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The population dynamics of a three-species ecological systemwith impulsive effect are investigated. Using the theories of impulsive
equations and small-amplitude perturbation scales, the conditions for the system to be permanent when the number of predators
released is less than some critical value can be obtained. Furthermore, because the predator in the system follows the predictions
of optimal foraging theory, it follows that optimal foraging promotes species coexistence. In particular, the less beneficial prey
can support the predator alone when the more beneficial prey goes extinct. Moreover, the influences of the impulsive effect and
optimal foraging on inherent oscillations are studied using simulation, which reveals rich dynamic behaviors such as period-halving
bifurcations, a chaotic band, a periodic window, and chaotic crises. In addition, the largest Lyapunov exponent and the power
spectra of the strange attractor, which can help analyze the chaotic dynamic behavior of themodel, are investigated.This information
will be useful for studying the dynamic complexity of ecosystems.

1. Introduction

In recent years, interest in studying nonlinear dynamic
systems has exploded. In the 1970s, since the pioneering work
ofMay on the relationship between food-web complexity and
stability and the chaotic phenomenon [1–3], more and more
researchers have become interested in dynamic behavior
involving ecological mechanisms that promote species diver-
sity [4–20]. More recently, dynamic systems’ studies have
benefited from an infusion of interest and new techniques in
ecology.

It is known that when a predator is shared by two non-
competing species, predator-mediated apparent competition
often leads to competitive exclusion of one prey popula-
tion [21]. This phenomenon is related to optimal foraging
and adaptive foraging. A two-prey-one-predator population
model with optimal predator foraging behavior has been
studied in a fine-grained environment [22–24]. On this basis,
Křivan and Eisner considered a system composed of two prey

types and an optimally foraging predator [25] in a system
described by the following model:

𝑥̇ (𝑡) = 𝑥 (𝑡) (𝑟

1
(𝑥 (𝑡))

−

𝜆

1
𝑧 (𝑡)

1 + ℎ

1
𝜆

1
𝑥 (𝑡) + 𝑢ℎ

2
𝜆

2
𝑦 (𝑡)

)

̇𝑦 (𝑡) = 𝑦 (𝑡) (𝑟

2
(𝑦 (𝑡))

−

𝑢𝜆

2
𝑧 (𝑡)

1 + ℎ

1
𝜆

1
𝑥 (𝑡) + 𝑢ℎ

2
𝜆

2
𝑦 (𝑡)

)

𝑧̇ (𝑡) = 𝑧 (𝑡) (

𝑒

1
𝜆

1
𝑥 (𝑡) + 𝑢𝑒

2
𝜆

2
𝑦 (𝑡)

1 + ℎ

1
𝜆

1
𝑥 (𝑡) + 𝑢ℎ

2
𝜆

2
𝑦 (𝑡)

− 𝑚) .

(1)

This paper considers an impulsive differential-equation
model based on model (1), which assumes that predators
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forage according to optimal foraging theory [23, 24]. This
system can be expressed by the following equations:

𝑥̇ (𝑡) = 𝑟

1
𝑥 (𝑡) (

𝑘

0
− 𝑥 (𝑡)

𝑘

1
− 𝑥 (𝑡)

) − 𝑏

1
𝑥

2
(𝑡)

−

𝜆

1
𝑥 (𝑡) 𝑧 (𝑡)

1 + ℎ

1
𝜆

1
𝑥 (𝑡) + 𝑢ℎ

2
𝜆

2
𝑦 (𝑡)

̇𝑦 (𝑡) = 𝑟

2
𝑦 (𝑡) (

𝑘

2
− 𝑦 (𝑡)

𝑘

3
− 𝑦 (𝑡)

) − 𝑏

2
𝑦

2
(𝑡)

−

𝑢𝜆

2
𝑦 (𝑡) 𝑧 (𝑡)

1 + ℎ

1
𝜆

1
𝑥 (𝑡) + 𝑢ℎ

2
𝜆

2
𝑦 (𝑡)

𝑧̇ (𝑡) = 𝑧 (𝑡) (

𝑒

1
𝜆

1
𝑥 (𝑡) + 𝑢𝑒

2
𝜆

2
𝑦 (𝑡)

1 + ℎ

1
𝜆

1
𝑥 (𝑡) + 𝑢ℎ

2
𝜆

2
𝑦 (𝑡)

− 𝑚)

𝑡 ̸= 𝑛𝑇

𝑥 (𝑡

+
) = 𝑥 (𝑡)

𝑦 (𝑡

+
) = 𝑦 (𝑡)

𝑧 (𝑡

+
) = 𝑧 (𝑡) + 𝑝

𝑡 = 𝑛𝑇,

(2)

where 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) are, respectively, the densities of two
prey types and one predator at time 𝑡, 𝑟

𝑖
(𝑖 = 1, 2) is the

per capita prey intrinsic growth rate, 𝑟
1
⋅ 𝑘

0
(0 ≤ 𝑘

0
/𝑘

1
≤

1), 𝑟
2
⋅ 𝑘

2
(0 ≤ 𝑘

2
/𝑘

3
≤ 1) are the respective carrying

capacities of the prey, and 𝑘
1
, 𝑘
3
are the corresponding values

of available resources or in the ideal case (i.e., where no
resources are wasted) the carrying capacity. However, the
ideal case is impossible in reality. The ratios 𝑘

0
/𝑘

1
, 𝑘
2
/𝑘

3

express the relative efficiency of nutrient utilization in species
𝑥, 𝑦. At any time, if 𝑥 < 𝑘

0
< 𝑘

1
, 𝑦 < 𝑘

2
< 𝑘

3
, the efficiency

is high as long as 𝑘
0
/𝑘

1
, 𝑘
2
/𝑘

3
are close to one; when the

values are lower, this indicates that resource limitations are
restricting the population increase [23]. 𝑏

𝑖
(𝑖 = 1, 2) are the

rate of intraspecific competition of the prey, 𝜆
𝑖
(𝑖 = 1, 2)

is the cropping rate of a predator feeding on the 𝑖th prey
type, 𝑒

𝑖
(𝑖 = 1, 2) is the conversion factor relating predator

reproduction to prey consumption, and ℎ
𝑖
(𝑖 = 1, 2) is the

per capita mortality rate for the forager. In this paper, it is
assumed that prey type 𝑥 is more beneficial than the other
and hence 𝑒

1
/ℎ

1
> 𝑒

2
/ℎ

2
[26, 27]. To study optimal foraging,

a control parameter 𝑢 (0 ≤ 𝑢 ≤ 1) is introduced [25],
which represents the probability that the alternative second
prey type is included in the predator’s diet. 𝑇 is the period
of the impulsive effect, 𝑛 ∈ 𝑁, and 𝑝 > 0 is the number of
predators released at 𝑡 = 𝑛𝑇. To achieve a set of conditions
which can guarantee that the system will be permanent and
that the numbers of the two prey types are not so large that
they go extinct because of exceeding the carrying capacity of
the environment, the model will release a certain number of
predators only at 𝑡 = 𝑛𝑇 because the predator is assumed to
be a versatile and advanced predator.

