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This paper proposed a novel radial basis function (RBF) neural network model optimized by exponential decreasing inertia
weight particle swarm optimization (EDIW-PSO). Based on the inertia weight decreasing strategy, we propose a new Exponential
Decreasing Inertia Weight (EDIW) to improve the PSO algorithm. We use the modified EDIW-PSO algorithm to determine the
centers, widths, and connectionweights of RBF neural network. To assess the performance of the proposed EDIW-PSO-RBFmodel,
we choose the daily air quality index (AQI) of Xi’an for prediction and obtain improved results.

1. Introduction

The radial basis function (RBF) neural network is a novel and
effective feed-forward neural network [1], which has good
performance of best approximation and global optimum.
It has been broadly used in considerable applications, such
as function approximate, classification, regression problems,
prediction, signal processing, and other problems [2–6]. The
RBF neural network architecture has three layers composed
of input layer, hidden layer, and output layer. The input layer
is composed of input vectors. Before the input vectors are
input to the network, data processing should be done, such as
normalization processing. This processing also can be done
in the input layer.

The hidden layer is composed of hidden neurons, the
number of which is determined by the issues described.
The RBF networks are different from other types of neural
networks mainly in the hidden neurons [7, 8]. Each hidden
neuron has a radial basis function which is a center symmet-
ric nonlinear functionwith local distribution.The radial basis
function consists of a center position and a width parameter.
Once the center and width are determined, the input vectors
aremapped to the hidden space by themapping𝑓 : 𝑅𝐼 → 𝑅𝐽.

Suppose that the input layer has 𝐼 input units; the hidden
layer has 𝐽 radial basis functions.The output of the 𝑗th hidden
neuron is expressed as

ℎ
𝑗 (𝑋) = 𝜑(−
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). ‖ ⋅ ‖

is Euclidean norm usually taking 2-norm. 𝜑(⋅) is the radial
basis function. It can take a variable of formula expression
such as B-Spline RBF [9], thin-plate Spline RBF [10], Cauchy
RBF [11], and Gaussian RBF [12]. Among them the Gaussian
function is the most used, as in

𝜑 (𝑟) = exp(−𝑟
2

2
) , (2)

where 𝑟 is the variable of radial basis function 𝜑(⋅).
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The output layer implements the mapping 𝑓 : 𝑅𝐽 → 𝑅𝐾.
𝐾 is the number of output neurons. The output function is a
linear combination of the outputs of the radial basis functions
through connection weights which connect the hidden layer
and the output layer, which is shown as

𝑦
𝑘
=
𝐽

∑
𝑗=1

𝜔
𝑗𝑘
ℎ
𝑗 (𝑋) 𝑘 = 1, 2, . . . , 𝐾, (3)

where 𝜔
𝑗𝑘

is the connection weight between the 𝑗th hidden
layer and the 𝑘th output of the network.

RBF neural network contains three groups of parameters
which are centers 𝑐

𝑗𝑖
, widths 𝑑

𝑗
, and connection weights

𝜔
𝑗𝑘
. To optimize the RBF parameters, many optimization

algorithms have been proposed, such as orthogonal least
squares (OLS) algorithm [13], Expectation-Maximization
(EM) algorithm [14], gradient descent algorithm [15], K-
means clustering algorithm [16], Genetic algorithm (GA)
[17], ant colony optimization (ACO) algorithm [18] and parti-
cle swarmoptimization (PSO) algorithm [19, 20], and support
vectormachine (SVM) and extreme learningmachine (ELM)
[21]. Compared to other algorithms, PSO algorithm has
many advantages: stable convergence, few parameters, and
fast convergence speed. Many researchers have successfully
applied the PSO algorithm in the learning and structure
improvement of the RBF neural network for application
problems.

The particle swarm optimizing (PSO) algorithm is put
forward by Eberhart and Kennedy in 1995 [22], which is
initially motivated by the intelligent collective behavior of
birds in the foraging process. In PSO algorithm, each bird also
called a particle has a position and a velocity and searches
for the optimal solution by updating the position and the
velocity. In the following years, many researchers introduce
“inertia weight” and propose many dynamic variations of
PSO based on the inertia weight [23–26]. Different inertia
weight strategies imply different incremental changes in
velocity per time step whichmeans exploration of new search
areas in pursuit of a better solution. In this paper, we propose
an Exponential Decreasing InertiaWeight PSO (EDIW-PSO)
algorithm to get the optimal parameters of RBF network.

