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With the fast deployment of cloud computing, MapReduce architectures are becoming the major technologies for mobile cloud
computing. The concept of MapReduce was first introduced as a novel programming model and implementation for a large set
of computing devices. In this research, we propose a novel concept of REST-MapReduce, enabling users to use only the REST
interface without using the MapReduce architecture. This approach provides a higher level of abstraction by integration of the
two types of access interface, REST API and MapReduce. The motivation of this research stems from the slower response time for
accessing simple RDBMS on Hadoop than direct access to RDMBS. This is because there is overhead to job scheduling, initiating,
starting, tracking, and management during MapReduce-based parallel execution. Therefore, we provide a good performance for
REST Open API service and for MapReduce, respectively.This is very useful for constructing REST Open API services on Hadoop
hosting services, for example, Amazon AWS (Macdonald, 2005) or IBM Smart Cloud. For evaluating performance of our REST-
MapReduce framework, we conducted experiments with Jersey REST web server and Hadoop. Experimental result shows that our
approach outperforms conventional approaches.

1. Introduction

With the fast deployment of cloud computing, MapReduce
architectures are becoming themajor technologies formobile
cloud computing. Nowadays, we are experiencing a major
shift from conventional mobile applications to mobile cloud
computing. The demand of Open API-based development
stems from the increasing use of smartphone applications
[1, 2]. Community portal companies are providing Open API
service for access to their service. Within a few years, we
can expect a major shift from traditional mobile application
technology to mobile cloud computing [3]. It improves appli-
cation performance and efficiency by off-loading complex
and time-consuming tasks onto powerful computing plat-
forms. By running only simple tasks on mobile devices, we
can achieve a longer battery lifetime and a greater processing
efficiency. This off-loading with the use of parallelism is not

only faster but can also be used to solve problems related to
large data sets of nonlocal resources. With a set of computers
connected on a network, there is a vast pool of CPUs and
resources, and you have the ability to access files on a cloud.
In this paper, we propose a novel approach that realizes the
mobile cloud convergence in a transparent and platform-
independent way. Users need not know how their jobs are
actually executed in a distributed environment and need not
to take into account their mobile platforms are IPhone or
Android. All they have to do is to make use of the REST
interface, and need not to know the complex distributed
computing API such as Hadoop [4].

The research of MapReduce using REST web service
interface is underexplored and most research efforts are still
at their initial state [5, 6]. MapReduce is a programming
model and an associated implementation for processing and
generating large data sets. In this work, we propose a concept
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of REST-MapReduce enabling users to use only the REST
interface without using the MapReduce architecture; it is
the MapReduce framework using REST web service Open
API interface. We combine MapReduce and REST Open API
into an integrated service as REST-MapReduce [7, 8]. This
is because of the slower response time for accessing simple
RDBMS onHadoop than direct access to RDMBS [9, 10].The
slow response time stems from the fact that MapReduce was
originally designed for analyzing large data, not for simple
RDBMS lookup. Such a job, scheduling, initiating, starting,
tracking, and management during MapReduce execution, is
not a necessary task for REST Open API service execution.
To avoid such a problem, REST-MapReduce framework
provides an integrated interface with high performance that
supports both REST Open API and MapReduce. At the
same time, the REST Open API service is provided by a
separated architecture for the REST Open API service with a
separate architecture. Likewise, we can overcome such a slow
response time of simple RDBM invocation onHadoop by this
integrated interface, but differentiated service.

The rest of this paper is organized as follows. Section 2
describes related works. Section 3 explores the architecture of
MapReduce computation processes in our REST-MapReduce
framework. Section 4 presents the platform independent
implementation of application using the REST-MapReduce
interface. Section 5 shows performance evaluation. Finally,
we conclude and summary our work in Section 6.

