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We present an efficient spectral methods solver for the Thomas-Fermi equation for neutral atoms in a semi-infinite domain. The
ordinary differential equation has been solved by applying a spectral method using an exponential basis set. One of the main
advantages of this approach, when compared to other relevant applications of spectral methods, is that the underlying integrals can
be solved analytically and numerical integration can be avoided. The nonlinear algebraic system of equations that is derived using
this method is solved using aminimization approach.The presentedmethod has shown robustness in the sense that it can find high
precision solution for a wide range of parameters that define the basis set. In our test, we show that the new approach can achieve a
very high rate of convergence using a small number of bases elements. We also present a comparison of recently published results
for this problem using spectral methods based on several different basis sets. The comparison shows that our method is highly
competitive and in many aspects outperforms the previous work.

1. Introduction

In this paper we focus on solving the Thomas-Fermi (TF)
equation, which is of great importance for a wide range of
physical problems. Some of its applications are the deter-
mination of effective nuclear charge in heavy atoms and in
finding effective potentials for self-consistent calculations.
The equation is a nonlinear ordinary differential equation that
is solved on a semi-infinite domain. The scaled TF equation
[1] is given in

𝑑
2
𝑦

𝑑𝑥2
=
1

√𝑥
𝑦
3/2 (1)

subjected to the following boundary conditions

𝑦 (0) = 1, lim
𝑥→∞

𝑦 (𝑥) = 0. (2)

Due to its importance this equation has been solved
by many different methods like the perturbative approach
[2], homotopy analysis method [3, 4], quasilinearization
approaches [5], and Padé approximations [6].The complexity

of solving this relatively simple looking equation is that it is
singular at both endpoints.

One of the complexities in applying spectral methods
(SM) to the TF equation is the fact that it is defined on a semi-
infinite domain. Significant research has been conducted
on applying SM on infinite and semi-infinite domains [7–
15]. This has been achieved by implementing a wide range
of approaches varying from using suitable basis sets and
truncating the numerical window to forcing size scaling. Very
good results for such problems have been achieved by using
nonclassical orthogonal basis sets for systems [9], mapped
orthogonal systems [16, 17], Laguerre functions [10], mapped
Legendre functions [11], and mapped Fourier sine series [12].

Recently several approaches have been developed for
solving the TF equation using pseudo spectral methods. The
greatest effort in applying this type of approach has been done
by using different versions of rational Chebyshev functions.
In the work of Parand and Shahini [18] the original equation
has been solved by using this basis set. In his article, Boyd [19]
presents a spectral method based on the same basis set but
applying it to the transformed version of the equation as given
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in [20] to get solutions of amuchhigher accuracy.Hismethod
has been able to use a very high number of basis functions
while avoiding numerical instability and achieving precision
of 10−25. The TF equation has also been solved by using
the second [21] and third [22] kind of rational Chebyshev
functions by Kilicman. These two approaches manage to get
a significantly faster rate of convergence than the mentioned
work of Boyd but have a significant level of parameter tuning
that diminishes the robustness of the approach.The equation
of interest has also been solved using Hermite [23] and Sinc
functions [24]. In all of thementioned applications of spectral
methods, the collocation approach has been used.

In our approach to solve the TF equation, we apply
the spectral method based on the exponential basis set.
This basis set and its polynomial version have been recently
used for solving several differential equations on semi-
infinite domains [13–15]. The use of a similar basis set was
initially presented in the 1970s by Raffenetti, Bardo, and
Ruedenberg [25–27] for self-consistent field wave functions.
It is important to mention that the use of such a basis
set is closely connected to Prony analysis. The inspiration
for applying such a basis set for acquiring a numerical
approximation for the solution of the TF equation comes
from the fact that a combination of exponential functions
was used for finding approximate analytic solutions for
this problem. More precisely, such solutions were calcu-
lated by the use of the variational principle in [28, 29].
An improvement with similar but not strictly exponential
functions has recently been presented by Oulne [30, 31].
Research has also been conducted on finding the analytic
approximation to the solution by using the homotopy anal-
ysis method combined with a polynomial exponential basis
[32].

