muskingum model in closed-loop canal
control (digital and continuous) is discussed in this section
taking into account three important features for control
applications such as the effect of its structure, the inclusion
of a zero-order hold (ZOH) in closed loop, and the sampling
time selection. This study has been carried out considering

instead as an overshoot when applied to the real canal. On
the other hand, when the Muskingum model is used as the
plant to simulate the behaviour of the controller that also
has been designed using the Muskingum model, the closed
behaviour fulfills the desired behaviour but still presents the
nonminimum phase dynamics (Figure 6). As a conclusion,
the effect of structure mismatch between the Muskingum
model and the real canal behaviour will derive in a degraded
closed-loop response including more overshoot than the
specified.

5.2. Discretization Method. When using the discrete Musk-
ingum model for designing a closed-loop digital controller,
additionally to the problem of the structure mismatch, two
additional issues appear; namely, the discrete equivalent
Muskingum model should include the dynamics of a ZOH
and second the Shannon criteria should be fulfilled when
selecting the sampling time. These problems appear since,
usually in hydraulics, the Muskingum model is discretized
using the bilinear transformation and with a sampling
time that provides hydrological meaning to the model (see
Section 3.1).

However, when using such a model in closed-loop digital
control, instead a ZOH transform should be used to take
into account the dynamics of the ZOH that models the D/A
conversion process. This is a standard procedure in classical
digital control [54]. Then, equivalent discrete-time transfer
function will have the same structure as that in the case of
the bilinear transform, but the parameters of the model ¢, ¢;,
and ¢, will be different according to Table 1.

If the discrete-time Muskingum model obtained by
means of the bilinear transform is used to design the
controller instead of the one obtained using the zero-order
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Flow (m?/s)

_0.4 1 1 1 1 1 1
0 20 40 60 80 100 120

Time (min)

—— Upstream flow Case II

—— Casel

FIGURE 6: Step closed-loop response for the case I: downstream
flow with PI designed by continuous Muskingum with continuous
Muskingum plant; and case II: downstream flow with PI designed
by continuous Muskingum with ideal ID plant.

hold transform, the closed-loop behaviour will experiment
a performance degradation when applied to a discrete-time
Muskingum model using the zero-order hold transform
according to the results presented in Figure 7. The inclusion
of the zero-order hold when applying digital control is
unavoidable since the D/A converter is always present. As
a conclusion, for closed-loop digital control design, the
discrete-time Muskingum model should be obtained using
the zero-order hold transform instead of the bilinear trans-
form.

5.3. Effects of the Sampling Time. Even when discretizing
the Muskingum model using the zero-order hold method,
another problem appears when selecting the sampling time
period satisfying the rule given in (9) in order that the dis-
crete Muskingum model has hydrological meaning since the
Shannon theorem [54] is not respected. Shannon’s theorem
establishes that a good sampling time should take a value
at least T, = T/10, but according to rule (14), in the best
case T, = K = T/(1 — x). The selection of the sampling
time following the Muskingum rule will derive again in a
performance’s degradation according to Figure 7 with respect
to the equivalent closed-loop continuous behaviour. In fact,
in this figure it can be observed that the use of the sampling
time suggested by Muskingum rule increases the overshoot.
On the other hand, selecting the sampling time according
to Shannon’s theorem derives in a closed-loop response that
resembles that obtained when the continuous Muskingum
model is used. However, even when using the ZOH transform
method as a discretization procedure and the sampling
time suggested by Shannon’s theorem, the problem of the
structure in the Muskingum model described in Section 5.1
still remains.

1.2 R

Flow (m®/s)

0 20 40 60 80 100 120

Time (min)

—— Upstream flow o Case Il
—— Casel Case IV
* Casell + CaseV

FIGURE 7: Step closed-loop response for the case I: downstream
flow with PI designed by continuous Muskingum with continuous
Muskingum plant; case II: downstream flow with PI designed by
discrete Muskingum (ZOH and T, = 60 s) with discrete Muskingum
(ZOH and T, = 60s) plant; case III: downstream flow with PI
designed by discrete Muskingum (bilinear and T, = 600s) with
discrete Muskingum (bilinear and T, = 600s) plant; case IV:
downstream flow with PI designed by discrete Muskingum (bilinear
and T, = 600s) with discrete Muskingum (ZOH and T, = 600s)
plant; and case V: downstream flow with PI designed by discrete
Muskingum (ZOH and T, = 600 s) with discrete Muskingum (ZOH
and T, = 600 ) plant.

6. Control Results for Real Plant

Finally, in order to validate both models (Muskingum and
ID) for control design, the control results using the real
plant (simulated by means of Saint-Venant equations) are
presented in Figures 8, 9, and 10. In this section, two usual
methodologies for canal feedback control using a PI and with
a Smith predictor (SP) scheme [55, 56] and predictive control
[50, 57, 58] are tested for this study and for validation.