The rest of this paper is organized as follows. Section 2
will review the effect of impulsive perturbations, establish

conditions for extinction, and obtain the conditions for
permanence of System (2) using the Floquet theory of impul-
sive equations at small-amplitude perturbation scales. In
Section 3, the results of computer-based numerical analysis
are shown and discussed briefly. In addition, the largest Lya-
punov exponent, which also indicates the chaotic dynamic
behavior of the model, is computed, and the Fourier spectra,
which illustrate the qualitative nature of strange attractors, are
plotted. Finally, conclusions and remarks are stated.

2. Analysis of the System

Let 𝑅
+
= [0,∞), 𝑅

+
= {𝑋 ∈ 𝑅

3
: 𝑋 ≥ 0,𝑋 = (𝑥, 𝑦, 𝑧)},

Ω = int𝑅3
+
, and let 𝑁 be the set of all nonnegative integers.

Themap 𝑔 = (𝑔
1
, 𝑔

2
, 𝑔

3
)

𝑇 is defined by the right-hand side of
the first three equations of System (2).

Let 𝑉 : 𝑅
+
× 𝑅

3

+
→ 𝑅

+
; then 𝑉 is said to belong to class

𝑉

0
if
(1) 𝑉 is continuous in (𝑛𝑇, (𝑛 + 1)𝑇] × 𝑅3

+
, and for each

𝑥 ∈ 𝑅

3

+
, 𝑛 ∈ 𝑁, lim

(𝑡,𝑦)→ (𝑛𝑇
+
,𝑥)
𝑉(𝑡, 𝑦) = 𝑉(𝑛𝑇

+
, 𝑥)

exists;
(2) 𝑉 is locally Lipschitzian in𝑋.

Definition 1. Let 𝑉 ∈ 𝑉

0
; then, for (𝑡, 𝑥) ∈ (𝑛𝑇, (𝑛 + 1)𝑇] ×

𝑅

3

+
, the upper right derivative of 𝑉(𝑡, 𝑥) with respect to the

impulsive differential System (2) can be defined as

𝐷

+
𝑉 (𝑡, 𝑥) = lim

ℎ→0

sup 1
ℎ

[𝑉 (𝑡 + ℎ, 𝑥 + ℎ𝑔 (𝑡, 𝑥)) − 𝑉 (𝑡, 𝑥)] .

(3)

The solution of System (2) is a piecewise continuous
function𝑋 : 𝑅

+
→ 𝑅

3

+
, where𝑋(𝑡) is continuous on (𝑛𝑇, (𝑛+

1)𝑇], 𝑛 ∈ 𝑁, and 𝑋(𝑛𝑇+) = lim
𝑡→𝑛𝑇

𝑋(𝑡) exists. Obviously,
the smoothness property of 𝑔 guarantees the global existence
and uniqueness of a solution of System (2) (for details, see
[28–30]).

Definition 2. System (2) is said to be permanent if there
exists a compact region Ω = int𝑅3

+
such that every

solution (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) of System (2) will eventually enter
and remain in the regionΩ.

The following lemma will now be presented.

Lemma3. Let𝑋(𝑡) be a solution of System (2)with𝑋(0+) ≥ 0;
then 𝑋(𝑡) ≥ 0 for all 𝑡 ≥ 0, and furthermore 𝑋(𝑡) > 0, 𝑡 ≥ 0 if
𝑋(0

+
) > 0.

An important comparison theorem will now be used on
the impulsive differential equation.

Lemma 4 (see [28–30]). Let 𝑉 ∈ 𝑉
0
and assume that

𝐷

+
𝑉 (𝑡, 𝑋) ≤ 𝑓 (𝑡, 𝑉 (𝑡, 𝑋)) 𝑡 ̸= 𝑛𝑇

𝑉 (𝑡, 𝑋 (𝑡

+
)) ≤ 𝜑

𝑛
(𝑉 (𝑡, 𝑋)) 𝑡 = 𝑛𝑇,

(4)

where𝑓 : 𝑅
+
×𝑅

+
→ 𝑅 is continuous in (𝑛𝑇, (𝑛+1)𝑇]×𝑅

+
and

for 𝜇 ∈ 𝑅
+
, 𝑛 ∈ 𝑁, lim

(𝑡,𝑦)→ (𝑛𝑇
+
,𝜇)
𝑓(𝑡, 𝑦) = 𝑓(𝑛𝑇

+
, 𝜇) exists
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and 𝜑
𝑛
: 𝑅

+
→ 𝑅

+
is nondecreasing. Let 𝑟(𝑡) be the maximal

solution to the scalar impulsive differential equation

𝑢̇ (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) 𝑡 ̸= 𝑛𝑇

𝑢 (𝑡

+
) = 𝜑

𝑛
(𝑢 (𝑡)) 𝑡 = 𝑛𝑇

𝑢 (0

+
) = 𝑢

0

(5)

existing on [0,∞). Then 𝑉(0

+
, 𝑋

0
) ≤ 𝑢

0
implies that

𝑉(𝑡, 𝑋(𝑡)) ≤ 𝑟(𝑡), 𝑡 ≥ 0, where 𝑋(𝑡) is any solution to System
(2).

Theorem 5. There exists a constant 𝑀 such that 𝑥(𝑡) ≤

𝑀, 𝑦(𝑡) ≤ 𝑀, and 𝑧(𝑡) ≤ 𝑀 for each solution 𝑋(𝑡) =
(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) of System (2) for all 𝑡 large enough.

Proof. Define 𝑉(𝑡, 𝑋(𝑡)) such that

𝑉 (𝑡, 𝑋 (𝑡)) = 𝑒

1
𝑥 (𝑡) + 𝑒

2
𝑦 (𝑡) + 𝑧 (𝑡) , (6)

where 𝑉 ∈ 𝑉

0
. Since 𝑥̇(𝑡) ≤ 𝑟

1
𝑥(𝑡) − 𝑏

1
𝑥

2
(𝑡) and ̇𝑦(𝑡) ≤

𝑟

2
𝑦(𝑡) − 𝑏

2
𝑦

2
(𝑡), then 𝑥(𝑡) ≤ 𝑟

1
/𝑏

1
, 𝑦(𝑡) ≤ 𝑟

2
/𝑏

2
, and the

upper right derivative of 𝑉(𝑡, 𝑋(𝑡)) can be calculated along
a solution of System (2), yielding the following impulsive
differential equation:

𝐷

+
𝑉 (𝑡) + 𝐿𝑉 (𝑡) = 𝐿𝑒

1
𝑥 (𝑡) + 𝑟

1
𝑒

1
𝑥 (𝑡) (

𝑘

0
− 𝑥 (𝑡)

𝑘

1
− 𝑥 (𝑡)

)

− 𝑏

1
𝑒

1
𝑥

2
(𝑡) + 𝐿𝑒

2
𝑦 (𝑡)

+ 𝑟

2
𝑒

2
𝑦 (𝑡) (

𝑘

2
− 𝑦 (𝑡)

𝑘

3
− 𝑦 (𝑡)

) − 𝑏

2
𝑒

2
𝑦

2
(𝑡)

+ (𝐿 − 𝑚) 𝑧 (𝑡) 𝑡 ̸= 𝑛𝑇

𝑉 (𝑡

+
) = 𝑉 (𝑡) + 𝑝 𝑡 = 𝑛𝑇.

