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The following differential equation 𝑢
(𝑛)
(𝑡) + 𝑝(𝑡)|𝑢(𝜎(𝑡))|

𝜇(𝑡) sign 𝑢(𝜎(𝑡)) = 0 is considered. Here 𝑝 ∈ 𝐿 loc(𝑅+; 𝑅+), 𝜇 ∈

𝐶(𝑅+; (0, +∞)), 𝜎 ∈ 𝐶(𝑅+; 𝑅+), 𝜎(𝑡) ≤ 𝑡, and lim𝑡→+∞𝜎(𝑡) = +∞. We say that the equation is almost linear if the condition
lim𝑡→+∞𝜇(𝑡) = 1 is fulfilled, while if lim sup𝑡→+∞𝜇(𝑡) ̸= 1 or lim inf 𝑡→+∞𝜇(𝑡) ̸= 1, then the equation is an essentially nonlinear
differential equation. In the case of almost linear and essentially nonlinear differential equations with advanced argument,
oscillatory properties have been extensively studied, but there are no results on delay equations of this sort. In this paper, new
sufficient conditions implying Property A for delay Emden-Fowler equations are obtained.

1. Introduction

This work deals with oscillatory properties of solutions of a
functional differential equation of the form

𝑢
(𝑛)
(𝑡) + 𝑝 (𝑡) |𝑢 (𝜎 (𝑡))|

𝜇(𝑡) sign 𝑢 (𝜎 (𝑡)) = 0, (1)

where

𝑝 ∈ 𝐿 loc (𝑅+; 𝑅) , 𝜇 ∈ 𝐶 (𝑅+; (0; +∞)) ,

𝜎 ∈ 𝐶 (𝑅+; 𝑅+) , 𝜎 (𝑡) ≤ 𝑡 for 𝑡 ∈ 𝑅+,

lim
𝑡→+∞

𝜎 (𝑡) = +∞.

(2)

It will always be assumed that the condition

𝑝 (𝑡) ≥ 0 for 𝑡 ∈ 𝑅+ (3)

is fulfilled.
Let 𝑡0 ∈ 𝑅+. A function 𝑢 : [𝑡0; +∞) → 𝑅 is said to be

a proper solution of (1) if it is locally absolutely continuous
together with its derivatives up to order 𝑛 − 1 inclusive,

sup {|𝑢 (𝑠)| : 𝑠 ∈ [𝑡; +∞)} > 0 for 𝑡 ≥ 𝑡0, (4)

and there exists a function 𝑢 ∈ 𝐶(𝑅+; 𝑅) such that
𝑢(𝑡) ≡ 𝑢(𝑡) on [𝑡0; +∞) and the equality 𝑢

(𝑛)
(𝑡) +

𝑝(𝑡)|𝑢(𝜎(𝑡))|
𝜇(𝑡) sign 𝑢(𝜎(𝑡)) = 0 holds for 𝑡 ∈ [𝑡0 : +∞).

A proper solution 𝑢 : [𝑡0 : +∞) → 𝑅 of (1) is said to
be oscillatory if it has a sequence of zeros tending to +∞.
Otherwise the solution 𝑢 is said to be nonoscillatory.

Definition 1. We say that (1) has Property A if any of its
proper solutions is oscillatory when 𝑛 is even and either is
oscillatory or satisfies

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
(𝑖)
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
↓ 0 for 𝑡 ↑ +∞ (𝑖 = 0, . . . , 𝑛 − 1) , (5)

when 𝑛 is odd.

Definition 2. We say that (1) is almost linear if the condition
lim𝑡→+∞𝜇(𝑡) = 1 holds, while if lim sup𝑡→+∞𝜇(𝑡) ̸= 1 or
lim inf 𝑡→+∞𝜇(𝑡) ̸= 1, then we say that the equation is an
essentially nonlinear differential equation.

