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In succession to our earlier work, we further provide some new generalized Gronwall inequalities and apply these inequalities to
the study of qualitative estimations of solutions to certain fractional differential equations.

1. Introduction

It is well known that the Gronwall inequality contributes
significantly to research on many differential and integral
equations. An increasing number of generalizations of this
inequality have been made in recent years to derive qualita-
tive properties of solutions to various fractional differential
equations. One remarkable result was obtained by Ye et al. in
2007 and is presented below.

Theorem 1 (see [1, Theorem 1]). For any 𝑡 ∈ [0, 𝑇),

𝑢 (𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡) ∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝑢 (𝑠) d𝑠, (1)

where all functions are nonnegative and continuous. The
constant 𝛽 > 0. 𝑏 is a bounded and monotonically increasing
function of [0, 𝑇); then

𝑢 (𝑡) ≤ 𝑎 (𝑡) + ∫

𝑡

0

[

∞

∑

𝑛=1

(𝑏 (𝑡) Γ (𝛽))
𝑛

Γ (𝑛𝛽)
(𝑡 − 𝑠)

𝑛𝛽−1
𝑎 (𝑠)] 𝑑𝑠,

𝑡 ∈ [0, 𝑇) .

(2)

This result continuously extends and improves and has
been widely used in many studies (e.g., see [1–8]). Among
them, our previous research [5] provides the following
generalizations to deal with complex fractional differential
equations.

Theorem 2 (see [5, Theorem 1.4]). For any 𝑡 ∈ [0, 𝑇),

𝑢 (𝑡) ≤ 𝑎 (𝑡) +

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) ∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑖−1

𝑢 (𝑠) 𝑑𝑠, (3)

where all functions are nonnegative and continuous. The
constants 𝛽

𝑖
> 0. 𝑏

𝑖
(𝑖 = 1, 2, . . . , 𝑛) are bounded and

monotonically increasing functions of [0, 𝑇). Then

𝑢 (𝑡) ≤ 𝑎 (𝑡)

+

∞

∑

𝑘=1

(

𝑛

∑

1
󸀠
,2
󸀠
,...,𝑘
󸀠
=1

∏
𝑘

𝑖=1
[𝑏
𝑖
󸀠 (𝑡) Γ (𝛽

𝑖
󸀠)]

Γ (∑
𝑘

𝑖=1
𝛽
𝑖
󸀠)

× ∫

𝑡

0

(𝑡 − 𝑠)
∑
𝑘

𝑖=1
𝛽
𝑖
󸀠−1
𝑎 (𝑠) 𝑑𝑠) ,

𝑡 ∈ [0, 𝑇) .

(4)

Theorem 3 (see [5, Theorem 1.5]). For any 𝑡 ∈ [1, 𝑇),

𝑢 (𝑡) ≤ 𝑎 (𝑡) +

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) ∫

𝑡

1

(ln 𝑡
𝑠
)

𝛽𝑖−1 𝑢 (𝑠)

𝑠
𝑑𝑠, (5)
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where all functions are nonnegative and continuous. The
constants 𝛽

𝑖
> 0. 𝑏

𝑖
(𝑖 = 1, 2, . . . , 𝑛) are bounded and

monotonically increasing functions of [1, 𝑇). Then

𝑢 (𝑡) ≤ 𝑎 (𝑡)

+

∞

∑

𝑘=1

(

𝑛

∑

1
󸀠
,2
󸀠
,...,𝑘
󸀠
=1

∏
𝑘

𝑖=1
[𝑏
𝑖
󸀠 (𝑡) Γ (𝛽

𝑖
󸀠)]

Γ (∑
𝑘

𝑖=1
𝛽
𝑖
󸀠)

× ∫

𝑡

1

[(ln 𝑡
𝑠
)

∑
𝑘

𝑖=1
𝛽
𝑖
󸀠−1

𝑎 (𝑠)]
𝑑𝑠

𝑠
) ,

𝑡 ∈ [1, 𝑇) .

(6)

In this paper, we aim to discuss further issues by
using the aforementioned conclusions and suitable analytical
techniques according to the above facts. We will establish
several new classes of generalized Gronwall inequalities in
the next section. In the last section, we will qualitatively
analyze certain fractional differential equations to highlight
the applications of the inequalities.

2. Main Results and Proofs

We introduce the useful Young’s inequality with 𝜖 > 0 (see
[9, page 622]); that is, for any 𝑎, 𝑏 > 0 and 1 < 𝑝, 𝑞 < +∞,
1/𝑝 + 1/𝑞 = 1,

𝑎𝑏 ≤ 𝜖𝑎
𝑝
+ 𝐶 (𝜖) 𝑏

𝑞
, (7)

where 𝐶(𝜖) = (𝜖𝑝)−𝑞/𝑝𝑞−1.
The firstmain result and its proof procedure are presented

as follows.

Theorem 4. For any 𝑡 ∈ [0, 𝑇),

𝑢 (𝑡) ≤ 𝑎 (𝑡) +

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) ∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑖−1

𝑐
𝑖
(𝑠) 𝑢
𝜆𝑖
(𝑠) 𝑑𝑠, (8)

where all functions are nonnegative and continuous. For any
𝑖 ∈ {1, 2, . . . , 𝑛}, the constants 𝛽

𝑖
> 0 and 0 < 𝜆

𝑖
< 1, and

the function 𝑏
𝑖
(𝑡) is bounded and monotonically increasing on

[0, 𝑇). Then

𝑢 (𝑡) ≤ 𝑎 (𝑡)

+

∞

∑

𝑘=1

(

𝑛

∑

1
󸀠
,2
󸀠
,...,𝑘
󸀠
=1

∏
𝑘

𝑖=1
[𝑏̃
𝑖
󸀠 (𝑡) Γ (𝛽

𝑖
󸀠)]

Γ (∑
𝑘

𝑖=1
𝛽
𝑖
󸀠)

× ∫

𝑡

0

(𝑡 − 𝑠)

∑
𝑘

𝑖=1
𝛽
𝑖
󸀠−1

𝑎 (𝑠) 𝑑𝑠) ,

𝑡 ∈ [0, 𝑇) ,

(9)

where

𝑎 (𝑡) = 𝑎 (𝑡) +

𝑛

∑

𝑖=1

(1 − 𝜆
𝑖
) (

𝜆
𝑖

𝜀
)

𝜆𝑖/(1−𝜆𝑖)

𝑏
𝑖
(𝑡)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑖−1

[𝑐
𝑖
(𝑠)]
1/(1−𝜆𝑖)

𝑑𝑠;

𝑏̃
𝑖
(𝑡) = 𝜀 ⋅ 𝑏

𝑖
(𝑡) .