2. Related Works

Before we go into more detail, we briefly introduce the
REST Open API-based mobile application development
approaches. To communicate with remote procedure call
between client and server, the interface should be defined
first. To this end, web service description language (WSDL)
and remote procedure call (RPC) were used for the specifi-
cation. But, these previous approaches are relatively compli-
cated and highly overloaded. Recently, representational state
transfer (REST) architecture was first introduced by Fielding.
REST web service is becoming popular and explosively
used in the field of application development of web and
smartphone. Therefore, today’s many Internet companies
already provide their services by both traditional SOAP-
basedweb service andRESTful web services [11, 12].Themain
differences between RESTweb service and SOAP/WSDLweb
service are as follows: due to the complicated characteristics
of SOAP-based web services, REST web service has not
been introduced. REST web service removes the overhead
from encoding/decoding of header and body during message
transfer. The REST web service enables users and developers
to easily use the web services at remote or local sites. We
need not add additional communication layer or protocols
for REST web service, but we can easily achieve scalability
and performance. This research evaluates the performance
of mash-up architectures through RESTful Open API web
services on smart mobile devices. It provides the analytical
experimental results for the performance evaluation of sys-
tem models. Especially, we try to find an optimal number of

parallel REST web server architectures under certain request
arrival rates. We show the performance of the proposed
architecture, especially the mean number of requests in the
queue and the mean waiting time.

REST web service is a core technology for smartphone
application development.This is because REST web service is
the most appropriate way for accessing information through
the Internet. Usually, a smartphone application needs infor-
mation from several sources of (one or more) REST web
services [13]. So, we need to utilize two or more REST web
services composition to realize a target application [14, 15].
In this paper, we propose a server architecture for managing
REST web services. This server is for managing web ser-
vices so as to provide web server maintenance, especially
on composition, deployment, and management of REST
web services. It enables service developers to conveniently
develop, deploy, upload, and run their composedweb services
with the use of general OOP languages [16].

In 2004, the concept of MapReduce [17] was first intro-
duced as a novel programming model and implementation
for a large set of computing devices. Map generates a
set of intermediate key/value pairs and reduces merges all
intermediate values associated with the same intermediate
key, so that programs with this are automatically parallelized
and executed on a large cluster of computing devices [18, 19].

Apache Hadoop has become the de facto standard for
managing and processing hundreds of terabytes to petabytes
of data. It is an open-source Java software framework that
supports massive data processing across a cluster of servers.
It can run on a single server, or thousands of servers. Hadoop
uses a programming model called MapReduce to distribute
processing across multiple servers. It also implements a dis-
tributed file system called HDFS [20] that stores data across
multiple servers.Hadoopmonitors the health of servers in the
cluster and can recover from the failure of one ormore nodes.
In this way, Hadoop provides not only increased processing
and storage capacity but also high availability. Hadoop [4]
is actively used these days by Amazon/A9 [21], Facebook,
Google, IBM [22], Joost, New York Times, PowerSet, Yahoo,
and so on.

3. REST-MapReduce Framework Architecture

This research focuses on designing the concept ofMapReduce
using the REST Open API interface. This means that both
interfaces of REST Open API and MapReduce are integrated
into a REST Open API interface. We provide a higher level
of abstraction by integrating those two different types of
access methods, such as REST Open API and MapReduce.
The abstraction by integration provides higher abstraction for
both REST API andMapReduce. Users need not to recognize
or differentiate how to use those two interfaces, respectively.
This is good for user convenience, but it is known to
have lower performance when simple RDBMS access occurs
on MapReduce servers. This is because MapReduce was
originally designed for analyzing large data through parallel
execution among multiple cluster nodes. To avoid such an
overhead, we proposed a novel architecture as follows.
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Figure 1: REST-MapReduce framework architecture.

3.1. Architecture. Figure 1 depicts the architecture of our
REST-MapReduce framework. It has five core components:
applications, Jersey, platform as service, MapReduce library,
and HDFS/S3. First, REST-MapReduce Request Processor
acts as the role of a service differentiator in this framework.
It determines whether the incoming request is for REST
Open API or MapReduce. Then, it sends to Hadoop or
Jersey depending on the request type. Second, Jersey is the
open source JAX-RS (JSR 311) Reference Implementation [6]
for building RESTful Web services. Jersey provides an API
so that developers may extend Jersey to suit their needs.
We make use of both Tomcat and Jersey to implement our
systems. Platform as a Service is achieved by Hadoop. The
MapReduce library, job execution, job tracker, and resource
management schemes are from the Hadoop. Third, HDFS
stands for Hadoop distributed file system, whereas SNFR
stands for special node for fast responses [23].