(7)

Obviously,

𝐷

+
𝑉 (𝑡) + 𝐿𝑉 (𝑡) ≤ (𝐿𝑒

1
+ 𝑟

1
𝑒

1
) 𝑥 (𝑡) − 𝑏

1
𝑒

1
𝑥

2
(𝑡)

+ (𝐿𝑒

2
+ 𝑟

2
𝑒

2
) 𝑦 (𝑡) − 𝑏

2
𝑒

2
𝑦

2
(𝑡)

+ (𝐿 − 𝑚) 𝑧 (𝑡) .

(8)

Let 0 < 𝐿 < 𝑚; then 𝐷+𝑉(𝑡) + 𝐿𝑉(𝑡) is bounded. Select
𝐿

1
, 𝐿
2
such that

𝐷

+
𝑉 (𝑡) ≤ −𝐿

1
𝑉 (𝑡) + 𝐿

2
𝑡 ̸= 𝑛𝑇

𝑉 (𝑡

+
) = 𝑉 (𝑡) + 𝑝 𝑡 = 𝑛𝑇,

(9)

where 𝐿
1
, 𝐿
2
are two positive constants.

According to Lemma 4,

𝑉 (𝑡) ≤ (𝑉 (0

+
) −

𝐿

2

𝐿

1

) exp (−𝐿
1
𝑡)

+

𝑝 exp (1 − exp (−𝑛𝐿
1
𝑡))

exp (𝐿
1
𝑇) − 1

exp (𝐿
1
𝑡)

× exp (−𝐿
1
(𝑡 − 𝑛𝑡)) +

𝐿

2

𝐿

1

,

(10)

where 𝑡 ∈ (𝑛𝑇, (𝑛 + 1)𝑇]. Hence,

lim
𝑡→∞

𝑉 (𝑡) ≤

𝐿

2

𝐿

1

+

𝑝 exp (𝐿
1
𝑇)

exp (𝐿
1
𝑇) − 1

. (11)

Therefore,𝑉(𝑡, 𝑋(𝑡)) is ultimately bounded, and it follows
that each positive solution of System (2) is uniformly ulti-
mately bounded. This completes the proof.

Next, some basic properties of the following subsystem of
System (2), in which the two prey types are absent, will be
defined:

𝑧̇ (𝑡) = −𝑚𝑧 (𝑡) 𝑡 ̸= 𝑛𝑇

𝑧 (𝑡

+
) = 𝑧 (𝑡) + 𝑝 𝑡 = 𝑛𝑇

𝑧 (0

+
) = 𝑧

0
.

(12)

Clearly, 𝑧∗(𝑡) = 𝑝 exp(−𝑚(𝑡 − 𝑛𝑇))/(1 − exp(−𝑚𝑇)), 𝑡 ∈
(𝑛𝑇, (𝑛+1)𝑇], 𝑛 ∈ 𝑁, 𝑧∗(0+) = 𝑝/(1−exp(−𝑚𝑇)) is a positive
periodic solution of System (12). Hence,

𝑧 (𝑡) = (𝑧 (0

+
) −

𝑝

1 − exp (−𝑚𝑇)
) exp (−𝑚𝑇) + 𝑧∗ (𝑡) (13)

is a solution of System (12) with initial value 𝑧
0
≥ 0, where

𝑡 ∈ (𝑛𝑇, (𝑛 + 1)𝑇], 𝑛 ∈ 𝑁.

Lemma 6. For a positive periodic solution 𝑧∗(𝑡) of System (12)
and every solution 𝑧(𝑡) of System (12) with 𝑧

0
≥ 0, |𝑧(𝑡) −

𝑧

∗
(𝑡)| → 0, 𝑡 → ∞.

Hence, when only the predator is present, it is possible
to obtain the complete expression for the periodic solution
(0, 0, 𝑧

∗
(𝑡)) of System (2).

Based on these discussions, the following theorems can
be proved.

Theorem 7. Let (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) be any solution of System (2).
Then

(1) (0, 0, 𝑧∗(𝑡)) is said to be locally asymptotically stable if
𝑝 > max(𝑟

1
𝑘

0
𝑇𝑚/𝜆

1
𝑘

1
, 𝑟

2
𝑘

2
𝑇𝑚/𝑢𝜆

2
𝑘

3
);

(2) (0, 0, 𝑧∗(𝑡)) is said to be globally asymptotically stable
if 𝑝 > max(𝑟

1
𝑘

0
𝑇𝑚/𝜆

1
𝑘

1
, 𝑟

2
𝑘

2
𝑇𝑚/𝑢𝜆

2
𝑘

3
) and

𝑝 exp (−𝑚𝑇)
1 − exp (−𝑚𝑇)

> max(
𝑟

1
(1 + ℎ

1
𝜆

1
𝑀+ 𝑢ℎ

2
𝜆

2
𝑀)

𝜆

1

,

𝑟

2
(1 + ℎ

1
𝜆

1
𝑀+ 𝑢ℎ

2
𝜆

2
𝑀)

𝑢𝜆

2

) .

(14)
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Proof. The local stability of the periodic solution (0, 0, 𝑧∗(𝑡))
may be determined by considering the behavior of small-
amplitude perturbations of the solution. Define

𝑥 (𝑡) = 𝑢 (𝑡) , 𝑦 (𝑡) = V (𝑡) , 𝑧 (𝑡) = 𝑤 (𝑡) + 𝑧

∗
(𝑡) .

(15)

Then substitute (15) into System (2). The linearization of the
system becomes

𝑢̇ (𝑡) = (𝑟

1

𝑘

0

𝑘

1

− 𝜆

1
𝑧

∗
)𝑢 (𝑡)

V̇ (𝑡) = (𝑟
2

𝑘

2

𝑘

3

− 𝑢𝜆

2
𝑧

∗
) V (𝑡)

𝑤̇ (𝑡) = 𝑧

∗
𝑒

1
𝜆

1
𝑢 (𝑡) + 𝑧

∗
𝑢𝑒

2
𝜆

2
V (𝑡) − 𝑚𝑤 (𝑡)

𝑡 ̸= 𝑛𝑇

𝑢 (𝑡

+
) = 𝑢 (𝑡)

V (𝑡+) = V (𝑡)

𝑤 (𝑡

+
) = 𝑤 (𝑡)

𝑡 = 𝑛𝑇.