(10)

Here 𝜀 is an arbitrary given positive number.

Proof. By Young’s inequality,

𝑐
𝑖
(𝑠) 𝑢
𝜆𝑖
(𝑠)

≤ 𝜀 ⋅ [𝑢
𝜆𝑖
(𝑠)]
1/𝜆𝑖

+ (
𝜆
𝑖

𝜀
)

𝜆𝑖/(1−𝜆𝑖)

⋅ (1 − 𝜆
𝑖
) ⋅ [𝑐
𝑖
(𝑠)]
1/(1−𝜆𝑖)

= 𝜀 ⋅ 𝑢 (𝑠) + (
𝜆
𝑖

𝜀
)

𝜆𝑖/(1−𝜆𝑖)

⋅ (1 − 𝜆
𝑖
) ⋅ [𝑐
𝑖
(𝑠)]
1/(1−𝜆𝑖)

,

(11)

which implies that, for any 𝑡 ∈ [0, 𝑇),

𝑢 (𝑡) ≤ 𝑎 (𝑡) +

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) ∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑖−1

𝑐
𝑖
(𝑠) 𝑢
𝜆𝑖
(𝑠) 𝑑𝑠

≤ 𝑎 (𝑡) +

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑖−1

{𝜀 ⋅ 𝑢 (𝑠)

+ (
𝜆
𝑖

𝜀
)

𝜆𝑖/(1−𝜆𝑖)

⋅ (1 − 𝜆
𝑖
)

⋅[𝑐
𝑖
(𝑠)]
1/(1−𝜆𝑖)

}𝑑𝑠

= {𝑎 (𝑡) +

𝑛

∑

𝑖=1

(1 − 𝜆
𝑖
) (

𝜆
𝑖

𝜀
)

𝜆𝑖/(1−𝜆𝑖)

𝑏
𝑖
(𝑡)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑖−1

[𝑐
𝑖
(𝑠)]
1/(1−𝜆𝑖)

𝑑𝑠}

+

𝑛

∑

𝑖=1

𝜀 ⋅ 𝑏
𝑖
(𝑡) ∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑖−1

𝑢 (𝑠) 𝑑𝑠

= 𝑎 (𝑡) +

𝑛

∑

𝑖=1

𝑏̃
𝑖
(𝑡) ∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑖−1

𝑢 (𝑠) 𝑑𝑠.

(12)

We immediately derived estimation (9) by using Theorem 2.
This estimation completes the proof of Theorem 4.

Our second result can be proved in the same manner
by applying Young’s inequality and Theorem 3. The proof
procedure is similar to that ofTheorem 4 and is omitted here.
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Theorem 5. For any 𝑡 ∈ [1, 𝑇),

𝑢 (𝑡) ≤ 𝑎 (𝑡) +

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) ∫

𝑡

1

(ln 𝑡
𝑠
)

𝛽𝑖−1 𝑐
𝑖
(𝑠) 𝑢
𝜆𝑖 (𝑠)

𝑠
𝑑𝑠, (13)

where all functions are nonnegative and continuous. For any
𝑖 ∈ {1, 2, . . . , 𝑛}, the constants 𝛽

𝑖
> 0 and 0 < 𝜆

𝑖
< 1, and

the function 𝑏
𝑖
(𝑡) is bounded and monotonically increasing on

[1, 𝑇). Then

𝑢 (𝑡) ≤ 𝑎 (𝑡)

+

∞

∑

𝑘=1

(

𝑛

∑

1
󸀠
,2
󸀠
,...,𝑘
󸀠
=1

∏
𝑘

𝑖=1
[𝑏
𝑖
󸀠 (𝑡) Γ (𝛽

𝑖
󸀠)]

Γ (∑
𝑘

𝑖=1
𝛽
𝑖
󸀠)

× ∫

𝑡

1

(ln 𝑡
𝑠
)

∑
𝑘

𝑖=1
𝛽
𝑖
󸀠−1 𝑎 (𝑠)

𝑠
𝑑𝑠) ,

𝑡 ∈ [1, 𝑇) ,

(14)

where

𝑎 (𝑡) = 𝑎 (𝑡) +

𝑛

∑

𝑖=1

(1 − 𝜆
𝑖
) (

𝜆
𝑖

𝜀
)

𝜆𝑖/(1−𝜆𝑖)

𝑏
𝑖
(𝑡)

× ∫

𝑡

1

(ln 𝑡
𝑠
)

𝛽𝑖−1

[𝑐
𝑖
(𝑠)]
1/(1−𝜆𝑖)

𝑑𝑠

𝑠
;

𝑏
𝑖
(𝑡) = 𝜀 ⋅ 𝑏

𝑖
(𝑡) .

(15)

Here 𝜀 is an arbitrary given positive number.

Evidently, the following two corollaries are directly
obtained by using Theorems 4 and 5 when choosing 𝛽

𝑖
= 1

for any 𝑖 ∈ {1, 2, . . . , 𝑛}.

Corollary 6. For any 𝑡 ∈ [0, 𝑇),

𝑢 (𝑡) ≤ 𝑎 (𝑡) +

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) ∫

𝑡

0

𝑐
𝑖
(𝑠) 𝑢
𝜆𝑖
(𝑠) 𝑑𝑠, (16)

where all functions are nonnegative and continuous. For any
𝑖 ∈ {1, 2, . . . , 𝑛}, the constant 0 < 𝜆

𝑖
< 1, and the function 𝑏

𝑖
(𝑡)

is bounded and monotonically increasing on [0, 𝑇). Then

𝑢 (𝑡) ≤ 𝑎 (𝑡)

+

∞

∑

𝑘=1

(

𝑛

∑

1
󸀠
,2
󸀠
,...,𝑘
󸀠
=1

∏
𝑘

𝑖=1
𝑏̃
𝑖
󸀠 (𝑡)

𝑘!