The general concept is that a user submits a job to our
REST-MapReduce framework. Then, the REST-MapReduce
request processor determines whether the request is for REST
Open API or MapReduce. Then, it sends it to either Hadoop
or Jersey depending on the request type. Information about
the type of the incoming request is necessary for the initial job
placement to maximize resource utilization and also that of
the entire system. This is because the most appropriate node
to execute the task is determined by the type of request. If
it is a REST API call, it is better to be forwarded to Jersey
server due to its performance, whereas if it is a MapReduce
request, it should be forwarded to Hadoop server because
of its nature of the parallel execution. The user client can
communicate with the PaaS components, such as Resource
Configuration&Manager, using the client tool to first acquire
a new connection and then submit the application to be
run via ClientRMProtocol#submitApplication. As part of the
ClientRMProtocol#submitApplication call, the client needs
to provide sufficient information to the ResourceManager
to “launch” the application’s first container, that is, the
ApplicationMaster. You need to provide information such as
the details about the local files/jars that need to be available
for your application to run, the actual command that needs to
be executed (with the necessary command line arguments),
any Unix environment settings (optional), and so forth.
Effectively, you need to describe the Unix process(es) that
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Figure 2: MapReduce computation process on our framework.

needs to be launched for your ApplicationMaster. Due to the
integration, there are somewhat different features in requests
through REST Open API from smartphones. Almost all
requests are usually simple data lookup, whereas the rest of
them are task/data parallel operations. Therefore, we focus
on differentiating those two operations to increase response
time.

Figure 2 shows the overall flow of a MapReduce compu-
tation process in our REST-MapReduce architecture.When a
new job is submitted to a system, a global job scheduler selects
the most preferable node for the job to be executed (mapping
strategy). Then, the Hadoop JobTracker monitors the job by
keeping track of change of job resource usage during the
execution. Let us take a look at the procedure in detail. When
the user program calls the REST Open API, the following
sequence of actions occurs. s∗(s∗1) The job execution and
MapReduce module split the pi value calculation workload
into multiple nodes. Then, it starts up on multiple workers
of the Hadoop cluster. Our approach is different in terms of
task parallelism and not data parallelism. Typically, previous
researches in the field of big data processing on Hadoop
cluster usually focus on data parallelism, distributing the data
of 16 megabytes to 64 megabytes (MB) per piece through
the Hadoop cluster. s∗(s∗2) One of the workers (the workers
run on nodes called DataNodes or slaves, interchangeably)
has a special purpose. It is a master node. The master node
reduces tasks to be assigned. The master picks idle workers
and assigns to each one a map task or a reduce task. The rest
are slave workers. The slaves are configured in conf/slaves
of the Hadoop configuration. They initially join into the
framework on system bootup. Once they have joined the
framework, the master node sends a short heartbeat message
to every worker periodically. If there is no response from a
workerwithin a certain amount of time, themaster checks the
worker as failed. s∗(s∗3) After completion of the distributed
workload calculation, the Reduce worker iterates over the
sorted intermediate data and, for each unique intermediate
key encountered, passes the key and the corresponding
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set of intermediate values to the user’s Reduce function
[1]. In this work, we eliminate data dependency through
workload parallelization, if any exists, between the workloads
of slaves. This is because the data dependency leads to
performance degradation, severely resulting in sequential
execution. s∗(s∗4) Map phase generates computation result
as a form of key-value pairs into log files (e.g., <partial
pi>, <1.05721>). The Map function takes a log line, pulls
out the timestamp field when the server finished processing
the request, converts it into a minute-in-week slot, and then
writes out in file systems. Reduce phase reads and sorts all
intermediate data so that all occurrences of the same key
are grouped together, resulting in the final result which is
numerically added for all the same keys. This is the reason
why we can see the final pi value as 3.141592 in Figure 2.