This paper establishes a RBF network model based on
EDIW-PSO algorithm. Section 2 introduces the basic PSO
algorithm and several variants of inertia weight. Section 2.3
gives the improved EDIW-PSO algorithm based on an
Exponential Decreasing Inertia Weight strategy. Section 3
presents the methodology of the proposed EDIW-PSO-
RBF structure. Section 4 shows an experiment using this
methodology comparing with other three models. The last
section summarizes the conclusions of this study.

2. Dynamic Particle Swarm
Optimizing Algorithm

2.1. Basic Particle Swarm Optimizing Algorithm. PSO algo-
rithm is a parallel evolutionary computation algorithm. In
PSO, each potential solution to an optimization problem is
treated as a bird, which is also called a particle. The set of

particles, also known as a swarm, is flown through the
𝐷-dimensional search space of the problem. Each particle
changes its own position and velocity based on the experi-
ences of the particle itself and those of its neighbors. In the
searching process, every particle is connected to and able to
share information with every other particle in the swarm and
the swarm communication topology is known as a global
neighborhood described in [27]. This information sharing
mechanism keeps the overall consistency to get the global
solution for the overall swarm.

The position and velocity of the 𝑖th particle in 𝐷-
dimensional solution space are denoted as 𝐿
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the 𝑑th dimension.
According to a preset fitness function, we obtain the

personal best position (also named as the local best fitness)
of the 𝑖th particle denoted as 𝑝
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, 𝑝
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, . . . , 𝑝
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) and the

global best position (also named as the global best fitness)
found so far of all particles of the swarm denoted as 𝑝

𝑔
=

(𝑝
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, 𝑝
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, . . . , 𝑝

𝑔𝐷
). At each iterative, the 𝑖th particle updates

its position and velocity as follows:
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(4)

where 𝑐
1
and 𝑐
2
are acceleration factors and positive constants,

𝑟
1
and 𝑟
2
are random numbers ranging from 0 to 1, and 𝜔̂ is

the inertia weight on the interval [0, 1] keeping the memory
of the old velocity vector of the same particle. When 𝜔̂ is
a constant [22], it can lead to a static PSO, and when 𝜔̂ is
varying iteratively, it leads to a dynamic PSO.

2.2. Several Variants of Inertia Weight. The inertia weight
determines the proportion of the current particle velocity.
Large inertia weight can lead to large speed and strong
searching ability of particles, but the global optimal solution
may be missed. In contrast, small inertia weight makes the
particle have strong development capability, but it needs long
search time for fine tuning the local optimal solution.

By changing the inertia weight dynamically, the search
capability is dynamically adjusted. Many researchers have
proposed several variants of PSO according to the impact of
𝜔̂. Most of the PSO variants use time-varying inertia weight
strategies in which the value of the inertia weight varies
with the iteration numbers. These methods can be either
linear or nonlinear. In 1998, Shi and Eberhart introduced a
Linearly Decreasing Inertia Weight (LDIW) strategy to get
better inertia weight 𝜔̂ as the following formula [23]:

𝜔̂ (𝑡) = 𝜔̂min + (𝜔̂max − 𝜔̂min)
𝑡

𝑇
, (5)

where 𝑡 is the number of current iterative steps, 𝑇 is the
maximum number of iterative steps the PSO is allowed to
continue, and 𝜔̂max is the initial inertia weight and 𝜔̂min is the
final inertia weight.
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Table 1: Values of inertia weight 𝜔̂ by the proposed adaption when 𝑡 = 𝑇, for varying sets of {𝑐, 𝜔̂max, 𝜔̂min}.