× ∫

𝑡

0

(𝑡 − 𝑠)
𝑘−1

𝑎 (𝑠) 𝑑𝑠) ,

𝑡 ∈ [0, 𝑇) ,

(17)

where

𝑎 (𝑡) = 𝑎 (𝑡) +

𝑛

∑

𝑖=1

(1 − 𝜆
𝑖
) (

𝜆
𝑖

𝜀
)

𝜆𝑖/(1−𝜆𝑖)

𝑏
𝑖
(𝑡)

× ∫

𝑡

0

[𝑐
𝑖
(𝑠)]
1/(1−𝜆𝑖)

𝑑𝑠;

𝑏̃
𝑖
(𝑡) = 𝜀 ⋅ 𝑏

𝑖
(𝑡) .

(18)

Here 𝜀 is an arbitrary given positive number.

Corollary 7. For any 𝑡 ∈ [1, 𝑇),

𝑢 (𝑡) ≤ 𝑎 (𝑡) +

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) ∫

𝑡

1

𝑐
𝑖
(𝑠) 𝑢
𝜆𝑖 (𝑠)

𝑠
𝑑𝑠, (19)

where all functions are nonnegative and continuous. For any
𝑖 ∈ {1, 2, . . . , 𝑛}, the constant 0 < 𝜆

𝑖
< 1, and the function 𝑏

𝑖
(𝑡)

is bounded and monotonically increasing on [1, 𝑇). Then

𝑢 (𝑡) ≤ 𝑎 (𝑡)

+

∞

∑

𝑘=1

(

𝑛

∑

1
󸀠
,2
󸀠
,...,𝑘
󸀠
=1

∏
𝑘

𝑖=1
𝑏
𝑖
󸀠 (𝑡)

𝑘!

× ∫

𝑡

1

[(ln 𝑡
𝑠
)

𝑘−1

𝑎 (𝑠)]
𝑑𝑠

𝑠
) ,

𝑡 ∈ [1, 𝑇) ,

(20)

where

𝑎 (𝑡) = 𝑎 (𝑡) +

𝑛

∑

𝑖=1

(1 − 𝜆
𝑖
) (

𝜆
𝑖

𝜀
)

𝜆𝑖/(1−𝜆𝑖)

𝑏
𝑖
(𝑡)

× ∫

𝑡

1

[𝑐
𝑖
(𝑠)]
1/(1−𝜆𝑖)

𝑑𝑠

𝑠
;

𝑏
𝑖
(𝑡) = 𝜀 ⋅ 𝑏

𝑖
(𝑡) .

(21)

Here 𝜀 is an arbitrary given positive number.

Our next task is estimating the nonnegative and continu-
ous function 𝑢(𝑡), which satisfies, for any 𝑡 ∈ [0, 𝑇),

𝑢 (𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡) ∫

𝑡

0

𝑐 (𝑠) 𝑢 (𝑠) 𝑑𝑠

+

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) ∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑖−1

𝑐
𝑖
(𝑠) 𝑢
𝜆𝑖
(𝑠) 𝑑𝑠,

(22)

where all the functions are nonnegative and continuous. For
any 𝑖 ∈ {1, 2, . . . , 𝑛}, the constants 𝛽

𝑖
> 0 and 0 < 𝜆

𝑖
< 1, and

the functions 𝑏(𝑡) and 𝑏
𝑖
(𝑡) are bounded and monotonically

increasing on [0, 𝑇). Put

𝑀
𝑖
(𝑡) = max
0≤𝑠≤𝑡

{𝑏
𝑖
(𝑠) 𝑐 (𝑠)} . (23)
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Suppose that

𝐴 (𝑡) = 𝑎 (𝑡) + 𝑏 (𝑡) ∫

𝑡

0

𝑐 (𝑠) 𝑒
∫
𝑡

𝑠
𝑐(𝑤)𝑏(𝑤)𝑑𝑤

⋅ 𝑎 (𝑠) 𝑑𝑠;

𝐵
𝑖
(𝑡) = 𝑏

𝑖
(𝑡) +

𝑡 ⋅ 𝑏 (𝑡) ⋅ 𝑀
𝑖
(𝑡)

𝛽
𝑖

𝑒
∫
𝑡

0
𝑐(𝑤)𝑏(𝑤)𝑑𝑤

, 𝑖 = 1, 2, . . . , 𝑛.

(24)

Obviously, 𝐵
𝑖
(𝑡) ≥ 0 (𝑖 = 1, 2, . . . , 𝑛) are bounded and

monotonically increasing functions. Moreover, we assumed
that

𝐴 (𝑡) = 𝐴 (𝑡) +

𝑛

∑

𝑖=1

(1 − 𝜆
𝑖
) (

𝜆
𝑖

𝜀
)

𝜆𝑖/(1−𝜆𝑖)

𝐵
𝑖
(𝑡)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑖−1

[𝑐
𝑖
(𝑠)]
1/(1−𝜆𝑖)

𝑑𝑠;

𝐵
𝑖
(𝑡) = 𝜀𝐵

𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑛.

(25)

Here 𝜀 is an arbitrary given positive number. The third main
result is given as follows.

Theorem 8. For any 𝑡 ∈ [0, 𝑇), the nonnegative and contin-
uous function 𝑢(𝑡) satisfies the inequality (22); then

𝑢 (𝑡) ≤ 𝐴 (𝑡)

+

∞

∑

𝑘=1

(

𝑛

∑

1
󸀠
,2
󸀠
,...,𝑘
󸀠
=1

∏
𝑘

𝑖=1
[𝐵
𝑖
󸀠 (𝑡) Γ (𝛽

𝑖
󸀠)]

Γ (∑
𝑘

𝑖=1
𝛽
𝑖
󸀠)

× ∫

𝑡

0

(𝑡 − 𝑠)
∑
𝑘

𝑖=1
𝛽
𝑖
󸀠−1

𝐴 (𝑠) 𝑑𝑠) ,

𝑡 ∈ [0, 𝑇) ,

(26)

where the expressions 𝐴(𝑡) and 𝐵
𝑖
(𝑡) are described in (25).