3.2. Task Parallelization Phase. In this section, we show a
development procedure of the cloud-based applications on
a mobile platform, especially 𝜋 calculation. The first step
in this procedure is to identify sets of tasks that can run
concurrently and/or partitions of data that can be processed
concurrently. The second step is to eliminate dependency,
if any exists, between every computational phase in the
algorithm.The dependency limit of the degree of parallelism
results in performance degradation. 𝜋 is a mathematical
constant whose value is the ratio of any Euclidean plane
circle’s circumference to its diameter; this is the same value
as the ratio of a circle’s area to the square of its radius. Many
formulas frommathematics, science, and engineering involve
𝜋, which makes it one of the most important mathematical
constants. The simplest method to calculate 𝜋 is circum-
ference divided by diameter [24]. However, it is difficult to
get the exact circumference using this simple method. As a
result, there are other formulas to calculate 𝜋. These include
series, products, geometric constructions, limits, special val-
ues, and pi iterations. To calculate 𝜋 through mobile cloud
convergence, we first need to convert the algorithm into a
parallelized version. We present a 𝜋 calculation with infinite
series that puts forth a parallelization method for ease of
application on the mobile cloud convergence. To calculate 𝜋,
we first show the procedure of parallelizing the pi calculation
as follows:
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Finally, we get the following expression from 𝑃
𝑛
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But, there is still another problem such that a function to
compute this based on the above form is not appropriate
for parallelization. This is because each computed value is
dependent on previously computed values. Assuming we
distribute this workload on eight nodes, they should not be
dependent on the previous iteration and the next iteration.
That means the next term calculation requires the result of
previous term calculation, resulting in serialized execution
in a parallelized environment. For example, considering the
following expression:

tan−1 (𝑥) = 𝜋
4

, (4)

it is necessary to calculate the following expression:

tan−1 (𝑥) = 1 − 1
3

3

+

1
5
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−

1
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7

+ ⋅ ⋅ ⋅ . (5)

But, for computing (−17/7), the partial term of 1−13/3+15/5
should be calculated a priori. Again for computing (+15/5),
the partial term of 1 − 13/3 should be calculated a priori.
Thus, we need to come up with a parallelized solution for the
𝜋 calculation.

In this paper, we propose such a parallelized solution
to distribute the heavy workloads to multiple nodes. An
independent form of this equation should be provided.
Therefore, we convert the equation into an integral form
that is suitable for parallelized execution on MapReduce
framework. We first take the derivative from the expression
(3) with respect to 𝑥
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We replace the variable 𝑥 with 𝑡 for the sake of convenience:
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At this time, expression (7) can be simplified by
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Integrate this formula to infinite
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Integrating this equation for the interval 𝑎 to 𝑏 yields the
integral form of tan−1(𝑡). By substituting 𝜋/4 = tan−1(𝑡) into
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this formula, we get the parallelized form that is executable
on the MapReduce platform:

tan−1 (𝑡) = ∫
𝑏

𝑎

1

1 + 𝑡
2

(∀𝑎, 𝑏 ∈ 𝑅) . (11)

By tan−1(tan(𝜋/4)) = tan−1(1), we get𝜋/4 = tan−1(1). Finally,
we make use of (11) in this expression to get the following
expression:

𝜋 = 4 tan−1 (𝑡) = 4∫
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We approximately get the 𝜋 value by integrating this equation
for the interval −1/2 to 1/2.

Unlike an infinite series representation, the integral form
is fully parallelizable and it is easy to divide the problem
into chunks/parts of the work. We distribute and map these
tasks onto multiple clouding nodes. However, this equation
cannot be executed on cloud computing which is highly
parallelized and distributed in a computing environment.
This is an example of task parallelization and partitioning and
can be run on a mobile cloud convergence platform.

4. REST Application Interface

4.1. Persistent Storage. In this section, we examine local
storages on HTML5 web applications. Usually, we make use
of cookie and session for keeping information on desktop
when network connection is not available. HTML5 provides
more options than conventional web development methods.
LocalStorage, sessionStorage, andWebDB are like that.While
all of these functionalities are applicable to both the mobile
and desktop worlds, in the world of desktops you generally
have a lower rate of adoption. However, any mobile device
released in the last 2-3 years will support most of these
specs. Moreover, the explosive use of mobile devices such as
smartphones requires the demand of using HTML5 due to
one source multiuse (OSMU) development. So, there are big
demands of persistent storage using HTML5. The persistent
storage support was in demand in the world of desktops,
but, with the rise of the mobile web and edge connections,
support for offline capability has exploded. Everything from
offline data storage to the actual application startup is already
available and supported on a wide range of mobile plat-
forms. The HTML5 brings us to the three storage mediums:
localStorage, sessionStorage, andWebDB. Luckily, the Sencha
Touch data package offers awesome wrappers around all
three. We can use these persistent storages regardless of the
network connection status. SessionStorage is not a persistent
storage, meaning it gets wiped whenever the user leaves the
page or closes the application. However, in case of one-page
web apps where you stay on the same page the entire time,
sessionStorage can be a perfect candidate for offline data
access, especially in data-sensitive scenarioswhere you do not
want the data persisted on the device after the user is done
using the app. SessionStorage is generally limited to 5MB in
size and when that is exceeded, depending on the platform,