𝑐
𝜔̂max 𝜔̂min 𝜔̂max 𝜔̂min 𝜔̂max 𝜔̂min 𝜔̂max 𝜔̂min 𝜔̂max 𝜔̂min 𝜔̂max 𝜔̂min

0.7 0.2 0.9 0.2 0.7 0.3 0.9 0.3 0.7 0.4 0.9 0.4
1 0.3839 0.4575 0.4472 0.5207 0.5104 0.5839
2 0.2677 0.2947 0.3541 0.3812 0.4406 0.4677
3 0.2249 0.2349 0.3199 0.3299 0.4149 0.4249
4 0.2092 0.2128 0.3073 0.3110 0.4055 0.4092
5 0.2034 0.2047 0.3027 0.3040 0.4020 0.4034
6 0.2012 0.2017 0.3010 0.3015 0.4007 0.4012
7 0.2005 0.2006 0.3004 0.3005 0.4003 0.4005
8 0.2002 0.2002 0.3001 0.3002 0.4001 0.4002
9 0.2001 0.2001 0.3000 0.3001 0.4000 0.4001
10 0.2000 0.2000 0.3000 0.3000 0.4000 0.4000
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Figure 1: The decreasing curves of inertia weight 𝜔̂ attained by the
proposed EDIW strategy for varying 𝑐.

Chatterjee and Siarry propose a nonlinear decreasing
inertia weight (NDIW) strategy to modulate inertia weight
adaptation with time for improved performance of PSO
algorithm [24]. The proposed adaption of 𝜔̂(𝑡) is given as

𝜔̂ (𝑡) = 𝜔̂min + (𝜔̂max − 𝜔̂min) {
(𝑡 − 𝑇)𝑛

𝑇𝑛
} , (6)

where 𝑛 is the nonlinear modulation index. With 𝑛 = 1,
the system becomes a special case of linearly adaptive inertia
weight with time, as proposed by Shi and Eberhart [23].
After implementing the performance of this strategy for the
famous Sphere function, they draw a conclusion that 𝑛 =
1.2 was a typical value and could be suitably determined
for each case individually. When 𝑛 = 1.2, during the early
iterations a higher value of 𝜔̂ facilitates taking larger steps
in the solution space, and during the later iterations 𝜔̂ is

decreased more rapidly than the linear case, which is very
suitable to determine the optimal region among the already
discovered promising suboptimal regions.

In [25], Arumugam and Rao propose a global-local best
inertia weight (GLbestIW) method in which the inertia
weight is neither set to a constant value nor set as linearly
decreasing time-varying function.The inertia weight is deter-
mined by the ratio of the global best fitness and the local
best fitness in each iteration. The GLbestIW is given by the
following equation:

𝜔̂
𝑖 (𝑡) = 1.1 −

𝑝𝑡
𝑔

𝑝𝑡
𝑖

, (7)

where 𝑝𝑡
𝑔
is the global best fitness at 𝑡th iterative and 𝑝𝑡

𝑖
is the

local best fitness of the 𝑖th particle at 𝑡th iterative.

2.3. The Proposed Inertia Weight Variant. Larger 𝜔̂ is con-
ducive to find the global best solution as soon as possible
in the early iterative steps but may lead to miss the global
best solution easily in later iterative steps. However, smaller 𝜔̂
means longer time to provide slower updating for fine tuning
a local exploration. Hence in the early iterative steps, larger 𝜔̂
is needed for coarse global exploration, but in later iterations
𝜔̂ should decrease for fine tuning the local exploration.
Appropriate inertia weight can help find the best solution
with the least number of iterative steps.

A larger inertia weight facilitates global exploration and
a smaller inertia weight tends to facilitate local exploration
to fine-tune the current search area. In order to balance the
global and local exploration, we present a new Exponential
Decreasing Inertia Weight (EDIW) strategy. In this strategy,
the inertia weight is exponential decreasing with the increase
of iterative step 𝑡. The proposed adaption of 𝜔̂(𝑡) is given as

𝜔̂ (𝑡) = 𝜔̂min + (𝜔̂max − 𝜔̂min) ∗ exp(−
𝑐𝑡

𝑇
) , (8)

where 𝑐 is controlling parameter to control the convergence
rate of the inertia weight, 𝑐 > 0. When 𝑡 = 0, 𝜔̂(𝑡) = 𝜔̂max.
When 𝑡 = 𝑇, 𝜔̂(𝑡) can be expressed by the following equation:

𝜔̂ (𝑡) = 𝜔̂min + (𝜔̂max − 𝜔̂min) ∗ exp (−𝑐) . (9)
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Use the optimal structure of RBFNN to perform prediction problem
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Figure 2: The flowchart of EDIW-PSO-RBF learning algorithm.
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Figure 3: The actual daily air quality index (AQI) of Xi’an from
January 2 in 2013 to February 5 in 2014.