Proof. Suppose that

𝐼 (𝑡) = 𝑎 (𝑡) +

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) ∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑖−1

𝑐
𝑖
(𝑠) 𝑢
𝜆𝑖
(𝑠) 𝑑𝑠. (27)

Then, (22) transforms into the following form:

𝑢 (𝑡) ≤ 𝐼 (𝑡) + 𝑏 (𝑡) ∫

𝑡

0

𝑐 (𝑠) 𝑢 (𝑠) 𝑑𝑠. (28)

Therefore,

𝑐 (𝑡) 𝑢 (𝑡) ≤ 𝑐 (𝑡) 𝐼 (𝑡) + 𝑐 (𝑡) 𝑏 (𝑡) ∫

𝑡

0

𝑐 (𝑠) 𝑢 (𝑠) 𝑑𝑠. (29)

Letting 𝑢
1
(𝑡) = 𝑐(𝑡)𝑢(𝑡), 𝐼

1
(𝑡) = 𝑐(𝑡)𝐼(𝑡), and 𝐽

1
(𝑡) = 𝑐(𝑡)𝑏(𝑡)

obtains

𝑢
1
(𝑡) ≤ 𝐼

1
(𝑡) + 𝐽

1
(𝑡) ∫

𝑡

0

𝑢
1
(𝑠) 𝑑𝑠. (30)

By using the classical Gronwall inequality (see [10, page 15]),
we have

𝑢
1
(𝑡) ≤ 𝐼

1
(𝑡) + 𝐽

1
(𝑡) ∫

𝑡

0

𝐼
1
(𝑠) 𝑒
∫
𝑡

𝑠
𝐽1(𝑤)𝑑𝑤

𝑑𝑠; (31)

that is,

𝑢 (𝑡) ≤ 𝐼 (𝑡) + 𝑏 (𝑡) ∫

𝑡

0

𝑐 (𝑠) 𝐼 (𝑠) 𝑒
∫
𝑡

𝑠
𝑐(𝑤)𝑏(𝑤)𝑑𝑤

𝑑𝑠

= [𝑎 (𝑡) + 𝑏 (𝑡) ∫

𝑡

0

𝑐 (𝑠) 𝑎 (𝑠) 𝑒
∫
𝑡

𝑠
𝑐(𝑤)𝑏(𝑤)𝑑𝑤

𝑑𝑠]

+

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) ∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑖−1

𝑐
𝑖
(𝑠) 𝑢
𝜆𝑖
(𝑠) 𝑑𝑠

+ 𝑏 (𝑡)

𝑛

∑

𝑖=1

∫

𝑡

0

∫

𝑠

0

𝑐 (𝑠) 𝑒
∫
𝑡

𝑠
𝑐(𝑤)𝑏(𝑤)𝑑𝑤

× 𝑏
𝑖
(𝑠) (𝑠 − V)𝛽𝑖−1𝑐

𝑖
(V) 𝑢𝜆𝑖 (V) 𝑑V 𝑑𝑠,

(32)

given that
𝑛

∑

𝑖=1

∫

𝑡

0

∫

𝑠

0

𝑏
𝑖
(𝑠) 𝑐 (𝑠) 𝑒

∫
𝑡

𝑠
𝑐(𝑤)𝑏(𝑤)𝑑𝑤

× (𝑠 − V)𝛽𝑖−1𝑐
𝑖
(V) 𝑢𝜆𝑖 (V) 𝑑V 𝑑𝑠

=

𝑛

∑

𝑖=1

∫

𝑡

0

∫

𝑡

V
𝑏
𝑖
(𝑠) 𝑐 (𝑠) 𝑒

∫
𝑡

𝑠
𝑐(𝑤)𝑏(𝑤)𝑑𝑤

× (𝑠 − V)𝛽𝑖−1𝑐
𝑖
(V) 𝑢𝜆𝑖 (V) 𝑑𝑠 𝑑V

≤ 𝑒
∫
𝑡

0
𝑐(𝑤)𝑏(𝑤)𝑑𝑤

×

𝑛

∑

𝑖=1

𝑀
𝑖
(𝑡) ∫

𝑡

0

∫

𝑡

V
(𝑠 − V)𝛽𝑖−1𝑐

𝑖
(V) 𝑢𝜆𝑖 (V) 𝑑𝑠 𝑑V

= 𝑒
∫
𝑡

0
𝑐(𝑤)𝑏(𝑤)𝑑𝑤

𝑛

∑

𝑖=1

1

𝛽
𝑖

𝑀
𝑖
(𝑡)

× ∫

𝑡

0

(𝑡 − V)𝛽𝑖−1 (𝑡 − V) 𝑐
𝑖
(V) 𝑢𝜆𝑖 (V) 𝑑V

≤ 𝑒
∫
𝑡

0
𝑐(𝑤)𝑏(𝑤)𝑑𝑤

𝑛

∑

𝑖=1

1

𝛽
𝑖

𝑡𝑀
𝑖
(𝑡)

× ∫

𝑡

0

(𝑡 − V)𝛽𝑖−1𝑐
𝑖
(V) 𝑢𝜆𝑖 (V) 𝑑V,

(33)

where the function𝑀
𝑖
(𝑡) is defined in (23). Combining (24),

(32), and (33) yields the following inequality:

𝑢 (𝑡) ≤ 𝐴 (𝑡) +

𝑛

∑

𝑖=1

𝐵
𝑖
(𝑡) ∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑖−1

𝑐
𝑖
(𝑠) 𝑢
𝜆𝑖
(𝑠) 𝑑𝑠. (34)

The estimation (26) is obtained according toTheorem 4.This
process completes the proof of Theorem 8.
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In the same manner, the final result in this section can be
obtained by applying the conclusion of Theorem 5.