Similar to the mentioned application of SM to the TF
equation, when using the exponential basis set the nonlinear
ODE is converted to a set of algebraic equations. One of
the main advantages of such an approach is that there is
no need for numerical integration since all the underlining
integrals can be analytically solved. In our implementation
we apply the exponential basis set to the transformed version
of the equation as presented in [20]. Another positive aspect
of using such a basis set is the direct analytical calculation
of the first derivative of the solution of TF equation. The
importance of the value of the derivative at point 0 (𝑦󸀠(0))
is due to its major role in determining the energy of a
neutral atom in the TF equation. Although the transformed
equation has been solved, the derivative of the original
equation can be acquired analytically from it and in this
way the creation of additional error has been avoided. In
our numerical experiments we show that the new approach
is highly competitive with existing methods and in many
aspects outperforms the previous work.

The paper is organized as follows. In the second section
we present the exponential basis set. In the next section we
show details of applying this basis to the TF equation. In the
fourth section we give a comparison of the new method to
previously published research on the application of spectral
methods for the problem of interest.

2. The Exponential Basis Set

It has been shown that the exact particular solution of (1),
without the boundary condition at 0, is the function 144/𝑥3
[33]. This function also gives us the asymptotic behavior of
the solution of TF equation at infinity. The solution of the TF
equation has been effectively approximated using variational
approaches based on a combination of exponential functions.
Although an approximate solution having exponential decay
will tend to zero faster than the exact solution it has been
shown that such approximations can give a high level of
accuracy even for relatively large values of 𝑥 [28–32]. This
gives us incentive to represent its approximation using an
exponential basis set. The goal of the SM approach is to find
the values of coefficients 𝑎

𝑖
∈ R that best satisfy the following

equation:

𝑓 (𝑡) ≈

𝑁

∑

𝑖=1

𝑎
𝑖
𝑅
𝑖
, 𝑅
𝑖
= 𝑒
−𝛽𝑖𝑡. (3)

In (3), the values of 𝛽
𝑖
∈ R are selected in an intuitive way

to cover all the possible decay rate. For the proposed basis
set to converge at infinity it is also necessary that the values
of 𝛽
𝑖
are strictly positive. When using such a basis set, it is

possible to directly specify the values for 𝛽
𝑖
depending on

the problem specifics, or use somemore general method.The
later is preferential since it makes the basis more robust and
also avoids unnecessary “fine tuning” when a new problem
is solved. We use a slight modification of the method for
generating values for 𝛽

𝑖
presented in [13], which is given in

𝛽
𝑖
= 𝑠
𝑝𝑖 (4)

𝑝
𝑖
= 𝑑
𝑠
+
𝑖 − 1

𝑁 − 1
(𝑑
𝑙
− 𝑑
𝑠
) . (5)

In (4) 𝑠 is used to define the level of exponential decay of
the different values of 𝛽

𝑖
. In the same equation 𝑝

𝑖
is used to

give a distribution for the values of each 𝛽
𝑖
. This distribution

is defined in (5), where 𝑁 is the number of basis functions
and 𝑑

𝑠
and 𝑑

𝑙
represent the smallest and largest values for

𝑝
𝑖
. All the values for 𝑝

𝑖
are uniformly distributed in the

interval [𝑑
𝑠
, 𝑑
𝑙
]. We wish to point out that when applying

this basis set to a specific problem some simple rough tuning
is necessary in the sense of specifying the values for these
three parameters. In the last part of the paper it will be
shown that there is a wide range of their values in which
the convergence rate is high. It is important to mention
that this is a nonorthonormal basis set, but it can be easily
converted to an orthonormal one using the Gram-Schmid
orthogonalization procedure.

The proposed use of the exponential basis set is closely
related to Prony’s analysis which is used for fitting a sum
of exponential functions to equally spaced data points and
extended the model to interpolate at intermediate points.
In case of Prony’s method a function is approximated in
the same form as (3) but 𝛽

𝑖
, 𝑎
𝑖
∈ C. The method itself

gives a very efficient algorithm for finding the values of 𝛽
𝑖
, 𝑎
𝑖

if a set of equally spaced data points and corresponding
function values are known. The original algorithm and the
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modified version [34] have been successfully applied in a
wide range of problems [35–37]. Although Prony’s method
has extensively been used in the field of signal processing
only limited research has been conducted for its application to
solving ODEs. Osborne has presented a method for applying
a modified version of this method to linear homogeneous
difference equation [38]. Maergoiz has done research for
inhomogeneous linear ordinary differential equations using
the modified method in case of one [39] or more dimensions
[40].