(16)

Therefore,

(

𝑢 (𝑡)

V (𝑡)
𝑤 (𝑡)

) = Φ (𝑡)(

𝑢 (0)

V (0)
𝑤 (0)

) 0 ≤ 𝑡 ≤ 𝑇, (17)

where Φ(𝑡) satisfies

𝑑Φ

𝑑𝑡

=(

𝑟

1

𝑘

0

𝑘

1

− 𝜆

1
𝑧

∗
0 0

0 𝑟

2

𝑘

2

𝑘

3

− 𝑢𝜆

2
𝑧

∗
0

𝑧

∗
𝑒

1
𝜆

1
𝑧

∗
𝑢𝑒

2
𝜆

2
−𝑚

)Φ(𝑡) (18)

and Φ(0) = 𝐼, the identity matrix, and

(

𝑢 (𝑛𝑇

+
)

V (𝑛𝑇+)
𝑤 (𝑛𝑇

+
)

) = (

1 0 0

0 1 0

0 0 1

)(

𝑢 (𝑛𝑇)

V (𝑛𝑇)
𝑤 (𝑛𝑇)

) . (19)

The stability of the periodic solution (0, 0, 𝑧∗(𝑡)) is deter-
mined by the eigenvalues of

Θ = (

1 0 0

0 1 0

0 0 1

)Φ (𝑇) (20)

which are

𝜇

1
= exp(∫

𝑇

0

𝑟

1

𝑘

0

𝑘

1

− 𝜆

1
𝑧

∗
𝑑𝑡) ,

𝜇

2
= exp(∫

𝑇

0

𝑟

2

𝑘

2

𝑘

3

− 𝑢𝜆

2
𝑧

∗
𝑑𝑡)

𝜇

3
= exp (−𝑚𝑇) < 1.

(21)

According to Floquet theory, (0, 0, 𝑧∗(𝑡)) is locally asymp-
totically stable if |𝜇

1
| < 1 and |𝜇

2
| < 1; that is, 𝑝 >

max(𝑟
1
𝑘

0
𝑇𝑚/𝜆

1
𝑘

1
, 𝑟

2
𝑘

2
𝑇𝑚/𝑢𝜆

2
𝑘

3
).

If (0, 0, 𝑧∗(𝑡)) is locally asymptotically stable and a global
attractor, then (0, 0, 𝑧∗(𝑡)) is globally asymptotically stable. In
the following, global attractiveness will be demonstrated.

Let 𝑉(𝑡) = 𝑥(𝑡) + 𝑦(𝑡); then

̇

𝑉(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨(2)
= 𝑟

1
𝑥 (𝑡) (

𝑘

0
− 𝑥 (𝑡)

𝑘

1
− 𝑥 (𝑡)

) − 𝑏

1
𝑥

2
(𝑡)

−

𝜆

1
𝑥 (𝑡) 𝑧 (𝑡)

1 + ℎ

1
𝜆

1
𝑥 (𝑡) + 𝑢ℎ

2
𝜆

2
𝑦 (𝑡)

+ 𝑟

2
𝑦 (𝑡) (

𝑘

2
− 𝑦 (𝑡)

𝑘

3
− 𝑦 (𝑡)

) − 𝑏

2
𝑦

2
(𝑡)

−

𝑢𝜆

2
𝑦 (𝑡) 𝑧 (𝑡)

1 + ℎ

1
𝜆

1
𝑥 (𝑡) + 𝑢ℎ

2
𝜆

2
𝑦 (𝑡)

̇

𝑉 (𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨(2)
≤ (𝑟

1
−

𝜆

1
𝑧 (𝑡)

1 + ℎ

1
𝜆

1
𝑥 (𝑡) + 𝑢ℎ

2
𝜆

2
𝑦 (𝑡)

) 𝑥 (𝑡)

− 𝑏

1
𝑥

2
(𝑡)

+ (𝑟

2
−

𝑢𝜆

2
𝑧 (𝑡)

1 + ℎ

1
𝜆

1
𝑥 (𝑡) + 𝑢ℎ

2
𝜆

2
𝑦 (𝑡)

) 𝑦 (𝑡)

− 𝑏

2
𝑦

2
(𝑡) .

(22)

By Theorem 5, there exists a constant 𝑀 > 0 such that
𝑥(𝑡) ≤ 𝑀, 𝑦(𝑡) ≤ 𝑀, and 𝑧(𝑡) ≤ 𝑀 for each solution
𝑋(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) of System (2) with all 𝑡 large enough.
Therefore,

𝑧̇ (𝑡) = 𝑧 (𝑡) (

𝑒

1
𝜆

1
𝑥 (𝑡) + 𝑢𝑒

2
𝜆

2
𝑦 (𝑡)

1 + ℎ

1
𝜆

1
𝑥 (𝑡) + 𝑢ℎ

2
𝜆

2
𝑦 (𝑡)

− 𝑚)

≥ − 𝑚𝑧 (𝑡) 𝑡 ̸= 𝑛𝑇.

𝑧 (𝑡

+
) = 𝑧 (𝑡) + 𝑝 𝑡 = 𝑛𝑇

(23)

By Lemmas 4 and 6, it is known that there exists 𝑡
1
> 0

and it is possible to select 𝜀 > 0 small enough so that 𝑧(𝑡) ≥
𝑧

∗
(𝑡) − 𝜀. Therefore, for all 𝑡 ≥ 𝑡

1
,

𝑧 (𝑡) ≥ 𝑧

∗
(𝑡) − 𝜀

=

𝑝 exp (−𝑚 (𝑡 − 𝑛𝑇))
1 − exp (−𝑚𝑇)

− 𝜀

≥

𝑝 exp (−𝑚𝑇)
1 − exp (−𝑚𝑇)

− 𝜀.

(24)

Define

𝛾 =

𝑝 exp (−𝑚𝑇)
1 − exp (−𝑚𝑇)

− 𝜀. (25)
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Then 𝑟
1
− (𝜆

1
𝛾/(1 + ℎ

1
𝜆

1
𝑀 + 𝑢ℎ

2
𝜆

2
𝑀)) < 0 and 𝑟

1
−

(𝑢𝜆

2
𝛾/(1 + ℎ

1
𝜆

1
𝑀+ 𝑢ℎ

2
𝜆

2
𝑀)) < 0. Thus, for 𝑡 ≥ 𝑡

1
,

̇

𝑉(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨(2)
≤ (𝑟

1
−

𝜆

1
𝛾

1 + ℎ

1
𝜆

1
𝑀+ 𝑢ℎ

2
𝜆

2
𝑀

)𝑥 (𝑡) − 𝑏

1
𝑥

2
(𝑡)

+ (𝑟

2
−

𝑢𝜆

2
𝛾

1 + ℎ

1
𝜆

1
𝑀+ 𝑢ℎ

2
𝜆

2
𝑀

)𝑦 (𝑡)

− 𝑏

2
𝑦

2
(𝑡) < 0.