Theorem 9. For any 𝑡 ∈ [1, 𝑇),

𝑢 (𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡) ∫

𝑡

1

𝑐 (𝑠) 𝑢 (𝑠)
𝑑𝑠

𝑠

+

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡) ∫

𝑡

1

(ln 𝑡
𝑠
)

𝛽𝑖−1

𝑐
𝑖
(𝑠) 𝑢
𝜆𝑖
(𝑠)

𝑑𝑠

𝑠
,

(35)

where all functions are nonnegative and continuous. For any
𝑖 ∈ {1, 2, . . . , 𝑛}, the constants 𝛽

𝑖
> 0 and 0 < 𝜆

𝑖
< 1, and

the functions 𝑏(𝑡) and 𝑏
𝑖
(𝑡) are bounded and monotonically

increasing on [1, 𝑇). Then

𝑢 (𝑡) ≤ 𝐴 (𝑡)

+

∞

∑

𝑘=1

(

𝑛

∑

1
󸀠
,2
󸀠
,...,𝑘
󸀠
=1

∏
𝑘

𝑖=1
[𝐵
𝑖
󸀠 (𝑡) Γ (𝛽

𝑖
󸀠)]

Γ (∑
𝑘

𝑖=1
𝛽
𝑖
󸀠)

×∫

𝑡

1

(ln 𝑡
𝑠
)

∑
𝑘

𝑖=1
𝛽
𝑖
󸀠−1𝐴 (𝑠)

𝑠
𝑑𝑠) ,

𝑡 ∈ [1, 𝑇) ,

(36)

where

𝐴 (𝑡) = 𝐴
󸀠
(𝑡) +

𝑛

∑

𝑖=1

(1 − 𝜆
𝑖
) (

𝜆
𝑖

𝜀
)

𝜆𝑖/(1−𝜆𝑖)

𝐵
󸀠

𝑖
(𝑡)

× ∫

𝑡

1

(ln 𝑡
𝑠
)

𝛽𝑖−1

[𝑐
𝑖
(𝑠)]
1/(1−𝜆𝑖)

𝑑𝑠

𝑠
;

𝐵
𝑖
(𝑡) = 𝜀 ⋅ 𝐵

󸀠

𝑖
(𝑡) .

(37)

Here

𝐴
󸀠
(𝑡) = 𝑎 (𝑡) + 𝑏 (𝑡) ∫

𝑡

1

𝑐 (𝑠) 𝑒
∫
𝑡

𝑠
𝑐(𝑤)𝑏(𝑤)(𝑑𝑤/𝑤)

⋅ 𝑎 (𝑠)
𝑑𝑠

𝑠
;

𝐵
󸀠

𝑖
(𝑡) = 𝑏

𝑖
(𝑡) +

ln 𝑡 ⋅ 𝑏 (𝑡) ⋅ 𝑀󸀠
𝑖
(𝑡)

𝛽
𝑖

𝑒
∫
𝑡

1
𝑐(𝑤)𝑏(𝑤)(𝑑𝑤/𝑤)

,

𝑖 = 1, 2, . . . , 𝑛.

(38)

Also 𝑀󸀠
𝑖
(𝑡) = max

1≤𝑠≤𝑡
{𝑏
𝑖
(𝑠)𝑐(𝑠)}, and 𝜀 is an arbitrary given

positive number.

The proof procedure of Theorem 9 is relatively similar to
that ofTheorem 8.Hence, the procedurewill not be presented
in this paper.

3. Applications

In this section, we apply the main results in Section 2 to
provide qualitative conclusions for solutions of certain frac-
tional differential equations. First, the definitions and some
properties of the Riemann-Liouville fractional derivative and
integral need to be recalled.

Definition 10 (see [11–16]). For any 0 < 𝛽 < 1 and a
continuous function𝑤, the 𝛽th Riemann-Liouville type frac-
tional order derivative𝐷𝛽

𝑅
𝑤 and the corresponding fractional

integral operator 𝐼𝛽
𝑅
𝑤 are defined by

𝐼
𝛽

𝑅
𝑤 (𝑡) =

1

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝑤 (𝑠) 𝑑𝑠;

𝐷
𝛽

𝑅
𝑤 (𝑡) =

1

Γ (1 − 𝛽)

𝑑

𝑑𝑡
∫

𝑡

0

(𝑡 − 𝑠)
−𝛽
𝑤 (𝑠) 𝑑𝑠.

(39)

Lemma 11 (see [13, Lemma 2.2]). For any 0 < 𝛽 < 1 and a
continuous function 𝑤,

𝐼
𝛽

𝑅
𝐷
𝛽

𝑅
𝑤 (𝑡) = 𝑤 (𝑡) + 𝑘 ⋅ 𝑡

𝛽−1
, (40)

where 𝑘 is a certain constant in R.

Lemma 12 (see [17, Page 14]). For any 𝛼, 𝛽 > 0 and a
continuous function 𝑤,

𝐼
𝛼

𝑅
𝐼
𝛽

𝑅
𝑤 (𝑡) = 𝐼

𝛼+𝛽

𝑅
𝑤 (𝑡) ;

𝐼
𝛼

𝑅
𝑡
𝛽
=

Γ (𝛽 + 1)

Γ (𝛼 + 𝛽 + 1)
𝑡
𝛼+𝛽

.

(41)

Given the aforementioned preliminary knowledge, we
consider the following initial value problem:

𝑛

∑

𝑖=1

𝐷
𝛽𝑛+1−𝛽𝑖

𝑅
[𝑐
𝑖
(𝑡) 𝑢
𝜆𝑖
(𝑡)] + 𝐷

𝛽𝑛+1

𝑅
[𝑢
𝜆0
(𝑡)] = 𝑓 (𝑡, 𝑢 (𝑡)) ;

{

𝑛

∑

𝑖=1

𝐼
1+𝛽𝑖−𝛽𝑛+1

𝑅
[𝑐
𝑖
(𝑡) 𝑢
𝜆𝑖
(𝑡)] + 𝐼

1−𝛽𝑛+1

𝑅
[𝑢
𝜆0
(𝑡)]}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0

= 𝛿,

(42)

where all functions are continuous. Moreover 𝑐
𝑖
(𝑡) > 0 and

the constants 𝜆
𝑖
, 𝛽
𝑖
> 0 (𝑖 = 1, 2, . . . , 𝑛). Consider 𝜆

0
> 0,

𝛿 ∈ R, and 1 > 𝛽
𝑛+1

> max
1≤𝑖≤𝑛

{𝛽
𝑖
}.