The proposed use of the exponential basis set can be
understood as a specialized version that can be applied
to ODEs which have solutions without oscillating decay
behavior at infinity. This fact makes the use of a real valued
exponent basis set significantly different in several aspects.
While the use of only real coefficients is less robust and cannot
easily be applied to multimodal functions, it is still suitable
for the Thomas-Fermi equation. On the other hand due to it
simpler form it has some specific properties. More precisely
it can be used as a real spectral method and can efficiently
be applied to nonlinear problems. We wish to emphasize
that the proposed method does not use the main aspect
of Prony’s algorithm, the computationally efficient method
for calculating the parameters that specify the expansion
from values at equidistant points. But due to the similarity
of the basis sets used, there exists a strong potential for
adapting Prony’s method to make the proposed one more
computationally efficient.

It is important to point out that, unlike the standard
spectral basis sets, no rigorous convergence theory which
proves that an arbitrarily large accuracy can be achieved
using a high enough number of basis functions has not been
developed, to the best of our knowledge. On the other hand
the exponential basis set and its polynomial version have been
successfully applied to a wide range of problems [13–15, 25–
27, 32], which gives incentive to attempt developing such
theory.

3. Solving the Thomas-Fermi Equation

The direct solution of the equation of interest given by
(1) is possible but a preferred form, due to the simplified
differential form where the radicals are avoided and hence
the integrals are simplified, is the one given in [20]. The new
form of the ODE is acquired by using the following variable
substitutions:

𝑡 = 𝑥
1/2
, 𝑓 (𝑡) = 𝑦 (𝑡

2
)
1/2

. (6)

After substituting the new variables into (1) we have a new
nonlinear ODE given in

𝐴 = 𝑡 [𝑓 (𝑡) 𝑓
󸀠󸀠
(𝑡) + 𝑓

󸀠
(𝑡)
2
] − 𝑓 (𝑡) 𝑓

󸀠
(𝑡) − 2𝑡

2
𝑓 (𝑡)
3
= 0.

(7)

The transformed equation (7) has the same boundary condi-
tions as the original equation.

The new ODE is transformed into a set of algebraic
equations using the standard spectral method approach

where each of the basis functions 𝑅
𝑖
is used as a test function.

As our goal is to find the coefficients 𝑎
𝑖
that best satisfy (7),

it is also necessary to present the 𝑓󸀠 and 𝑓󸀠󸀠 in the proposed
basis set.This can easily be done by using the properties of the
exponential function and their expansions are given in (8). A
new algebraic system can easily be formed when

𝑓
󸀠
(𝑡) ≈ −

𝑁

∑

𝑖=1

𝑎
𝑖
𝛽
𝑖
𝑒
−𝛽𝑖𝑡, 𝑓

󸀠󸀠
(𝑡) ≈

𝑁

∑

𝑖=1

𝑎
𝑖
𝛽
2

𝑖
𝑒
−𝛽𝑖𝑡. (8)

The new algebraic system of equations can be written in form
given in (10):

R = [𝑅
1
, 𝑅
2
, . . . , 𝑅

𝑛
]
⊤ (9)

∫

∞

0

𝐴R𝑑𝑡 = M
1
+M
2
−M
3
− 2M
4
= 0. (10)

Equation (10) represents the simplified representation
of all the equations that appear in the new system. With
the intention of having a more comprehensible form of the
equation we have used vector M

𝑖
to simplify the notation.

Each element of vectors M
𝑖
corresponds to one of the test

functions.More precisely, each of the vector elements for𝑀
𝑖,𝑘

are calculated in the following way:

𝑀
1,𝑘
= ∫

∞

0

𝑡𝑓 (𝑡) 𝑓
󸀠󸀠
(𝑡) 𝑒
−𝛽𝑘𝑡𝑑𝑡

𝑀
2,𝑘
= ∫

∞

0

𝑡𝑓
󸀠
(𝑡)
2
𝑒
−𝛽𝑘𝑡𝑑𝑡

𝑀
3,𝑘
= ∫

∞

0

𝑓 (𝑡) 𝑓
󸀠
(𝑡) 𝑒
−𝛽𝑘𝑡𝑑𝑡

𝑀
4,𝑘
= ∫

∞

0

𝑡
2
𝑓 (𝑡)
3
𝑒
−𝛽𝑘𝑡𝑑𝑡.