The Emden-Fowler equation originated from theories
concerning gaseous dynamics in astrophysics in the middle
of the nineteenth century. In the study of stellar structure at
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that time it was important to investigate the equilibrium con-
figuration of the mass of spherical clouds of gas. Lord Kelvin
in 1862 assumed that the gaseous cloud is under convective
equilibrium and then Lane [1] studied the equation

1

𝑡
2

𝑑

𝑑𝑡

(𝑡
2 𝑑𝑢

𝑑𝑡

) + 𝑢
𝛾
= 0. (6)

The Emden-Fowler equations were first considered only
for second-order equations and written in the form

𝑑

𝑑𝑡

(𝑝 (𝑡)

𝑑𝑢

𝑑𝑡

) + 𝑞 (𝑡) 𝑢
𝛾
= 0, 𝑡 ≥ 0, (7)

which could be reduced in the case of positive and continuous
coefficients to the equation

𝑥
󸀠󸀠
+ 𝑎 (𝑡) 𝑥

𝛾
= 0, 𝑡 ≥ 0. (8)

To avoid difficulties of defining 𝑥𝛾 when 𝑥(𝑡) is negative and
𝛾 is not an integer, the equation

𝑥
󸀠󸀠
(𝑡) + 𝑎 (𝑡) |𝑥 (𝑡)|

𝛾 sign 𝑥 (𝑡) = 0, 𝑡 ≥ 0, (9)

was usually considered. The mathematical foundation of the
theory of such equations was built by Fowler [2] and the
description of the results can be found in Chapter 7 of [3].

We see also the Emden-Fowler equation in gas dynamics
and fluid mechanics (see Sansone [4], page 431 and the paper
[5]). Nonoscillation of these equations is important in various
applications. Note that the zero of such solutions corresponds
to an equilibrium state in a fluid with spherical distribution
of density and under mutual attraction of its particles. The
Emden-Fowler equations can be either oscillatory (i.e., all
proper solutions have a sequence of zeros tending to zero) or
nonoscillatory, if solutions are eventually positive or negative,
or, in contrast with the case of linear differential equations of
second order,may possess both oscillating and nonoscillating
solutions. For example, for the equation

𝑥
󸀠󸀠
(𝑡) + 𝑡

𝜇
|𝑥 (𝑡)|

𝛾 sign 𝑥 (𝑡) = 0, 𝑡 ≥ 0, (10)

it was proven in [2] that for 𝜇 ≥ −2 > −(𝛾 + 3)/2 all solutions
oscillate, for 𝜇 < −(𝛾 + 3)/2—all solutions nonoscillate, and
for −(𝛾 + 3)/2 ≤ 𝜇 < −2 there are both oscillating and
nonoscillating solutions.

The Emden-Fowler equation presents one of the classical
objects in the theory of differential equations. Tests for
oscillation and nonoscillation of all solutions and existence
of oscillating solutions were obtained in the works [6–8]. In
[9] for the case 0 < 𝛾 < 1, it was obtained that all solutions of
the equation

𝑥
󸀠󸀠
(𝑡) + 𝑎 (𝑡)

󵄨
󵄨
󵄨
󵄨
𝑥
𝛾
(𝑡)
󵄨
󵄨
󵄨
󵄨
sign 𝑥 (𝑡) = 0, 𝑡 ≥ 0, (11)

oscillate if and only if

∫

∞

0

𝑡
𝛾
𝑎 (𝑡) 𝑑𝑡 = ∞. (12)

The latest research results in this area are presented in the
book [8]. Behavior of solutions to nth order Emden-Fowler

equations can be essentially more complicated. Properties A
and B defined by Kiguradze are studied in the abovemen-
tioned book.

There are essentially less results on oscillation of delay
Emden-Fowler equations. Oscillation properties of nonlinear
delay differential equations, where Emden-Fowler equations
were also included as a particular case, were studied in [10–
20]. Results of these papers are discussed in [13, 15], where
various examples demonstrating essentialities of conditions
are also presented. Note that for delay differential equations
there are no results on nonoscillation of all solutions and only
existence of nonoscillating solutions is studied. Actually, the
results on oscillation of delayed equations are based on the
approaches existing for ordinary differential equations with
development in the direction of preventing the obstructive
influence of delay. In the paper [15] the following equation

𝑥
(𝑛)
(𝑡) + 𝑎 (𝑡) 𝑓 [𝑥 (𝜎 (𝑡))] = 0, 𝑡 ≥ 0, 𝑛 even, (13)

and its particular case

𝑥
(𝑛)
(𝑡) + 𝑎 (𝑡) |𝑥 (𝜎 (𝑡))|

𝛾 sign 𝑥 (𝜎 (𝑡)) = 0,

𝑡 ≥ 0, 𝑛 even,
(14)

are considered. It was obtained for the last equation under
some standard assumptions on the coefficients [15] that in the
case 0 < 𝛾 < 1,