(26)

So 𝑉(𝑡) → 0, 𝑥(𝑡) → 0, 𝑦(𝑡) → 0 as 𝑡 → ∞.
Note that the limiting case of System (2) is exactly System (12)
together with Lemma 6. It follows that the periodic solution
(0, 0, 𝑧

∗
(𝑡)) is a global attractor.This completes the proof.

Theorem 8. System (2) is permanent if

𝑝 < min(
𝑟

1
𝑘

0
𝑇𝑚

𝜆

1
𝑘

1

,

𝑟

2
𝑘

2
𝑇𝑚

𝑢𝜆

2
𝑘

3

) ,

𝑝 exp (−𝑚𝑇)
1 − exp (−𝑚𝑇)

< min(
𝑟

1
(1 + ℎ

1
𝜆

1
𝑀+ 𝑢ℎ

2
𝜆

2
𝑀)

𝜆

1

,

𝑟

2
(1 + ℎ

1
𝜆

1
𝑀+ 𝑢ℎ

2
𝜆

2
𝑀)

𝑢𝜆

2

) .

(27)

Proof. Let 𝑋(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) be any solution of System
(2) with 𝑋(0) > 0. From Theorem 5, assume that 𝑥(𝑡) ≤
𝑀, 𝑦(𝑡) ≤ 𝑀, 𝑧(𝑡) ≤ 𝑀.

From System (2), 𝑥̇(𝑡) ≤ (𝑟
1
− 𝑏

1
𝑥(𝑡))𝑥(𝑡).

Consider the following equation:

𝑤̇ (𝑡) = 𝑤 (𝑡) (𝑟

1
− 𝑏

1
𝑤 (𝑡))

𝑤 (0) = 𝑥 (0) .

(28)

It is possible to obtain 𝑥(𝑡) ≤ 𝑤(𝑡) and 𝑤(𝑡) → 𝑟

1
/𝑏

1
as

𝑡 → ∞. Hence, for any 𝜀
1
> 0, 𝑥(𝑡) < 𝑟

1
/𝑏

1
+ 𝜀

1
for all 𝑡

sufficiently large. For simplification, it may be assumed that
𝑥(𝑡) < 𝑟

1
/𝑏

1
+ 𝜀

1
holds for all 𝑡 > 0. The same arguments can

be made for any 𝜀
2
> 0, 𝑦(𝑡) < 𝑟

2
/𝑏

2
+ 𝜀

2
for all 𝑡 > 0. Let

𝑚

3
= (𝑝 exp(−𝑚𝑇))/(1 − exp(−𝑚𝑇)) − 𝜀(𝜀 > 0). Note that

𝑧̇(𝑡) ≥ −𝑚𝑧(𝑡), and consider the following equation:

𝑤̇ (𝑡) = − 𝑏

3
𝑤 (𝑡) 𝑡 ̸= 𝑛𝑇

𝑤 (𝑡

+
) = 𝑤 (𝑡) + 𝑝 𝑡 = 𝑛𝑇

𝑤 (0

+
) = 𝑧 (0

+
) > 0.

(29)

From Lemmas 4 and 6, 𝑧(𝑡) ≥ 𝑤(𝑡) > 𝑧∗(𝑡) − 𝜀 > 0,
and hence 𝑧(𝑡) > 𝑚

3
for all 𝑡 sufficiently large. Therefore, it

is necessary to find 𝑙
1
> 0 and 𝑙

2
> 0 such that 𝑥(𝑡) ≥ 𝑙

1
,

𝑦(𝑡) ≥ 𝑙

2
for all 𝑡 large enough. This can be done as shown in

the following two steps.
First, choose 0 < 𝑙

1
< 𝑚/2𝑒

1
𝜆

1
, 0 < 𝑙

2
< 𝑚/2𝑢𝑒

2
𝜆

2
such

that 𝑒
1
𝜆

1
𝑙

1
+ 𝑢𝑒

2
𝜆

2
𝑙

2
< 𝑚. Then there exist 𝑡

1
∈ (0,∞) and

𝑡

2
∈ (0,∞) such that 𝑥(𝑡

1
) ≥ 𝑙

1
, 𝑦(𝑡
2
) ≥ 𝑙

2
. Otherwise,

(1) there exists a 𝑡
2
> 0 such that 𝑦(𝑡

2
) ≥ 𝑙

2
, but 𝑥(𝑡

1
) < 𝑙

1

for all 𝑡 > 0;
(2) there exists a 𝑡

1
> 0 such that 𝑥(𝑡

1
) ≥ 𝑙

1
, but 𝑦(𝑡

2
) < 𝑙

2

for all 𝑡 > 0;
(3) there are 𝑥(𝑡

1
) < 𝑙

1
and 𝑦(𝑡

2
) < 𝑙

2
for all 𝑡 > 0.

For case (1), according to Theorem 8, select 𝜂
1
> 0 small

enough so that

𝜔

1
= ∫

(𝑛+1)𝑇

𝑛𝑇

(𝑟

1
− 𝑏

1
𝑙

1
− 𝜆

1
(V∗ + 𝜂

1
)) 𝑑𝑡 > 0.

(30)

From case (1),

𝑧̇ (𝑡) ≤ (𝑒

1
𝜆

1
𝑥 (𝑡) + 𝑢𝑒

2
𝜆

2
𝑦 (𝑡) − 𝑚) 𝑧 (𝑡)

≤ (−𝑚 + 𝑒

1
𝜆

1
𝑙

1
+ 𝑢𝑒

2
𝜆

2
(

𝑟

2

𝑏

2

+ 𝜀

1
))𝑧 (𝑡)

= 𝐴𝑧 (𝑡) 𝑡 ̸= 𝑛𝑇

𝑧 (𝑡

+
) = 𝑧 (𝑡) + 𝑝 𝑡 = 𝑛𝑇,

(31)

where 𝐴 = −𝑚 + 𝑒
1
𝜆

1
𝑙

1
+ 𝑢𝑒

2
𝜆

2
(𝑟

2
/𝑏

2
+ 𝜀

1
). Therefore, 𝑧(𝑡) ≤

V(𝑡) and V(𝑡) → V∗(𝑡) as 𝑡 → ∞, where V(𝑡) is the solution
of the following equation:

V̇ (𝑡) = 𝐴V (𝑡) 𝑡 ̸= 𝑛𝑇

V (𝑡+) = V (𝑡) + 𝑝 𝑡 = 𝑛𝑇

V (0+) = 𝑧 (0+) ≥ 0

(32)

and V∗(𝑡) = 𝑝 exp(𝐴(𝑡 −𝑛𝑇))/(1− exp(𝐴𝑇)). Therefore, there
exists a 𝑇

1
> 0, when 𝑡 > 𝑇

1
,

𝑧 (𝑡) ≤ V (𝑡) < V∗ (𝑡) + 𝜂
1
, (33)

𝑥̇ (𝑡) ≥ (𝑟

1
− 𝑏

1
𝑙

1
− 𝜆

1
(V∗ (𝑡) + 𝜂

1
)) 𝑥 (𝑡) 𝑡 ̸= 𝑛𝑇

𝑥 (𝑡

+
) = 𝑥 (𝑡) 𝑡 = 𝑛𝑇.