Theorem 13. Suppose that, for any 𝑡 ∈ [0, 𝑇] and 𝑦, 𝑧 ∈ R,

󵄨󵄨󵄨󵄨
𝑓 (𝑡, 𝑦) − 𝑓 (𝑡, 𝑧)

󵄨󵄨󵄨󵄨
≤ 𝑐
𝑛+1

(𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑦
𝜆𝑛+1

− 𝑧
𝜆𝑛+1

󵄨󵄨󵄨󵄨󵄨
, (43)

where the function 𝑐
𝑛+1
(𝑡) > 0 is continuous and the constant

𝜆
𝑛+1

∈ (0, 1).
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(i) If 𝜆
0
> max

1≤𝑖≤𝑛+1
{𝜆
𝑖
}, then for any solution 𝑢(𝑡) of the

problem (42),

|𝑢 (𝑡)|

≤

{

{

{

𝐴
0
(𝑡)

+

∞

∑

𝑘=1

(

𝑛+1

∑

1
󸀠
,2
󸀠
,...,𝑘
󸀠
=1

𝜀
𝑘

Γ (∑
𝑘

𝑖=1
𝛽
𝑖
󸀠)

× ∫

𝑡

0

(𝑡 − 𝑠)
∑
𝑘

𝑖=1
𝛽
𝑖
󸀠−1
𝐴
0
(𝑠) 𝑑𝑠)

}

}

}

1/𝜆0

,

𝑡 ∈ [0, 𝑇] ,

(44)

where

𝐴
0
(𝑡) =

|𝛿| 𝑡
𝛽𝑛+1−1

Γ (𝛽
𝑛+1
)
+

1

Γ (𝛽
𝑛+1
)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑛+1−1 󵄨󵄨󵄨󵄨

𝑓 (𝑠, 0)
󵄨󵄨󵄨󵄨
𝑑𝑠

+

𝑛+1

∑

𝑖=1

1

Γ (𝛽
𝑖
)
(1 −

𝜆
𝑖

𝜆
0

)(
𝜆
𝑖

𝜀𝜆
0

)

𝜆𝑖/(𝜆0−𝜆𝑖)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑖−1

[𝑐
𝑖
(𝑠)]
𝜆0/(𝜆0−𝜆𝑖)

𝑑𝑠.

(45)

Here 𝜀 is an arbitrary given positive number.

(ii) If 𝜆
0
≤ min

1≤𝑖≤𝑛+1
{𝜆
𝑖
}, then the continuous solution of

problem (42) is unique.

Proof. Since 1 > 𝛽
𝑛+1

> max
1≤𝑖≤𝑛

{𝛽
𝑖
}, we obtain the following

by using Lemmas 11 and 12:

𝐼
𝛽𝑛+1

𝑅
𝑓 (𝑡, 𝑢 (𝑡))

= 𝐼
𝛽𝑛+1

𝑅
𝐷
𝛽𝑛+1

𝑅
[𝑢
𝜆0
(𝑡)]

+

𝑛

∑

𝑖=1

𝐼
𝛽𝑛+1

𝑅
𝐷
𝛽𝑛+1−𝛽𝑖

𝑅
[𝑐
𝑖
(𝑡) 𝑢
𝜆𝑖
(𝑡)]

= 𝐼
𝛽𝑛+1

𝑅
𝐷
𝛽𝑛+1

𝑅
[𝑢
𝜆0
(𝑡)]

+

𝑛

∑

𝑖=1

𝐼
𝛽𝑖

𝑅
(𝐼
𝛽𝑛+1−𝛽𝑖

𝑅
𝐷
𝛽𝑛+1−𝛽𝑖

𝑅
[𝑐
𝑖
(𝑡) 𝑢
𝜆𝑖
(𝑡)])

= 𝑢
𝜆0
(𝑡) + 𝑘

𝑛+1
𝑡
𝛽𝑛+1−1

+

𝑛

∑

𝑖=1

𝐼
𝛽𝑖

𝑅
(𝑐
𝑖
(𝑡) 𝑢
𝜆𝑖
(𝑡) + 𝑘

𝑖
𝑡
𝛽𝑛+1−𝛽𝑖−1

)

= 𝑢
𝜆0
(𝑡) +

𝑛

∑

𝑖=1

𝐼
𝛽𝑖

𝑅
[𝑐
𝑖
(𝑡) 𝑢
𝜆𝑖
(𝑡)]

+
𝑡
𝛽𝑛+1−1

Γ (𝛽
𝑛+1
)
{𝑘
𝑛+1
Γ (𝛽
𝑛+1
) +

𝑛

∑

𝑖=1

𝑘
𝑖
Γ (𝛽
𝑛+1

− 𝛽
𝑖
)} ,

(46)

where 𝑘
𝑖
, 𝑖 = 1, 2, . . . , 𝑛 + 1, are some constants. Therefore,

0 = {∫

𝑡

0

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0

= {𝐼
1−𝛽𝑛+1

𝑅
𝐼
𝛽𝑛+1

𝑅
𝑓 (𝑡, 𝑢 (𝑡))}

󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0

= {

𝑛

∑

𝑖=1

𝐼
1+𝛽𝑖−𝛽𝑛+1

𝑅
[𝑐
𝑖
(𝑡) 𝑢
𝜆𝑖
(𝑡)]

+ 𝐼
1−𝛽𝑛+1

𝑅
[𝑢
𝜆0
(𝑡)] }

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0

+ 𝑘
𝑛+1
Γ (𝛽
𝑛+1
) +

𝑛

∑

𝑖=1

𝑘
𝑖
Γ (𝛽
𝑛+1

− 𝛽
𝑖
)

= 𝛿 + 𝑘
𝑛+1
Γ (𝛽
𝑛+1
) +

𝑛

∑

𝑖=1

𝑘
𝑖
Γ (𝛽
𝑛+1

− 𝛽
𝑖
) ;

(47)

that is,

𝑘
𝑛+1
Γ (𝛽
𝑛+1
) +

𝑛

∑

𝑖=1

𝑘
𝑖
Γ (𝛽
𝑛+1

− 𝛽
𝑖
) = −𝛿. (48)

Integrating this equality into (46) obtains

𝑢
𝜆0
(𝑡)

= 𝐼
𝛽𝑛+1

𝑅
𝑓 (𝑡, 𝑢 (𝑡)) −

𝑛

∑

𝑖=1

𝐼
𝛽𝑖

𝑅
[𝑐
𝑖
(𝑡) 𝑢
𝜆𝑖
(𝑡)] +

𝛿𝑡
𝛽𝑛+1−1

Γ (𝛽
𝑛+1
)

=
1

Γ (𝛽
𝑛+1
)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑛+1−1

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠 +
𝛿𝑡
𝛽𝑛+1−1

Γ (𝛽
𝑛+1
)

−

𝑛

∑

𝑖=1

1

Γ (𝛽
𝑖
)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑖−1

𝑐
𝑖
(𝑠) 𝑢
𝜆𝑖
(𝑠) 𝑑𝑠.