HTML5 (Sencha Touch) based 
platform independent application

REST-
MapReduce

request 
processor

SNFR node 1

SNFR node 2

SNFR node 3

SNFR node 4

In-mem DB

In-mem DB

In-mem DB

In-mem DB

REST Open API interface

Figure 3: System integration and interactions between the compo-
nents.

either a JavaScript error might be thrown or a popup is
presented to the user asking for permission to increase the
available storage.

LocalStorage is essentially the same thing as sessionStor-
age, except that it is persistent. In other words, if you close
the app and return, the data will still be there. localStorage is
more suited for data that you want to be available when used
in combination with the offline startup techniques discussed
earlier. However, the localStorage still has a problem for being
a perfect persistency. If you clean and delete your web cache
from your browser, it will be removed from then on. So, we
have to prepare a work around for compensating the cases.
Sencha Touch configuration for localStorage looks almost
identical to that of sessionStorage.

Finally, the web database is supported by almost every
browser. Though specs call for 5MB limit per origin, iOS has
been known to allowup to 50MBaftermultiple user prompts.
Behind the scenes, it is an SQL database with a query-based
language that many of us know and love. When it comes to
configuring it in Sencha Touch, it is just as easy as with the
other storage mediums.

4.2. System Components. We implemented our application
exploiting 3 cutting edge technologies. Figure 3 shows the
system architecture of our acquisition tax analysis appli-
cation. Our system architecture consists of the following
components: REST Open API server, HTML5 based Plat-
form Independent Client Application, and Database Server.
Figure 3 shows the system architecture of our platform inde-
pendent application design and implementation for checking
capital gain tax relief due to one house by one household.

In-Memory Database. For the high performance of database,
we make use of the in-memory database in this project.
Because of toomany representative requests, we cameupwith
a state-of-the-art technology for processing this type of short
and high frequency requests. The best way to service these
requests is the in-memory database.
REST Open API Web Service. The REST is a platform
independent architectural style. REST ignores the details of
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Object1 obj1;

String strSearchKeyword = getParameter(STR PARAM SEARCHKEYWORD);

String strWebSvcQuery = "http://openapi.naver.com/search?key=test&query=";

strWebSvcQuery += strSearchKeyword + "&target=adult";

URL text = new URL(strWebSvcQuery);

XmlObjectConversionFactory objCreator = XmlObjectConversionFactory.newInstance();

XmlObjectConverter xoConverter = objCreator.newConverter();

obj1 = xoConverter.setInput( text.openStream(), null );

if (obj1.getbAdult()) {

return;

}

else

{

try{

strWebSvcQuery = "http://openapi.naver.com/search?key=test&query=";

strWebSvcQuery += strSearchKeyword +

"&display=10&start=1&target=webkr";

URL text = new URL(strWebSvcQuery);

String test = text.toString();

XmlPullParserFactory parserCreator =

XmlPullParserFactory.newInstance();

XmlPullParser parser = parserCreator.newPullParser();

parser.setInput( text.openStream(), null );

String tag;

int parserEvent = parser.getEventType();

while (parserEvent != XmlPullParser.END DOCUMENT ){

switch(parserEvent){

case XmlPullParser.TEXT:

tag = parser.getName();

break;

case XmlPullParser.END TAG:

tag = parser.getName();

break;

case XmlPullParser.START TAG:

tag = parser.getName();

break;

}

}catch( Exception e ){

Log.e("dd", "Error in network call"+ e);

}

}

Algorithm 1: Open API parser.

component implementation and protocol syntax in order to
focus on the roles of components, the constraints upon their
interaction with other components, and their interpretation
of significant data elements.