(34)

Let𝑁
1
∈ 𝑁 and𝑁

1
𝑇 ≥ 𝑇

1
. Integrating (34) on (𝑛𝑇, (𝑛 +

1)𝑇], 𝑛 ≥ 𝑁
1
, the following result can be obtained:

𝑥 ((𝑛 + 1) 𝑇)

≥ 𝑥 (𝑛𝑇) exp(∫
(𝑛+1)𝑇

𝑛𝑇

(𝑟

1
− 𝑏

1
𝑙

1
− 𝜆

1
(V∗ + 𝜂

1
)) 𝑑𝑡)

= 𝑥 (𝑛𝑇) exp (𝜔
1
) .

(35)

Then 𝑥((𝑁
1
+ 𝑘)𝑇) ≥ 𝑥(𝑁

1
𝑇) exp(𝑘𝜔

1
) → ∞ as 𝑘 → ∞,

which is a contradiction.
For case (2), the same arguments can be used.
Now consider case (3). Choose 𝜂

2
> 0 small enough so

that

𝜔

2
= ∫

(𝑛+1)𝑇

𝑛𝑇

(𝑟

1
− 𝑏

1
𝑙

1
− 𝜆

1
(𝑢

∗
+ 𝜂

2
)) 𝑑𝑡 > 0.

(36)
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From case (3),

𝑧̇ (𝑡) ≤ (𝑒

1
𝜆

1
𝑥 (𝑡) + 𝑢𝑒

2
𝜆

2
𝑦 (𝑡) − 𝑚) 𝑧 (𝑡)

≤ (−𝑚 + 𝑒

1
𝜆

1
𝑙

1
+ 𝑢𝑒

2
𝜆

2
𝑙

2
) 𝑧 (𝑡)

= 𝐵𝑧 (𝑡) 𝑡 ̸= 𝑛𝑇

𝑧 (𝑡

+
) = 𝑧 (𝑡) + 𝑝 𝑡 = 𝑛𝑇,

(37)

where 𝐵 = −𝑚 + 𝑒
1
𝜆

1
𝑙

1
+ 𝑢𝑒

2
𝜆

2
𝑙

2
. Therefore, 𝑧(𝑡) ≤ 𝑢(𝑡) and

𝑢(𝑡) → 𝑢

∗
(𝑡) as 𝑡 → ∞, where 𝑢(𝑡) is the solution of the

following equation:

𝑢̇ (𝑡) = 𝐵𝑢 (𝑡) 𝑡 ̸= 𝑛𝑇

𝑢 (𝑡

+
) = 𝑢 (𝑡) + 𝑝 𝑡 = 𝑛𝑇

𝑢 (0

+
) = 𝑧 (0

+
) ≥ 0

(38)

and 𝑢∗(𝑡) = 𝑝 exp(𝐵(𝑡−𝑛𝑇))/(1−exp(𝐵𝑇)).Then there exists
a 𝑇
2
> 0, when 𝑡 ≥ 𝑇

2
, such that

𝑧 (𝑡) ≤ 𝑢 (𝑡) < 𝑢

∗
(𝑡) + 𝜂

2
, (39)

𝑥̇ (𝑡) ≥ (𝑟

1
− 𝑏

1
𝑙

1
− 𝜆

1
(𝑢

∗
(𝑡) + 𝜂

2
)) 𝑥 (𝑡) 𝑡 ̸= 𝑛𝑇

𝑥 (𝑡

+
) = 𝑥 (𝑡) 𝑡 = 𝑛𝑇.

(40)

Let𝑁
2
∈ 𝑁 and𝑁

2
𝑇 ≥ 𝑇

2
. Integrating (40) on (𝑛𝑇, (𝑛 +

1)𝑇], 𝑛 ≥ 𝑁
2
, the following result can be obtained:

𝑥 ((𝑛 + 1) 𝑇)

≥ 𝑥 (𝑛𝑇) exp(∫
(𝑛+1)𝑇

𝑛𝑇

(𝑟

1
− 𝑏

1
𝑙

1
− 𝜆

1
(𝑢

∗
+ 𝜂

2
)) 𝑑𝑡)

= 𝑥 (𝑛𝑇) exp (𝜔
2
) .

(41)

Then 𝑥((𝑁
2
+ 𝑘)𝑇) ≥ 𝑥(𝑁

2
𝑇) exp(𝑘𝜔

2
) → ∞ as 𝑘 → ∞,

which is a contradiction.
In conclusion, there exist 𝑡

1
> 0 and 𝑡

2
> 0 such that

𝑥(𝑡) ≥ 𝑙

1
, 𝑦(𝑡) ≥ 𝑙

2
.

Second, if 𝑥(𝑡
1
) ≥ 𝑙

1
, for all 𝑡 > 𝑡

1
, then the objective has

been attained. Otherwise, there exists 𝑡 such that 𝑥(𝑡) < 𝑙
1
,

for 𝑡 > 𝑡
1
. Let 𝑡∗ = inf

𝑡<𝑡
∗{𝑥(𝑡) < 𝑙

1
}. Then 𝑥(𝑡

1
) ≥ 𝑙

1
, for

𝑡 ∈ [𝑡

1
, 𝑡

∗
) and 𝑡∗ ∈ (𝑛

1
𝑇, (𝑛

1
+ 1)𝑇], 𝑛

1
∈ 𝑁, and 𝑥(𝑡∗) = 𝑙

1
,

because 𝑥(𝑡) is continuous. Choose 𝑛
2
, 𝑛

3
∈ 𝑁 such that

𝑛

2
𝑇 > 𝑇

2
=

ln (𝜂
1
/ (𝑀 + 𝑝))

𝐴

,

exp (𝛿 (𝑛
2
+ 1) 𝑇) exp (𝑛

3
𝜔

1
) > 1,

(42)

where 𝛿 = 𝑟
1
−𝑏

1
𝑙

1
−𝜆

1
𝑀 < 0. Let 𝑇󸀠 = 𝑛

2
𝑇+𝑛

3
𝑇; then there

must be a 𝑡󸀠 ∈ ((𝑛
1
+ 1)𝑇, (𝑛

1
+ 1)𝑇 + 𝑇

󸀠
] such that 𝑥(𝑡󸀠) ≥ 𝑙

1
;

otherwise 𝑥(𝑡) < 𝑙
1
, 𝑡 ∈ ((𝑛

1
+1)𝑇, (𝑛

1
+1)𝑇+𝑇

󸀠
]. Considering

(32) with V((𝑛
1
+ 1)𝑇

+
) = 𝑧((𝑛

1
+ 1)𝑇

+
),

V (𝑡) = (V ((𝑛
1
+ 1) 𝑇

+
) −

𝑝

1 − exp (𝐴𝑇)
)