(11)

As previously mentioned one of the main advantages of
the proposed basis set is that, after substituting 𝑓, 𝑓󸀠, 𝑓󸀠󸀠 with
their expanded forms, given in (3), (8), all the integrals in (11)
can be analytically solved. This is due to the fact that each of
these integrals can be presented as a summation of integrals
having the following form:

∫

∞

0

𝑡
𝑘
𝑒
−𝑎𝑡
𝑑𝑡 =

𝑘!

𝑎𝑘+1
. (12)

In (12) 𝑘 is a nonnegative integer. To be exact, after
incorporating the expansions of 𝑓, 𝑓󸀠, 𝑓󸀠󸀠 into (11) and using
the analytic solutions of integrals given in (12) the values of
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Table 1: Comparison of the effectiveness of the application of spectral methods based on different basis sets for calculating the initial slope
𝑦
󸀠(0) of the TF equation.

𝑁 RC-P RC-SK RC-TK RC-B Her Sinc Exp
4 — — — — 3.57𝑒 − 02 9.89𝑒 − 02

5 — 8.11𝑒 − 07 1.59𝑒 − 09 — — — 2.76𝑒 − 01

7 — 3.24𝑒 − 07 3.46𝑒 − 11 — — — 1.70𝑒 − 02

8 2.34𝑒 − 06 — 1.33𝑒 − 15 — — 6.64𝑒 − 03 3.85𝑒 − 03

10 9.91𝑒 − 07 — — — — — 6.48𝑒 − 04

12 7.26𝑒 − 07 — — — — — 5.13𝑒 − 05

15 — — — — <5𝑒 − 07 — 9.03𝑒 − 06

16 — — — — — 6.75𝑒 − 04 6.03𝑒 − 07

20 — — — 5.26𝑒 − 6 — — 6.09𝑒 − 08

25 — — — — — — 2.00e − 10
32 — — — — — 6.84𝑒 − 07 4.13𝑒 − 09

40 — — — 3.90𝑒 − 11 — — 3.88𝑒 − 09

𝑀
𝑖,𝑘

can be easily calculated from the summations given in
the following equations:

𝑀
1,𝑘
=

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑎
𝑖
𝑎
𝑗
𝛽
2

𝑗

1

(𝛽
𝑖
+ 𝛽
𝑗
+ 𝛽
𝑘
)
2

𝑀
2,𝑘
=

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑎
𝑖
𝑎
𝑗
𝛽
𝑖
𝛽
𝑗

1

(𝛽
𝑖
+ 𝛽
𝑗
+ 𝛽
𝑘
)
2

𝑀
3,𝑘
= −

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑎
𝑖
𝑎
𝑗
𝛽
𝑗

1

(𝛽
𝑖
+ 𝛽
𝑗
+ 𝛽
𝑘
)

𝑀
4,𝑘
=

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑚=1

𝑎
𝑖
𝑎
𝑗
𝑎
𝑚

2

(𝛽
𝑖
+ 𝛽
𝑗
+ 𝛽
𝑚
+ 𝛽
𝑘
)
3
.

(13)

In addition to the 𝑁 equation, for each of the test
functions that are acquired by incorporating the substitutions
given in (13) into (10), it is necessary to include the boundary
condition at zero given in

𝑁

∑

𝑖=1

𝑎
𝑖
= 1. (14)

In this work, the Tau approach is used where the first 𝑁 − 1
rows of the system are given in (10) and (14) is inserted in the
𝑁th row.