When 𝑡 = 𝑇, we obtain different values of inertia weight
𝜔̂ by the proposed adaption by setting varying sets of
{𝑐, 𝜔̂max, 𝜔̂min}. The results are shown in Table 1. According to
Table 1, when 𝑡 = 𝑇, for same 𝜔̂max and 𝜔̂min, small 𝑐makes 𝜔̂
be still far from the final inertia weight 𝜔̂min, and the value of
𝜔̂ is more andmore close to 𝜔̂min with the increase of 𝑐.When
𝑐 ≥ 6, 𝜔̂ is nearly equal to 𝜔̂min. So the condition of 𝑐 ≥ 6 can
ensure that 𝜔̂(𝑡) varies fully in the given range of [𝜔̂min, 𝜔̂max]
when 𝑡 ranges from 1 to 𝑇.

When 𝑐 takes different values, different decreasing effects
will be got. For convenience to compare the different decreas-
ing effects, we set 𝜔̂max = 0.9, 𝜔̂min = 0.2, and 𝑇 = 1000. The
decreasing curves of inertia weight 𝜔̂ attained by the pro-
posed EDIW strategy for varying 𝑐 are shown in Figure 1.

According to Figure 1, for the same 𝑐, the rate of descent
of 𝜔̂ gradually declines as the the increase of iterative step and
begins to flatten in the later iterative steps. For different 𝑐, the
rate of descent of 𝜔̂ gradually increases as the increase of 𝑐
in the early iterative steps. Smaller 𝑐 can ensure that 𝜔̂ does
not decrease so fast in the early iterations but will be still far
from 𝜔̂min in the final iteration. For example, when 𝑐 = 1 and
𝑡 = 1000, the inertia weight 𝜔̂ is 0.4575 which is far from 𝜔̂min
(0.2). Larger 𝑐 is conducive to making 𝜔̂ decrease fast to dis-
cover the promising suboptimal regions but may lead to the
algorithm prematurely to begin the local search. For example,
when 𝑐 = 10 and 𝑇 = 1000, the inertia weight 𝜔̂ begins
to flatten at the iterative step 𝑡 = 400. Parameter 𝑐 should
be appropriately selected in EDIW-PSO algorithm. Based on
the analysis above, we can choose the value of 𝑐 ∈ (6, 8).
During the early iterations 𝜔̂ decreases more rapidly than the
linear case, which is very suitable for the algorithm todiscover
promising suboptimal regions. During the later iterations 𝜔̂
is fine-tuned, which is conducive to determining the optimal
region among the already discovered optimal regions.

3. The Proposed RBF Model by
EDIW-PSO Algorithm

In this section we use the proposed EDIW-PSO algorithm to
determine the optimal structure of the RBFNN and establish
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Table 2: The parameters of RBFNN by EDIW-PSO: centers 𝑐
𝑗𝑖
, widths 𝑑

𝑗
, and connection weights 𝜔

𝑗𝑘
.

𝑗 1 2 3 4 5 6 7 8 9 10
𝑐
𝑗1

1.0000 −0.9849 −0.9569 0.7735 0.5874 1.0000 −0.4653 −1.0000 0.7688 −0.3863
𝑐
𝑗2

0.5752 −0.1652 −0.9023 −0.9643 0.6898 0.4439 0.4378 0.4779 0.0860 −0.8635
𝑐
𝑗3

0.4994 0.2723 −1.0000 −0.1271 0.7500 0.5629 0.2198 −0.9292 0.7286 −0.9566
𝑐
𝑗4

0.5250 −0.2811 0.7298 0.9254 −0.1321 0.3404 −0.3397 −0.1867 0.5373 −0.6491
𝑐
𝑗5

−0.0776 −1.0000 0.1190 0.4846 0.2787 0.1364 −0.8673 0.9034 1.0000 0.0959
𝑐
𝑗6

−0.4532 0.9372 1.0000 0.5370 0.2975 0.9214 0.4095 −1.0000 −0.0813 −0.2635
𝑐
𝑗7

−0.0124 1.0000 −0.4612 0.0190 −0.1061 −0.2451 0.7454 0.1273 0.1925 0.0609
𝑑
𝑗

−0.0156 −0.9724 0.0728 0.0588 −0.5133 0.8992 1.0000 −0.0857 0.7017 −0.9959
𝜔
𝑗

−0.0289 −0.7936 −0.5968 0.8891 −0.5265 −0.0812 0.3979 0.2548 −0.9623 0.8871
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Figure 4: The best global fitness value for the AQI of Xi’an. Blue
short dash line shows the best global fitness value by the improved
EDIW-PSO-RBF model; red dashdotted line shows the best global
fitness value by the GLbestIW-PSO-RBF model; green solid line
shows the best global fitness value by the LDIW-PSO-RBF model;
black solid line shows the best global fitness value by the NDIW-
PSO-RBF model.