× exp (𝐴 (𝑡 − (𝑛
1
+ 1) 𝑇)) + V∗ (𝑡)

(43)

for 𝑡 ∈ (𝑛𝑇, (𝑛 + 1)𝑇] and 𝑛
1
+ 1 < 𝑛 < 𝑛

1
+ 1 + 𝑛

2
+ 𝑛

3
. Then,

for (𝑛
1
+ 1 + 𝑛

2
)𝑇 ≤ 𝑡 ≤ (𝑛

1
+ 1)𝑇 + 𝑇

󸀠,

󵄨

󵄨

󵄨

󵄨

V (𝑡) − V∗ (𝑡)󵄨󵄨󵄨
󵄨

< (𝑀 + 𝑝) exp (𝐴 (𝑡 − (𝑛
1
+ 1) 𝑇)) < 𝜂

1

𝑧 (𝑡) ≤ V (𝑡) < V∗ (𝑡) + 𝜂
1
.

(44)

It can be concluded that (34) holds for (𝑛
1
+ 1 + 𝑛

2
)𝑇 ≤ 𝑡 ≤

(𝑛

1
+1)𝑇+𝑇

󸀠. As in the first step above, it is possible to obtain
𝑥((𝑛

1
+ 1 + 𝑛

2
+ 𝑛

3
)𝑇) ≥ 𝑥((𝑛

1
+ 1 + 𝑛

2
)𝑇) exp(𝑛

3
𝜔

1
). There

are two possible cases for 𝑡 ∈ (𝑡∗, (𝑛
1
+ 1)𝑇].

Case (𝑎). If 𝑥(𝑡) < 𝑙
1
for 𝑡 ∈ (𝑡∗, (𝑛

1
+ 1)𝑇], then 𝑥(𝑡) < 𝑙

1
for

𝑡 ∈ (𝑡

∗
, (𝑛

1
+ 1 + 𝑛

2
)𝑇]. From System (2),

𝑥̇ (𝑡) ≥ (𝑟

1
− 𝑏

1
𝑥 (𝑡) − 𝜆

1
𝑧 (𝑡)) 𝑥 (𝑡)

≥ (𝑟

1
− 𝑏

1
𝑙

1
− 𝜆

1
𝑀)𝑥 (𝑡) = 𝛿𝑥 (𝑡) .

(45)

Integrating (45) on (𝑡∗, (𝑛
1
+ 1 + 𝑛

2
)𝑇], 𝑥((𝑛

1
+ 1 + 𝑛

2
)𝑇) ≥

𝑙

1
exp(𝛿(1 + 𝑛

2
)𝑇).

Thus

𝑥 ((𝑛

1
+ 1 + 𝑛

2
+ 𝑛

3
) 𝑇)

≥ 𝑙

1
exp (𝛿 (1 + 𝑛

2
) 𝑇) exp (𝑛

3
𝜔

1
) > 𝑙

1

(46)

which is a contradiction.
Let 𝑡 = inf

𝑡>𝑡
∗{𝑥(𝑡) ≥ 𝑙

1
}, so that 𝑥(𝑡) = 𝑙

1
and (45) holds

on [𝑡∗, 𝑡). Integrating (45) on [𝑡∗, 𝑡),

𝑥 (𝑡) ≥ 𝑥 (𝑡

∗
) exp (𝛿 (𝑡 − 𝑡∗))

≥ 𝑙

1
exp (𝛿 (1 + 𝑛

2
+ 𝑛

3
) 𝑇)

Δ

󳨀→ 𝑙

1
.

(47)

For 𝑡 > 𝑡, the same arguments can be used because 𝑥(𝑡) ≥ 𝑙
1
.

Case (𝑏). There exists a 𝑡󸀠󸀠 ∈ (𝑡∗, (𝑛
1
+ 1)𝑇] such that 𝑥(𝑡󸀠󸀠) ≥

𝑙

1
; let 𝑡 = inf

𝑡>𝑡
∗{𝑥(𝑡) ≥ 𝑙

1
}; then 𝑥(𝑡) < 𝑙

1
for [𝑡∗, 𝑡) and

𝑥(𝑡) = 𝑙

1
. For 𝑡 ∈ [𝑡∗, 𝑡), (45) holds true. Integrating (45) on

[𝑡

∗
, 𝑡),

𝑥 (𝑡) ≥ 𝑥 (𝑡

∗
) exp (𝛿 (𝑡 − 𝑡∗)) ≥ 𝑙

1
exp (𝛿𝑇) > 𝑙

1
.

(48)

For 𝑡 > 𝑡, the same arguments can be used because 𝑥(𝑡) ≥ 𝑙
1
.

In summary, 𝑥(𝑡) ≥ 𝑙
1
can be obtained for all 𝑡 > 𝑡

1
. In the

same way, it can be proved that 𝑦(𝑡) ≥ 𝑙
2
for all 𝑡 > 𝑡

2
. This

completes the proof.

3. Numerical Analysis

3.1. The Impulsive Effect and Optimal Foraging. To study
the population dynamics of a three-species ecological model
with impulsive effect, the solution of System (2) with initial
conditions in the first quadrant is obtained numerically
for a biologically feasible range of parametric values, and
the bifurcation diagram provides a summary of the basic
population dynamic behavior of the system.



Abstract and Applied Analysis 7

5

4

3

2

1

0

200 400 600 800 1000 1200 1400 1600 1800 2000

x

t

(a)

200 400 600 800 1000 1200 1400 1600 1800 2000

y

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

t

(b)

200 400 600 800 1000 1200 1400 1600 1800 2000

z

7

6

5

4

3

2

1

t

(c)

Figure 1: Time series of System (2) when 𝑢 = 0.8 and 𝑝 = 4.2.

Now two different control parameters will be discussed,
the number of predators released, 𝑝, and the probability 𝑢.
Other parameters are set to

𝑎

1
= 0.35, 𝑎

2
= 0.4, 𝑟

1
= 0.9, 𝑟

2
= 0.8,

𝑘

0
= 15, 𝑘

1
= 20, 𝑘

2
= 12, 𝑘

3
= 15,

𝑏

1
= 0.045, 𝑏

2
= 0.2, ℎ

1
= 0.8, ℎ

2
= 0.45,

𝑒

1
= 0.5, 𝑒

2
= 0.6, 𝑚 = 0.1, 𝑇 = 20.