(49)

Let 𝑈(𝑡) = 𝑢𝜆0(𝑡), and applying (49), given the fact that

󵄨󵄨󵄨󵄨
𝑓 (𝑠, 𝑢 (𝑠))

󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨
𝑓 (𝑠, 0)

󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨
𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, 0)

󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨
𝑓 (𝑠, 0)

󵄨󵄨󵄨󵄨
+ 𝑐
𝑛+1

(𝑠) |𝑢 (𝑠)|
𝜆𝑛+1

,

(50)
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obtains the following:

|𝑈 (𝑡)| = |𝑢 (𝑡)|
𝜆0

≤
1

Γ (𝛽
𝑛+1
)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑛+1−1 󵄨󵄨󵄨󵄨

𝑓 (𝑠, 𝑢 (𝑠))
󵄨󵄨󵄨󵄨
𝑑𝑠 +

|𝛿| 𝑡
𝛽𝑛+1−1

Γ (𝛽
𝑛+1
)

+

𝑛

∑

𝑖=1

1

Γ (𝛽
𝑖
)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑖−1

𝑐
𝑖
(𝑠) |𝑢 (𝑠)|

𝜆𝑖
𝑑𝑠

≤
1

Γ (𝛽
𝑛+1
)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑛+1−1 󵄨󵄨󵄨󵄨

𝑓 (𝑠, 0)
󵄨󵄨󵄨󵄨
𝑑𝑠 +

|𝛿| 𝑡
𝛽𝑛+1−1

Γ (𝛽
𝑛+1
)

+

𝑛+1

∑

𝑖=1

1

Γ (𝛽
𝑖
)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑖−1

𝑐
𝑖
(𝑠) |𝑢 (𝑠)|

𝜆𝑖
𝑑𝑠

= {
1

Γ (𝛽
𝑛+1
)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑛+1−1 󵄨󵄨󵄨󵄨

𝑓 (𝑠, 0)
󵄨󵄨󵄨󵄨
𝑑𝑠 +

|𝛿| 𝑡
𝛽𝑛+1−1

Γ (𝛽
𝑛+1
)
}

+

𝑛+1

∑

𝑖=1

1

Γ (𝛽
𝑖
)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑖−1

𝑐
𝑖
(𝑠) |𝑈 (𝑠)|

𝜆𝑖/𝜆0
𝑑𝑠.

(51)

If 𝜆
0
> max

1≤𝑖≤𝑛+1
{𝜆
𝑖
}, then, for any 𝑖 ∈ {1, 2, . . . , 𝑛 + 1}, 0 <

𝜆
𝑖
/𝜆
0
< 1. According toTheorem 4, for any 𝑡 ∈ [0, 𝑇],

|𝑈 (𝑡)| ≤ 𝐴
0
(𝑡)

+

∞

∑

𝑘=1

(

𝑛+1

∑

1
󸀠
,2
󸀠
,...,𝑘
󸀠
=1

𝜀
𝑘

Γ (∑
𝑘

𝑖=1
𝛽
𝑖
󸀠)

× ∫

𝑡

0

(𝑡 − 𝑠)
∑
𝑘

𝑖=1
𝛽
𝑖
󸀠−1
𝐴
0
(𝑠) 𝑑𝑠) ,

(52)

where the expression of 𝐴
0
(𝑡) is shown in (45). Hence, the

conclusion of (i) is derived.
In proving (ii), we assume that problem (42) has two

continuous solutions 𝑢 and V. Combining with the fact that
𝑐
𝑖
(𝑡) ∈ 𝐶[0, 𝑇] for any 1 ≤ 𝑖 ≤ 𝑛 + 1 and the boundedness

of the continuous function on a closed interval, there exists a
finite number𝑀 which satisfies that, for any 𝑡 ∈ [0, 𝑇],

𝑀 > max {|𝑢 (𝑡)| , |V (𝑡)| , max
1≤𝑖≤𝑛+1

󵄨󵄨󵄨󵄨
𝑐
𝑖
(𝑡)
󵄨󵄨󵄨󵄨
} . (53)

Cauchy’s mean value theorem provides

󵄨󵄨󵄨󵄨󵄨
𝑢
𝜆𝑖
(𝑡) − V𝜆𝑖 (𝑡)

󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
𝑢
𝜆0
(𝑡) − V𝜆0 (𝑡)

󵄨󵄨󵄨󵄨󵄨
⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆
𝑖
⋅ 𝜉
𝜆𝑖−1

𝑖

𝜆
0
⋅ 𝜉
𝜆0−1

𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
𝜆
𝑖

𝜆
0

󵄨󵄨󵄨󵄨󵄨
𝑢
𝜆0
(𝑡) − V𝜆0 (𝑡)

󵄨󵄨󵄨󵄨󵄨
⋅
󵄨󵄨󵄨󵄨
𝜉
𝑖

󵄨󵄨󵄨󵄨

𝜆𝑖−𝜆0
,

(54)

where 𝜉
𝑖
, 𝑖 = 1, 2, . . . , 𝑛+1, are the numbers between 𝑢(𝑡) and

V(𝑡).The following estimation is deduced by applying (53) and
the hypothesis of 𝜆

0
≤ min

1≤𝑖≤𝑛+1
{𝜆
𝑖
} in (ii):

󵄨󵄨󵄨󵄨󵄨
𝑢
𝜆𝑖
(𝑡) − V𝜆𝑖 (𝑡)

󵄨󵄨󵄨󵄨󵄨
≤
𝜆
𝑖

𝜆
0

󵄨󵄨󵄨󵄨󵄨
𝑢
𝜆0
(𝑡) − V𝜆0 (𝑡)

󵄨󵄨󵄨󵄨󵄨
⋅ 𝑀
𝜆𝑖−𝜆0

, (55)

holds for any 𝑡 ∈ [0, 𝑇] and 𝑖 = 1, 2, . . . , 𝑛 + 1. Therefore, (49),
(53), and (55) obtain