the EDIW-PSO-RBF network model. The position vector 𝐿
of each particle is needed to be optimized, which represents
RBF centers 𝑐

𝑗𝑖
, widths 𝑑

𝑗
, and connectionweights𝜔

𝑗𝑘
, where

𝑖 = 1, 2, . . . , 𝐼, 𝑗 = 1, 2, . . . , 𝐽, and 𝑘 = 1, 2, . . . , 𝐾. Therefore
the dimension of 𝐿 of each particle in EDIW-PSO algorithm
is 𝐷 = 𝐼 ⋅ 𝐽 + 𝐽 + 𝐽 ⋅ 𝐾. We map each 𝐿 to the RBFNN and
obtain the prediction output. The fitness function of EDIW-
PSO algorithm is defined in terms of the relativemean square
error (RMSE) between the prediction output values and the
actual values in the network training process.Thereby, we can
minimize the fitness value of the network by the powerful

search performance of EDIW-PSO algorithm. The fitness
function is denoted by formula

𝑓 = 𝑒 =
1

𝑁

𝑁

∑
𝑛=1

𝐾

∑
𝑘=1

(
𝑦
𝑛𝑘
− 𝑦
𝑛𝑘

𝑦
𝑛𝑘

)
2

, (10)

where 𝑦
𝑛𝑘

and 𝑦
𝑛𝑘

are the actual value and the prediction
value of the 𝑘th output neuron in the 𝑛th sample, and𝑁 is the
number of training samples, while𝐾 is the number of output
neurons.

The iteration process of the improved EDIW-PSO-RBF
learning algorithm can be described clearly as follows.

Step 1. Initialize the relative parameters, including the size of
swarm𝑀, the boundary of position 𝐿max and velocity 𝑉max,
the acceleration factors 𝑐

1
and 𝑐
2
, and the maximum iterative

steps 𝑇. Initialize 𝑡 = 1; for each particle, select two 𝐷-
dimensional vectors randomly to initialize the position and
velocity of this particle, respectively.

Step 2. Map the position vector 𝐿
𝑖
of each particle to the

parameters of RBFNN.

Step 3. Calculate the fitness value of each particle according
to formula (10). Set the current position of each particle as the
personal best fitness 𝑝

𝑖
. Then find the minimum fitness value

as the global best fitness 𝑝
𝑔
of the whole swarm.

Step 4. Update the inertia weight 𝜔̂ according to formula (8).
Modify the particle velocity 𝑉

𝑖
and position 𝐿

𝑖
according to

formula (4).

Step 5. Map the new position vector 𝐿
𝑖
of each particle to the

parameters of RBFNN, input training data, and train RBFNN.

Step 6. Recalculate the fitness values of the new particles and
modify𝑝𝑡

𝑖
and𝑝𝑡
𝑔
. For each particle, if the current fitness value

is better than the previous local best, then set the current
fitness value to be the local best; or keep the previous local
best. For the global swarm, if the best value of all current local
best is better than the previous global best, then update the
value of the global best; or keep the previous global best.
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(a) Trained output by LDIW-PSO-RBF
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(c) Trained output by GLbestIW-PSO-RBF
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(d) Trained output by EDIW-PSO-RBF

Figure 5: The trained output curve by four models for the daily air quality index (AQI) of Xi’an.

Step 7. Judge whether the particle satisfies the conditions: 𝑡 =
𝑇. If the condition is met, go to Step 8; otherwise, let 𝑡 = 𝑡+1,
and go back to Step 4.

Step 8. Record the global best value 𝑝
𝑔
; exit the iteration.

Step 9. Use the optimal structure of RBFNN to perform
prediction problem.