Sencha Touch (HTML5) Application. Sencha Touch is a
representative HTML5 UI Framework in these days. Sencha
Touch is a well-known user interface (UI) JavaScript library,
or framework, specifically built for the Mobile Web. It can be
used byWeb developers to develop user interfaces for mobile
web applications that look and feel like native applications
on supported mobile devices. As shown in Algorithm 1, it

is fully based on web standards such as HTML5, CSS3, and
JavaScript. SenchaTouch aims to enable developers to quickly
and easily create HTML5 based mobile apps that work on
Android, iOS, Windows, Tizen, and BlackBerry devices and
produce a native-app-like experience inside a browser.

4.3. System Implementation. Using these techniques, we
developed our system and application which is platform
independent one as shown in Figure 3.The applicationmakes
use of the AJAX request to the REST Open API web service
as shown in Algorithm 2.
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var button = new Ext.Toolbar({
cls: “calculator button”,
height: 35,
items: [this.text,

{xtype: ‘spacer’},
{html: new Ext.XTemplate(‘<img style=“width:.5em;height:.5em;”

src=“resources/imgs/button.png”/>’).apply({name: ‘button’}),
handler: function () {

Ext.Ajax.request({
url: ‘/localhost:8080/Example/apis/example/,
params:{
action: ‘calculation’,
userid: ‘15’,
username: ‘MCHOI’,
username: ‘MCHOI’,
userDate: ‘20140315’,

userEtc: ‘etc’
HouseHolds: ‘2’
AreaofExcsSpace: ‘5’
AcquisitionPrice: ‘25000’
userContact: ‘01099695699’

},
success: function(xhr) {

var response =
Ext.decode(xhr.responseText);

}

});
}}

]

});

Algorithm 2: A portion of our HTML5 application code.

Our application supportsWebOS,Android, iOS,Window
Phone, and BlackBerry. The application requires the only
information of acquisition tax, the area of exclusive space,
household numbers, and the location. Then, the application
provides the capital gain tax result which is automatically
calculated.

5. Experimental Results

We describe the experimental result for the REST-
MapReduce in this section. This is because REST web
service is one of the most convenient methods for accessing
information through Internet. Usually, a smartphone
application needs information from several sources of (one
or more) REST web services. In this experiment, we adopt
the Apache Tomcat 7.0 as a web application server, Jersey
1.8 for REST Open API Service Provider, and Hadoop
2.0.4 as MapReduce execution server. Apache Tomcat is
an open software with Java Servlet and JavaServer Pages
technologies. Apache Tomcat powers numerous large-scale
web applications across a diverse range of industries and
organizations. Jersey is the open source JAX-RS (JSR
311) Reference Implementation [14] for building RESTful
Web services. Jersey provides an API so that developers
may extend Jersey to suit their needs. We make use of both

Tomcat and Jersey to implement our systems.We constructed
eight-node Linux cluster of Core i5 machines, each with
4G RAM. The machines were connected by network and
managed by Hadoop [4]. Figure 4 shows an overview of our
REST-MapReduce framework architecture.

Prior to evaluating the performance in detail, we present
systemmodel as a queueing network.The evaluationmodel of
our REST-MapReduce architecture is presented in Figure 4.
REST Open API Web Service is composed of three compo-
nents comprising: (1) dedicated node for Jersey REST web
service, (2) Hadoop cluster, and (3) Job schedule/tracker.
As shown in Figure 4, there are a number of components
(nodes) comprising several queues. Jersey REST web server
manages web services instead of web, so as to provide
web server maintenance service, especially composition,
deployment, and management. Request traverses via the new
job submission node and is received by the job scheduler,
represented by the components at the left bottom of Figure 4.
Our system model is a sort of open queueing network that
has external arrivals and departures. The requests enter the
system at “New Job Submission” and exit at “OUT” ofHadoop
cluster and dedicated node for REST web server, respectively.
The number of requests in the system varies with time. In
analyzing an open system, we assume that the throughput is
known (to be equal to the arrival rate) andwe also assume that
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Figure 5: Task parallelization and job distribution among Hadoop
clusters.

there is no probability of incomplete transfer in this system,
so there is no retrial path to go back to Hadoop clusters. The
initialization process for the request is done at the scheduler.
Then, the job proceeds to the component, either “Hadoop
cluster” network or Jersey REST web server, depending on
the type of request; if the request is for the RESTweb server, it
goes to theHadoop cluster. If the request is for just web server,
it goes to the web server.