4. Results

To evaluate our method, we have implemented the numerical
algorithm using MATLAB R2013b. The nonlinear algebraic
system of equations, presented in the previous section, was
solved using the built-in fsolve function. This method uses a
minimization algorithm based on trust regions. In practice
fsolve uses an iterative and self-correcting procedure to solve
the system given in (10) with 𝑛 variables 𝑎

𝑖
corresponding to

the number of bases, for which it needs an initial solution.
To validate the method we have first used the initial values

𝑎
𝑖
= 1 to confirm that convergence is being achieved. It

is important to point out that although for a wide range of
initial values of 𝑎

𝑖
the same behavior occurs, in some specific

cases like when 𝑎
𝑖
≫ 1 for most of 𝑖, the method does not

manage to converge. The summations given in (13) which
represent the algebraic system, if not given in vector/matrix
form, can be very computationally expensive if the method is
implemented using MATLAB. All the mentioned equations
can be efficiently be converted in such a vector/matrix form,
which has been done in our implementation of the proposed
method.

We have evaluated the quality of the approximation
function acquired by the use of an exponential basis set in two
ways. First, the value of the initial slope𝑦󸀠(0) is computed due
to its important role in determiningmanyphysical properties.
Specifically, it is essential in the calculation of the the energy
of a neutral atom in the TF approximation [1]:

𝐸 =
6

7
(
4𝜋

3
)

2/3

𝑍
7/3
𝑦
󸀠
(0) , (15)

where 𝑍 is the nuclear charge.
It is important to point out that the chosen basis set is

specially suitable for this problem due to the fact that the
derivative of 𝑦󸀠 in (1) can directly be calculated using the val-
ues of coefficients 𝑎

𝑖
calculated for the transformed equation.

This can done using some simple derivation. Starting from

𝑦
󸀠
(𝑥) = ∫𝑦

󸀠󸀠
(𝑥) 𝑑𝑥 = ∫

1

√𝑥
𝑦
3/2
𝑑𝑥, (16)

after incorporating the variable substitutions given in (6) and
using the proposed expansion, we have

𝑦
󸀠
(𝑥) = ∫

1

√𝑥
(𝑓 (√𝑥)

2

)
3/2

𝑑𝑥 = −2∫(

𝑁

∑

𝑖=1

𝑎
𝑖
𝑒
−𝛽𝑖𝑡)

3

𝑑𝑡.

(17)
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Figure 1: Graphical representation of results given in Table 2.

Finally we have the formula for calculating the values for
𝑦
󸀠
(𝑥) as follows:

𝑦
󸀠
(𝑥) = −2

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

𝑎
𝑖
𝑎
𝑗
𝑎
𝑘

𝑒
−(𝛽𝑖+𝛽𝑗+𝛽𝑘)√𝑥

𝛽
𝑖
+ 𝛽
𝑗
+ 𝛽
𝑘

. (18)

In this way we avoid adding any additional numerical error at
this step.The use of an exponential basis set will give a similar
advantage when solving similar problems.

In Table 1, we give a comparison of our method (Exp)
to recently published results on the application of spectral
methods for solving the TF equations. More precisely we
compare it to the use of several different basis sets: rational
Chebyshev functions in the implementation of Parand (RC-
P) [18] and Boyd (RC-B)[19], rational Chebyshev functions
of the second (RC-SK) and third kind (RC-TK), Hermite
functions (Her) [23], and Sinc functions (Sinc) [24]. We
compare the error to the best known approximate solution
given by Boyd: 𝑦󸀠(0) = 1.5880710226113753127186845

[19]. In the case of our method we have used the following
parameter values, 𝑠 = 5, 𝑑

𝑠
= −4, 𝑑

𝑙
= 2, to specify

the basis set. These values have been chosen due to the fact
that they have produced the approximation of the highest
quality. We wish to emphasize that there is a wide range of
values of these parameters that produce a similar level of
precision, so this choice cannot be considered as fine tuning.
In the last part we will show that the proposed method is not
highly sensitive to the choice of these parameters and can be
considered robust. In the goal of having a better analysis of
the effect of using different basis sets we have presented the
values of the function 𝑦 in Table 2 for a wide range of values
of the variable 𝑥. These values have also been collected from
the same published works.