6.1. Using a PI Controller with a SP Scheme. For the PI
with a SP scheme (to compensate the delay of the system)
designed by pole placement technique [59-61], it can be
observed that the results considering the real plant and the
continuous ID model (used as a plant) using the PI designed
with discrete ID model (ZOH, T, = 60s) (denoted as PI1)
are very similar. On the other hand, the closed-loop control
results for the PI designed with discrete Muskingum model
(bilinear, T, = 600s) (denoted as PI2) considering the
real plant are very different from the ones obtained using
the continuous Muskingum model (used as a plant). These
prove the validity of the ID model for control design, while
showing that the Muskingum model is not suitable for this
purpose.
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é 04+
E 02}
=
0
-0.2 +
-04 +
0 20 40 60 80 100 120
Time (min)
—— Upstream flow Case IIT
— Casel —— CaselV
--- Casell Case V

FIGURE 8: Step closed-loop response for the case I: downstream
flow with PI designed by discrete Muskingum (ZOH, T, = 60s)
with continuous Muskingum plant; case II: downstream flow with
PI designed by discrete Muskingum (ZOH, T, = 600s) with
continuous Muskingum plant; case III: downstream flow with PI
designed by discrete Muskingum (ZOH, T, = 60 s) with continuous
ID plant; case IV: downstream flow with PI designed by discrete
Muskingum (ZOH, T, = 600 s) with continuous ID plant; and case
V: downstream flow with PI designed by continuous Muskingum
with continuous Muskingum plant.

12

0.8

0.6 -

Flow (m®/s)

0.4

02

0 20 40 60 80 100 120
Time (min)
—— Upstream flow
- -~ PI1 with real plant (S.-V eq.)
PI2 with real plant (S.-V eq.)

—— PII with ID continuous plant
PI2 with Muskingum continuous plant

FIGURE 9: Step closed-loop response of the real irrigation plant
(Saint-Venant equations) using a PIl and a PI2; step closed-loop
response of the ID continuous plant using PI1 and step closed-loop
response of the Muskingum continuous plant using PI2.
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FIGURE 10: Step closed-loop response of the real irrigation plant
(Saint-Venant equations) using predictive control with a Musk-
ingum model and an ID model (both with and without ZOH) for
different predictive horizon A and different T.

6.2. Using a Predictive Controller with a SP Scheme. It is
well known that predictive control essentially relies on the
use of a model capable of forecasting the system output
as a function of the system inputs on moving horizon
setting and computing the control sequence making that
predicted output could follow a desired trajectory through
the minimization of a performance criterion. The predictive
control is suitable for systems with delay and the model
precision is not critical because a new predictive model
is obtained from a new calibration every time the system
operates. A, the prediction horizon, is chosen in order to
predict the transitory dynamics and to yield the adequate
performance. The selection of prediction horizon will drive
to a tradeoff between the abrupt control effort and the swift
in the response. The precision and accuracy of predictive
control have been studied with an ID model with T, =
60s and Muskingum model with sample times that give
physical meaning to Muskingum; that is, T, = 600s.
The ID model and Muskingum model provide a temporal
response with approximately the same rapidity. However, the
former presents more overshoot than the latter. Therefore,
the predictive controller based on Muskingum model is
more energetically efficient (less oscillations in the spill-
way movements). After analyzing the results obtained from
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the simulations, it is recommended to use the Muskingum
model altogether with the predictive control strategy because
it is a stationary, good prediction model and the delay is
implicit.

7. Conclusions

In this paper, the use of the Muskingum model in closed-
loop digital and continuous control has been analyzed and
discussed regarding three main issues: the structure of the
model, the discretization method, and the selection of the
sampling time. Regarding the structure of the Muskingum
model in continuous time, it can be observed that it intro-
duces a nonminimum-phase zero that produces negative
responses at the beginning of the response to a step input. This
behaviour is not present in the real canal making this model
not useful in continuous time. Such nonminimum phase
behaviour is avoided in discretizing the Muskingum model
using the rule that guarantees the sampling time with the
order of the delay. However, such a selection of the sampling
time is not supported by Shannon’s theorem. Moreover, the
discretization method typically used with the Muskingum
model is the bilinear transform that does not take into
account the zero-order hold. However, even when using the
zero-order hold method as a discretization procedure and
sampling time fulfilling Shannon’s theorem, the problem of
the nonminimum phase introduced by the unstable zero
appears again since the closed-loop behaviour in this case
resembles the equivalent closed-loop continuous behaviour.
As a conclusion, the Muskingum model is a good open-
loop prediction model in discrete time using the suggested
discretization rule in order to avoid the nonminimum phase
behaviour and it is suitable for flood routing applications.
For control purposes, mathematically simple control laws
that can be designed (either based on the PID law or
based on a predictive control strategy) with both models
have been considered. These laws should allow an easy and
swift computation, guaranteeing stability and convergence to
the desired setpoint. However, when using the Muskingum
model for designing a closed-loop controller, the results are
not as good as expected. In particular, if the controller is
implemented in a digital way, the mandatory inclusion of
the ZOH effect and selection of the sampling time according
to Shannons theorem derive in the reappearance of the
nonminimum phase behaviour that Muskingum sampling
time rule avoided. Furthermore, if the sampling time is
reduced in the simulation of Muskingum controller, there
is an increment of oscillations in the closed-loop response.
This makes the Muskingum model also not useful for digital
feedback control design. But in the case of predictive control,
the explained Muskingum behaviour does not influence the
predictive control algorithm because this type of control
requires only a good prediction model at each prediction
horizon. Since the delay is implicit in the system, a prediction
model is obtained when a suitable sample time is selected.
Therefore, with the use of Muskingum model, energetically
efficient control results are obtained, although ID model also
presents reasonable results. On the other hand, when PID

controllers are designed using the ID model, the control
results are temporally more efficient (less time of convergence
and more rapidity) and more energetically efficient than
Muskingum model. However, Muskingum model is more
energetically efficient when considering a predictive law,
although the speed of the response of control results is similar
using both models.
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