A request may receive service at one or more queues
before exiting the system. Jobs departing from the job
scheduler arrive at either the Hadoop cluster or dedicated
node for Jersey REST web service. All jobs submitted must
first pass through the job scheduler/tracker for determining
whether it is REST Open API request or MapReduce service.
Requests arrive at the web server at an average rate of 1,000/s–
15,000/s. Traffic intensity is calculated by the arrival rate over
the service rate that means how fast the incoming traffic is
serviced on the server.

The key feature of our design is to separate the Jersey
web server onto a dedicated node. This feature isolate the
performance that is not bound to the MapReduce computa-
tion.Hadoop clusters consist ofmultiple computing nodes. In
order to get benefit from such multiple nodes and to handle
the heavy load of MapReduce, we need to transform the
problem into parallelizable form. To this end, we had the task
parallelization phase in Section 3.2. Unlike an infinite series
representation, the integral form is fully parallelizable and it
is easy to divide the problem into chunks/parts of work. As
shown in Figure 5, the total workloads is divided into three

0
5

10
15
20

1000 3000 6000 9000 12000 15000 18000 21000 24000

Service utilization
Idle probability

Waiting probability for service
Number of jobs in the queue

−15

−10

−5

Figure 6: Experimental results by increasing service rates 1.
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Figure 7: Experimental results by increasing service rates 2.

chunks so that we can integrate the formulae at different
nodes in parallel.Thus, we can easily distribute andmap these
tasks ontomultiple clouding nodes.We can approximately get
the 𝜋 value by integrating this equation for the interval −1/2
to 1/2.

Figures 6 and 7 show the service utilization, idle prob-
ability, waiting probability for service, and number of jobs
in the queue depending on increasing service rate. Since
the service rate of each Hadoop node in this experiment is
19000 request/sec, the mean number of requests in the queue
reaches up to the maximum on the total arrival rate which
is increasing between 18000 and 21000. Then, it sharply falls
down to the bottom right after the total arrival rate of 21000.

Figure 8 shows the system utilization depending on the
change of performance of REST web service. The graph from
Va10 to Va300 shows the system utilization by increasing
workload on the REST web server. As mentioned above,
incoming jobs proceed to the component, either “Hadoop
cluster” network or Jersey RESTweb server, depending on the
type of the request; if the request is for the REST web server,
it goes to the Hadoop cluster.

If the request is for just web server, it goes to the web
server. Thus, if there are large requests incoming for REST
web service, then it is natural and there are relatively small
requests forMapReduce.This is the reasonwhy the utilization
of MapReduce servers gets lower by increasing the server
utilization of REST web server.
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Figure 8: System utilization depending on the REST web server
performance.
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Figure 9: Utilization of REST web server, MapReduce clusters, and
Job Scheduler.

Figure 9 shows the utilization of REST web server,
MapReduce clusters, and Job scheduler. First, the utilization
of job scheduler/tracker is constant because the performance
change of the job scheduler/tracker is not very high. It is
negligible. So, we did not care about the utilization of job
scheduler. But we focus onto the utilization of REST web
server andMapReduce clusters. By increasing workloads and
the number of nodes, the system utilization of MapReduce
clusters improves a lot. But, REST web server utilization is
just a little bit increased by up to its internal processing limit.

6. Conclusion

In this work, we proposed a novel concept of REST-
MapReduce, enabling users to use only the REST interface
without using the MapReduce architecture. We make both
MapReduce and REST Open API into an integrated service
as REST-MapReduce. It is well known that there is slower
response time for accessing simple RDBMS on Hadoop than
direct access to RDMBS. The slow response time stems
from the fact that MapReduce was originally designed for
analyzing large data, not for simple RDBMS lookup. Such job
scheduling, initiating, starting, tracking, and management
during MapReduce execution are not necessary tasks for

REST Open API service execution. To avoid such a problem,
REST-MapReduce framework provides an integrated inter-
face with high performance that supports both REST Open
API and MapReduce. At the same time, the REST Open
API service is provided by a separated architecture. Likewise,
we can overcome such a slow response time of simple
RDBM invocation on Hadoop by this integrated interface,
but differentiated service. Surely, we have only focused on the
task parallelism such as pi value calculation. But, generally
we need to prepare various types of requests for simple
DB lookup. So, future work of this research involves trying
to make faster DB lookup request on Hadoop framework
physically.
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