Apply the above 9 steps until the terminal conditions
hold. The flow chart is as in Figure 2.

4. Experiment

In order to ensure the prediction accuracy of the proposed
EDIW-PSO-RBFmodel, we choose the daily air quality index
(AQI) of Xi’an [28] for the time series prediction. In recent
days, the air pollution affects peoples’ travel and life. Daily
AQI is a dimensionless index quantitatively describing air

quality, which is calculated by the following six indicators:
sulfur dioxide (SO

2
), nitrogen dioxide (NO

2
), particulate

matter (PM
10
: particle size is less than or equal to 10microns),

particulate matter (PM
2.5
: particle size is less than or equal

to 2.5 microns), carbon monoxide (CO), and ozone (O
3
).

Among them, SO
2
, NO
2
, and CO are all the 24-hour average

density; O
3
is the 8-hour moving average density. We choose

400 sets of data from 2013.1.1 to 2014.2.5 as train data
and 5 sets of data from 2014.2.6 to 2014.2.10 as test data.
Normalization processing is done with all the sets of data
before it is used in themodel.We adoptmapminmax function
to normalize the data to a range of [−1, 1] as the following
formula:

𝑦 = (𝑦max − 𝑦min)
𝑥 − 𝑥min
𝑥max − 𝑥min

+ 𝑦min, (11)

where 𝑥 is the original data before normalization, 𝑥min and
𝑥max are the minimum value and the maximum value before
normalization, respectively, 𝑦 is the data after normalization,
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(c) Trained error by GLbestIW-PSO-RBF
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(d) Trained error by EDIW-PSO-RBF

Figure 6: Plots of trained absolute errors between the trained outputs and the actual values by four models for the daily air quality index
(AQI) of Xi’an.

and 𝑦min and 𝑦max are the minimum value and the maximum
value after normalization, and, respectively, they are −1 and 1.

In this section, we assess the effectiveness of the pro-
posed EDIW-PSO-RBF model comparing with other three
inertia weight variants, which are LDIW-PSO-RBF model
[23], NDIW-PSO-RBF model [24], and GLbestIW-PSO-RBF
model [25]. Firstly, we build a RBF network consisting of
7 input neurons and 1 output neuron. The 7 input neurons
consist of the six indicators and the air quality index, and the
1 output neuron is the next day’s air quality index.Thenumber
of neurons in hidden layer is determined to be 10. Therefore,
the dimension of each particle in themodified PSO algorithm
is𝐷 = 7 × 10 + 10 + 10 × 1 = 90.

Secondly, several parameters in the PSO simulation must
be specified. In the proposed EDIW-PSO-RBF model, the
value of 𝑐 is set to be 8. In the NDIW-PSO-RBF model, the
nonlinear modulation index 𝑛 is set to be 1.2. In all the four
models, the acceleration factors 𝑐

1
and 𝑐
2
are fixed to be 2.

Table 3:The values ofMSE, RMSE, andMAPE (%) of trained ouput
by four models for the daily air quality index (AQI) of Xi’an.

Error LDIW-PSO NDIW-PSO GLbestIW-PSO EDIW-PSO
MSE (∗𝑒2) 3.6565 2.6560 3.5800 2.5389
RMSE 0.2239 0.1846 0.1935 0.1350
MAPE (%) 3.2143 2.9898 3.1684 2.8644

The minimum velocity 𝑉min and minimum position 𝐿min of
every particle both are set to be −1. Meanwhile, themaximum
velocity 𝑉max and maximum position 𝐿max of every particle
both are set to be 1. The maximum number of iterations is set
to be 1000. The population size is set as 50.

To assess the performance of the four different mod-
els, mean square error (MSE), relative mean square error
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Table 4: The results of predicted ouput by four models for the daily
air quality index (AQI) of Xi’an of the following five days (2014.2.6–
2014.2.10).

Day Actual LDIW- NDIW- GLbestIW- EDIW-
PSO PSO PSO PSO

1 231.2500 224.3392 222.8994 223.3160 234.1575
2 222.0000 247.3886 245.6876 243.5894 236.7476
3 280.0000 240.9040 250.5690 249.1804 241.5187
4 215.0000 246.8951 248.3747 254.2518 241.8096
5 247.5000 249.7290 246.5483 243.1647 238.9121

Table 5: The values of MSE, RMSE, and MAPE (%) of predictied
ouput by four models for the daily air quality index (AQI) of Xi’an.