󵄨󵄨󵄨󵄨󵄨
𝑢
𝜆0
(𝑡) − V𝜆0 (𝑡)

󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

Γ (𝛽
𝑛+1
)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑛+1−1

× [𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠))] 𝑑𝑠

−

𝑛

∑

𝑖=1

1

Γ (𝛽
𝑖
)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑖−1

𝑐
𝑖
(𝑠)

× [𝑢
𝜆𝑖
(𝑠) − V𝜆𝑖 (𝑠)] 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝑛+1

∑

𝑖=1

1

Γ (𝛽
𝑖
)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑖−1

× 𝑐
𝑖
(𝑠)

󵄨󵄨󵄨󵄨󵄨
𝑢
𝜆𝑖
(𝑠) − V𝜆𝑖 (𝑠)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

≤

𝑛+1

∑

𝑖=1

𝜆
𝑖
𝑀
1+𝜆𝑖−𝜆0

𝜆
0
Γ (𝛽
𝑖
)

∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑖−1

×
󵄨󵄨󵄨󵄨󵄨
𝑢
𝜆0
(𝑠) − V𝜆0 (𝑠)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠.

(56)

According toTheorem 2,
󵄨󵄨󵄨󵄨󵄨
𝑢
𝜆0
(𝑡) − V𝜆0 (𝑡)

󵄨󵄨󵄨󵄨󵄨
≤ 0, (57)

which means that

𝑢 (𝑡) = V (𝑡) , 𝑡 ∈ [0, 𝑇] . (58)

This completes the proof of (ii).

Moreover, we can also address the following initial value
problem with the Hadamard type fractional derivative:
𝑛

∑

𝑖=1

𝐷
𝛼𝑛+1−𝛼𝑖

𝐻
[𝑑
𝑖
(𝑡) 𝑢
𝛾𝑖
(𝑡)] + 𝐷

𝛼𝑛+1

𝐻
[𝑢
𝛾0
(𝑡)] = 𝑔 (𝑡, 𝑢 (𝑡)) ;

{

𝑛

∑

𝑖=1

𝐼
1+𝛼𝑖−𝛼𝑛+1

𝐻
[𝑑
𝑖
(𝑡) 𝑢
𝛾𝑖
(𝑡)] + 𝐼

1−𝛼𝑛+1

𝐻
[𝑢
𝛾0
(𝑡)]}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=1

= 𝜂,

(59)

where all functions are continuous. 𝑑
𝑖
(𝑡) > 0 and the

constants 𝛾
𝑖
, 𝛼
𝑖
> 0 (𝑖 = 1, 2, . . . , 𝑛). Also 𝛾

0
> 0, 𝜂 ∈ R, and

1 > 𝛼
𝑛+1

> max
1≤𝑖≤𝑛

{𝛼
𝑖
}. For any 𝛼 ∈ (0, 1) and a continuous

function𝑤, the operators𝐷𝛼
𝐻
and 𝐼𝛼
𝐻
are presented below (see

[18, page 110]):

𝐷
𝛼

𝐻
𝑤 (𝑡) =

1

Γ (1 − 𝛼)
(𝑡

𝑑

𝑑𝑡
)∫

𝑡

1

(ln 𝑡
𝑠
)

−𝛼
𝑤 (𝑠)

𝑠
𝑑𝑠;

𝐼
𝛼

𝐻
𝑤 (𝑡) =

1

Γ (𝛼)
∫

𝑡

1

(ln 𝑡
𝑠
)

𝛼−1
𝑤 (𝑠)

𝑠
𝑑𝑠.

(60)

We are able to deduce the following result byTheorems 3 and
5.
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Theorem 14. Suppose that, for any 𝑡 ∈ [1, 𝑇] and 𝑦, 𝑧 ∈ R,
|𝑔(𝑡, 𝑦) − 𝑔(𝑡, 𝑧)| ≤ 𝑑

𝑛+1
(𝑡)|𝑦
𝛾𝑛+1 − 𝑧

𝛾𝑛+1 |, where the function
𝑑
𝑛+1
(𝑡) > 0 is continuous and the constant 𝛾

𝑛+1
∈ (0, 1).

(i) If 𝛾
0
> max

1≤𝑖≤𝑛+1
{𝛾
𝑖
}, then, for any solution 𝑢(𝑡) of

problem (59),

|𝑢 (𝑡)|

≤

{

{

{

𝐴
0
(𝑡) +

∞

∑

𝑘=1

(

𝑛+1

∑

1
󸀠
,2
󸀠
,...,𝑘
󸀠
=1

𝜀
𝑘

Γ (∑
𝑘

𝑖=1
𝛼
𝑖
󸀠)

× ∫

𝑡

1

(ln 𝑡
𝑠
)

∑
𝑘

𝑖=1

𝐴
0
(𝑠)
𝑑𝑠

𝑠
)

}

}

}

1/𝛾0

,

𝑡 ∈ [1, 𝑇] ,

(61)

where

𝐴
0
(𝑡)

=

󵄨󵄨󵄨󵄨
𝜂
󵄨󵄨󵄨󵄨
(ln 𝑡)𝛼𝑛+1−1

Γ (𝛼
𝑛+1
)

+
1

Γ (𝛼
𝑛+1
)
∫

𝑡

1

(ln 𝑡
𝑠
)

𝛼𝑛+1−1
󵄨󵄨󵄨󵄨
𝑔 (𝑠, 0)

󵄨󵄨󵄨󵄨

𝑑𝑠

𝑠

+

𝑛+1

∑

𝑖=1

1

Γ (𝛼
𝑖
)
(1 −

𝛾
𝑖

𝛾
0

)(
𝛾
𝑖

𝜀𝛾
0

)

𝛾𝑖/(𝛾0−𝛾𝑖)

× ∫

𝑡

1

(ln 𝑡
𝑠
)

𝛼𝑖−1

[𝑑
𝑖
(𝑠)]
𝛾0/(𝛾0−𝛾𝑖)

𝑑𝑠

𝑠
.

(62)

Here 𝜀 is an arbitrary given positive number.
(ii) If 𝛾

0
≤ min

1≤𝑖≤𝑛+1
{𝛾
𝑖
}, then the continuous solution of

problem (59) is unique.

The proof procedure is similar to that of Theorem 13.
Thus, the procedure is omitted here.
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