When we observe the results in Table 1, it is noticeable
that the methods RC-P, RC-SK, and RC-TK have a much
higher speed of convergence for 𝑦󸀠(0) than the other meth-
ods. We believe that this high precision of 𝑦󸀠(0), for a small
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r f
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)

Figure 2: Comparison of convergence speeds for differentmethods,
corresponding to the number of basis functions (𝑁) used, for
calculating the initial slope𝑦󸀠(0).The exponential basis set is defined
with the following parameters: 𝑠 = 5, 𝑑

𝑠
= −4, and 𝑑

𝑙
= 2.

number of basis sets, does not correctly represent the actual
effectiveness of these methods. If we observe the values for
function𝑦 given in Table 2, or in a graphical representation in
Figure 1, we can see that the precision of the approximations
acquired by using these basis sets is much lower. This is most
notable for approximate solutions RC-SK, RC-TK, which
have been developed by the same authors, for which the
values 𝑦(𝑥) strongly deviate from the results of the other
methods. In case of RC-P a similar deviation exists but to a
much lower extent. We believe this is a consequence of fine
tuning of the method. More precisely, in all of these papers
the parameter 𝐿 that is utilized for specifying the rational
Chebyshev functions which are used as a basis set has been
presented with precision of 10−6 and higher.

The approximations for the function 𝑦 acquired with RC-
B, Her, Sinc, and our method on the other hand have a very
similar behavior. We believe that the results presented by
Boyd are of the highest accuracy. It can be seen from the
values in Table 2 that our method, with 25 basis functions,
gives the result that is the closest to the one acquired by Boyd
[41] who used 600 basis functions. Even for 𝑥 = 500 the
relative difference between these two approaches is around
3% for values close to 10−6.

In the case of observing the the speed of convergence
for calculating 𝑦󸀠(0), our method proves to be very efficient.
Figure 2 gives us a graphical representation of convergence
rates of RC-B, Sinc, and Exp, which shows that the new
method has a higher speed of convergence with the increase
of the number of basis functions. In this figure the results
for the othermethods based on rational Chebyshev functions
have been excluded due to the reason explained in the pre-
vious paragraphs. The maximal precision we have achieved
with our approach is 2𝑒 − 10 with 25 basis functions. When a
higher number of basis functions has been used our method
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Table 2: Comparison of the approximate solutions 𝑦 of the TF equation acquired by spectral methods based on different basis sets.

𝑥 RC-P RC-SK RC-TK RC-B Her Sinc Exp
0.25 0.755880759 0.755903399 0.755455402 — 0.754795330 — 0.755202096
0.50 0.606700008 0.605270502 0.602998554 — 0.606658908 — 0.606986951
0.75 0.502964042 0.497823942 0.494347872 — 0.502110510 — 0.502348140
1.00 0.424333179 0.420343948 0.416399658 — 0.423811203 0.4240642728 0.424010148
1.25 0.363227937 0.362814756 0.358770806 — 0.363027725 — 0.363203991
1.50 0.314660642 0.318737461 0.314761643 — — — 0.314780118
1.75 0.275233848 0.284014958 0.280179962 — — — 0.275453712
2.00 0.242678587 0.256010764 0.252344355 — 0.242918233 0.2430282344 0.243010373
2.25 0.215439334 0.232974191 0.229482688 — 0.215819818 — 0.215895823
2.50 0.192406328 0.213705386 0.210384924 — 0.192917948 — 0.192984580
2.75 0.172758691 0.197357837 0.194199930 — 0.173379623 — 0.173440997
3.00 0.155871862 0.183318729 0.180313058 — 0.156573773 — 0.156631657
3.25 0.141260504 0.171134229 0.168270054 — 0.142013368 — 0.142067963
3.50 0.128541381 0.160461449 0.157728304 — 0.129316613 — 0.129367328
3.75 0.117408054 0.151036695 0.148424721 — 0.118180209 — 0.118226225
4.00 0.107612958 0.142653971 0.140154047 — 0.108360441 0.1084800242 0.108401057
4.25 0.098954329 0.135150082 0.132753853 — — — 0.099694306
4.50 0.091266456 0.128394110 0.12609396 — — — 0.091944333
4.75 0.084412289 0.122279834 0.120068868 — — — 0.085017755
5.00 0.078277758 0.116720187 0.114592127 — — — 0.078803669
6.00 0.059236422 0.098752518 0.096904158 — — 0.0594010318 0.059418888
7.00 0.046231022 0.085573204 0.083941323 — — — 0.046094375
8.00 0.036980654 0.075494762 0.074034822 — 0.036580427 0.0365353166 0.036584707
9.00 0.030180901 0.067538722 0.066218399 — — — 0.029589375
10.00 0.025044744 0.061098873 0.059894055 0.024314292 — 0.0243069553 0.024313708
15.00 0.011731220 0.041370727 0.040533524 — 0.010803774 — 0.010808302
20.00 0.006585633 0.031271686 0.030630632 0.005784941 0.005792831 — 0.005789307
25.00 0.004104406 0.025135426 0.024616163 — — — 0.003478434
30.00 — — — 0.002255836 0.002252634 — 0.002260351
50.00 0.000761317 0.012687078 0.012420906 0.000632254 — 0.0006213281 0.000632255
75.00 0.000193597 0.008484835 0.008305908 — — — 0.000219970
100.00 0.000023409 0.006373709 0.006238954 0.000100242 — — 0.000101341
500.00 — — — 0.000001034 — — 0.000001068