Error LDIW-PSO NDIW-PSO GLbestIW-PSO EDIW-PSO
MSE (∗𝑒2) 6.4862 5.2236 6.0768 4.9985
RMSE 0.0111 0.0096 0.0113 0.0080
MAPE (%) 8.8246 8.1400 8.8342 7.5166

(RMSE), and mean absolute percentage error (MAPE) are
used as criteria, defined as

MSE = 1
𝑁

𝑁

∑
𝑛=1

(𝑦
𝑛
− 𝑦
𝑛
)
2
,

RMSE = 1
𝑁

𝑁

∑
𝑛=1

(
𝑦
𝑛
− 𝑦
𝑛

𝑦
𝑛

)
2

,

MAPE = 1
𝑁

𝑁

∑
𝑛=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑦
𝑛
− 𝑦
𝑛

𝑦
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
× 100%,

(12)

where 𝑦
𝑛
and 𝑦

𝑛
denote the actual value and the network

output value at the 𝑛th day, respectively.
The actual daily air quality index (AQI) of Xi’an from

January 2 in 2013 to February 5 in 2014 are shown in Figure 3.
In this experiment, the proposed EDIW-PSO method, the
LDIW-PSO method, the NDIW-PSO method, and the
GLbestIW-PSO method are adopted to train RBFNNs. The
global best fitness values of the four methods in the training
process are given in Figure 4, which shows that the proposed
EDIW-PSO method has the fastest convergence rate and the
lowest fitness value in the four PSO methods.

By the EDIW-PSO,when the fitness reaches itsminimum,
the values of the optimal parameters of RBFNN: centers
𝑐
𝑗𝑖
, widths 𝑑

𝑗
, and connection weights 𝜔

𝑗𝑘
are shown as in

Table 2. Figure 5 shows the trained output curve by four
methods for the daily air quality index (AQI) of Xi’an.
Figure 6 shows the plots of trained absolute errors between
the trained outputs and the actual values by four methods.
And the values of MSE, RMSE, and MAPE (%) of trained
ouput by four methods for the daily air quality index (AQI)
of Xi’an are shown in Table 3. From Table 3, the three errors
MSE, RMSE, andMAPE (%) of trained output by EDIW-PSO
are, respectively, 2.5389∗𝑒2, 0.1350, and 2.8644, which are all
the smallest among the four methods.

Based, respectively, on the trained optimal parameters of
RBFNN by the four methods, we predict the daily air quality

index (AQI) of Xi’an of following five days from 2014.2.6 to
2014.2.10. Table 4 shows the predicted outputs by using the
LDIW-PSO-RBFNNmodel, theNDIW-PSO-RBFNNmodel,
the GLbestIW-PSO-RBFNN model, and the EDIW-PSO-
RBFNNmodel. Table 5 shows the values of MSE, RMSE, and
MAPE (%) of predicted output by the four models according
to formula (12). By EDIW-PSO-RBF model, the three errors
MSE, RMSE, and MAPE (%) are, respectively, 4.9985 ∗ 𝑒2,
0.0080, and 7.5166, which are all the smallest among the four
models.

5. Conclusion

In this paper, we present and discuss an improved EDIW-
PSO-RBF model to solve prediction problem. Based on the
EDIW-PSO algorithm, we optimize the centers, widths, and
connection weights of radial basis function (RBF) neural
network. Furthermore, EDIW-PSO-RBF model is applied
to the daily air quality index (AQI) prediction comparing
with LDIW-PSO-RBF model, NDIW-PSO-RBF model, and
GLbestIW-PSO-RBF model. In the processing of optimizing
RBF, the value of fitness obtained by the proposed EDIW-
PSO method is smaller than the values obtained by other
three methods. And for the train data and the prediction
test data, the MSE, RMSE, and MAPE (%) obtained by
the improved EDIW-PSO-RBF model are all smaller than
the values of which by the other three models. From the
simulation results it can be observed that the PSO with
the proposed inertia weight, EDIW, provides better result
compared to the other PSO methods with LDIW and NDIW
as well as the GLbestIW. The proposed EDIW-PSO-RBF
model can be satisfactorily used in other prediction problems.
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