(49)

From Theorem 7, it is known that the prey-eradication
periodic solution (0, 0, 𝑧∗(𝑡)) is locally asymptotically stable
provided that 𝑝 > 𝑝max ≈ 4.098648. Figure 1 shows a typical
prey-eradication periodic solution of System (2), in which it
can be observed that the variable 𝑧 oscillates in a stable cycle.
At the same time, the prey types 𝑥 and 𝑦 rapidly diminish
and go to zero beyond 𝑝max ≈ 4.098648. If the number of
predators released, 𝑝, is less than 𝑝max, the prey-eradication
solution becomes unstable. It is, however, possible that the
two prey types and the predator can coexist in a stable
positive periodic solution. In other words, the system can be
permanent when the number of predators released, 𝑝, is less
than 𝑝max.
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Figure 2: Bifurcation diagram of System (2) with initial conditions 𝑥(0) = 0.3, 𝑦(0) = 0.5, 𝑧(0) = 0.3, 𝑢 = 0.8, and 0.009 ≤ 𝑝 ≤ 4.5.

Next, the bifurcation diagrams for the control parameter
𝑝 will be examined. Figure 2 is plotted as a function of
the bifurcation parameter 𝑝 and shows that the system
has rich population dynamic behavior consistent with the
theoretical analysis, such as period-halving bifurcation (see
Figure 3), a chaotic band, a periodic window, and chaotic
crises. Furthermore, Theorem 8 indicates that the system is
permanentwhen the value of𝑝 is less than some critical value.
When the value of 𝑝 is in the interval [0.009, 3.257895], the
two prey types and one predator can coexist. When the value
of 𝑝 is in the interval [3.257895, 4.098648], the prey 𝑥 will
become extinct rapidly, but the prey 𝑦 and the predator 𝑧 can
coexist. These results may show that prey 𝑥 is inferior to prey
𝑦 in its ability to reproduce or prey 𝑥 is a favorite food of
predator 𝑧. When the number of predators released is greater
than some critical value, all species in the system will become
extinct. All these results demonstrate the effectiveness of
mathematical analysis for understanding such systems.

The next question is how 𝑢 impacts the complex pop-
ulation dynamics. In Figure 4, when prey and predator

populations are plotted as a function of the probability 𝑢,
the value of 𝑝 is 1.45. In the former case, it is assumed that
the foraging behavior of predator 𝑧 follows optimal foraging
theory [16–18] and prey 𝑥 is more beneficial for predator 𝑧
than prey 𝑦. In other words, the more beneficial prey 𝑥 is
always included in the predator’s diet, but if the density of
prey 𝑥 falls below a critical threshold or goes to zero, prey 𝑦 is
includedwith probability one. FromFigure 4, it can be clearly
observed that the two prey types and the predator can coexist
in the intervals [0, 0.1136] and [0.7215, 0.8792], where the
system dynamics can be chaotic, periodic, or nonperiodic. In
the interval (0.1136, 0.7215), prey 𝑥 goes extinct, while prey 𝑦
and predator 𝑧 can coexist stably.This means that if the more
beneficial prey 𝑥 disappears, prey 𝑦 alone can support the
population of predator 𝑧. As 𝑢 increases, prey 𝑦 goes extinct,
but prey 𝑥 and predator 𝑧 can coexist stably.

3.2. The Largest Lyapunov Exponent. Deterministic chaos is
an important problem that is solved by measuring the largest
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Figure 3: Transition from chaos to period-halving in System (2): (a) chaos when 𝑝 = 1.5; (b) 8T-periodic solution when 𝑝 = 1.73; (c)
4T-periodic solution when 𝑝 = 1.85; (d) 2T-periodic solution when 𝑝 = 2.5.

Lyapunov exponent [31–36]. Based on research by various
investigators, these results have confirmed the importance
of detecting and exploring chaos. In this paper, the largest
Lyapunov exponents for chaotic system (2) are examined.
The largest Lyapunov exponents take into account the average
exponential rates of divergence or convergence of nearby
orbits in phase space [31, 32]. If the attractor is chaotic, the
largest Lyapunov exponent must be positive, which implies
a stable or a periodic state. In Figure 2, the corresponding
largest Lyapunov exponent ([0 ≤ 𝑝 ≤ 3]) can be calculated
for System (2) (see Figure 5).

3.3. The Strange Attractor and Power Spectra. To study the
properties of strange attractors, commonly used methods
such as power spectra can be used [35, 36]. A power spectrum
was calculated using 4096 points corresponding to the time
series of the variable 𝑥 with time increment Δ𝑡 = 0.5 [35, 36].
For strange attractors (a) and (b), it is known that the value
of the largest Lyapunov exponent for the strange attractor
(a) is 0.25603, while for (b) the computed largest Lyapunov

exponent is 0.30567. Therefore, strange attractors (a) and (b)
are chaotic attractors. Moreover, the strange attractor (b)
displays more chaotic dynamics than (a) because its positive
exponent is larger than that of (a). In addition, the spectra
of strange attractors (a) and (b) consist of strong broadband
components and sharp peaks (Figures 6(c) and 6(d)) These
results conform to the observation that strange attractors (a)
and (b) arise from some weak limit cycles which can lose
stability due to noise.

4. Conclusions and Remarks

Complex population dynamics of a three-species ecological
model with optimal foraging and impulsive control
strategy have been investigated both numerically and
analytically. The periodic solution has been shown
to be globally asymptotically stable by use of the
Floquet theorem and small-amplitude perturbations, if
𝑝 > max(𝑟

1
𝑘

0
𝑇𝑚/𝜆

1
𝑘

1
, 𝑟

2
𝑘

2
𝑇𝑚/𝑢𝜆

2
𝑘

3
) and 𝑝 exp(−𝑚𝑇)/

(1 − exp(−𝑚𝑇)) > max(𝑟
1
(1 + ℎ

1
𝜆

1
𝑀+ 𝑢ℎ

2
𝜆

2
𝑀)/𝜆

1
, 𝑟

2
(1 +
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Figure 4: Bifurcation diagram of System (2) with initial conditions 𝑝 = 1.45, 𝑥(0) = 0.3, 𝑦(0) = 0.5, 𝑧(0) = 0.3, and 0 ≤ 𝑢 ≤ 1.
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2
𝑀)/𝑢𝜆

2
). At the same time, using themethod

of comparison involving multiple Lyapunov functions, the
permanence of the system can be proved. Bifurcation
diagrams of the impulsive perturbation 𝑝 and the probability
parameter 𝑢 have also been obtained. The bifurcation
diagrams of 𝑝 have shown that dynamic complexity
exists in System (2), including chaotic behavior, periodic

windows, chaotic bands, chaotic crises, and period-halving
bifurcations. The bifurcation diagrams of 𝑢 indicate that
optimal foraging promotes species coexistence and that if the
more beneficial prey goes extinct, the less beneficial prey can
support the predator so that it will not die out. In addition,
the presence of chaotic dynamics was confirmed, and the
qualitative nature of strange attractors was investigated using
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Figure 6: Strange attractors and power spectra: (a)strange attractor when 𝑝 = 1.2, (b) strange attractor when 𝑝 = 1.51, (c) power spectrum
of attractor (a), and (d) power spectrum of attractor (b).

computer simulations of the largest Lyapunov exponents and
Fourier spectra. All these results may be useful in the study
of the dynamic complexity of ecosystems.
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