has started to exhibit numeric instability and the precision
of the method has decreased. We assume that the cause
for this is due to our implementation of the method using
MATLAB where variables are stored using the 64 bit IEEE
Standard 754 floating point numbers, for which the precision
corresponds to the use of 16 significant decimal digits. In our
implementation the calculation of 𝑦󸀠 is done by summing 105
elements as presented in (18). This results in the problem of
error accumulation. It is expected that a higher accuracy can
be achieved by developing the method using software that
allows multiprecision arithemtic. We show a more detailed
behavior of the error for this approximation in Figure 3.

Due to the fact that the proposedmethod starts exhibiting
numerical instability for a relatively low number of basis
functions 𝑁, the true convergence rate cannot be truly
recognized form Figure 3. Although that, from observing
this figure, we get the impression that the method has an
exponential convergence rate, from our previous work with

the exponential basis [14] and analysis of convergence rates
for series approximations for functions with singularities
[42], we expect that the convergence speed is lower and closer
to root exponential.

To show the robustness of this approach, in Figure 4 we
present the speed of convergence for several different basis
sets. The basis sets are generated using various sets of 𝛽

𝑖
,

which are acquired for different values of 𝑑
𝑠
, 𝑑
𝑙
. It is notable

that, for 𝑠 = 5, values of 𝑑
𝑠
ranging from −5 to −1 and for 𝑑

𝑙

from 1 to 4 good precision are achieved. From this figure it
is notable that the method manages to get accuracy of below
10𝑒 − 9 in many cases, which reassures us in assumption for
the source of error.

5. Conclusion

In this paper, a new approach for solving the Thomas-Fermi
equation using spectralmethods has been presented.We have
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Figure 3: Detailed presentation of the convergence rate of the initial
slope 𝑦󸀠(0) for an exponential basis set defined with the following
parameters: 𝑠 = 5, 𝑑
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Figure 4: Convergence rate of the initial slope 𝑦󸀠(0) of theThomas-
Fermi equation calculated using different parameters for defining
the exponential basis set. In all the tests the exponent had the value
𝑠 = 5.

shown that by using an exponential basis set a very high level
of accuracy of the approximate solution can be achieved by
employing a relatively small number of basis functions. One
of the main advantages of this method is that there is no need
for numerical integration, due to the positive properties of the
selected basis set.

In our tests we have shown that the use of this basis
set has a higher speed of convergence compared to other
methods of this type. The approximate solutions acquired by
this approach have given a high precision of the value for
𝑦
󸀠
(0). This has been accomplished while maintaining a high

precision for the function 𝑦, which has not been achieved
by several methods of this type. In our test we have also
shown that the use of an exponential basis set for this problem
is highly robust. More precisely, it achieves a high level of

convergence for a wide range of values of parameters that
define the basis set.

In our work we did not focus on developing a suitable
orthonormal version of the basis set, since theThomas-Fermi
equation is one-dimensional, and it was not a problem to
solve the underlying system of algebraic equations. In the
future we plan to work on adapting the basis set in this way.
Another direction of our future research will be in attempting
to incorporate some aspects of Prony’s algorithm to have a
better method for selecting the parameters that specify the
basis set.
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