∫

∞

0

𝜎
(𝑛−1)𝛾

(𝑡) 𝑎 (𝑡) 𝑑𝑡 = ∞, (15)

all solutions oscillate. We see that the integral depends on
deviation of argument 𝜎(𝑡) and the power of the equation 𝑛.
For the equation

𝑥
(𝑛)
(𝑡) + 𝑎 (𝑡)

𝑚

∏

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥 (𝜎𝑖 (𝑡))

󵄨
󵄨
󵄨
󵄨

𝛾𝑖 sign 𝑥 (𝜎𝑖 (𝑡)) = 0,

𝑡 ≥ 0, 𝑛 even,

(16)

where 𝛾𝑖 is the ratio of two positive odd integers, 𝜎(𝑡) ≤

𝜎𝑖(𝑡) ≤ 𝑡 for 𝑖 = 1, . . . , 𝑚, and 𝜎(𝑡) → ∞ as 𝑡 → ∞, each of
the following conditions (a), (b), and (c) ensures oscillation
of all solutions:

(a)

∫

∞

0

𝜎
(𝑛−1)𝛾

(𝑡) 𝑎 (𝑡) 𝑑𝑡 = ∞ for 𝛾 =
𝑚

∑

𝑖=1

𝛾𝑖 < 1; (17)

(b)

∫

∞

0

𝜎
(𝑛−1)𝛼

(𝑡) 𝑎 (𝑡) 𝑑𝑡 = ∞ for 𝛾 = 1, 0 < 𝛼 < 1; (18)

(c)

∫

∞

0

𝜎
𝑛−1

(𝑡) 𝑎 (𝑡) 𝑑𝑡 = ∞, 𝜎
󸀠
(𝑡) ≥ 0 for 𝛾 > 1. (19)
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Most proofs of results on oscillation of all solutions to
second order equations utilize the fact that if a nonoscillating
solution exists, the signs of the solution 𝑥(𝑡) and its second
derivative 𝑥󸀠󸀠(𝑡) are opposite to each other for sufficiently
large 𝑡. Then a growth of nonoscillating solution is estimated
and the authors come to contradiction with conditions that
proves oscillation of all solutions. Note that delays disturb
oscillation. Instead of 𝑡𝛾,𝜎𝛾(𝑡) appears. The principle is
clear: for oscillation of all solutions we have to achieve a
corresponding smallness of the delay 𝑡 −𝜎(𝑡). All this is more
complicated if we study 𝑛th order equations. In this case also
the fact that 𝑥(𝑡) and its 𝑛th derivative 𝑥(𝑛)(𝑡) have different
signs for sufficiently large 𝑡 is used, but the technique is more
complicated.

In the papers [21–28] a generalization of Emden-Fowler
equations was considered. The powers in these papers can
be functions and not constants. In many cases, it leads to
essentially new oscillation properties of such equations. Sur-
prisingly, oscillation behavior of equations, with the power
𝜆 and with functional power 𝜇(𝑡) such that lim𝑡→∞𝜇(𝑡) =
𝜆, can be quite different. The main purpose of our paper
is to study conditions under which the generalized (in this
sense) equations preserve the known oscillation properties of
Emden-Fowler equations and conditions under which these
properties are not preserved. Oscillatory properties of almost
linear and essentially nonlinear differential equation with
advanced argument have already been studied in [21–28]. In
this paper we study oscillation properties of nth order delay
Emden-Fowler equations.

2. Some Auxiliary Lemmas

In the sequel, 𝐶loc([𝑡0; +∞)) will denote the set of all func-
tions 𝑢 : [𝑡0; +∞) → 𝑅 absolutely continuous on any finite
subinternal of [𝑡0; +∞) along with their derivatives of order
up to including 𝑛 − 1.

Lemma 3 (see [28]). Let 𝑢 ∈ 𝐶
𝑛−1
loc ([𝑡0; +∞)), 𝑢(𝑡) > 0,

𝑢
(𝑛)
(𝑡) ≤ 0 for 𝑡 ≥ 𝑡0, and 𝑢(𝑛)(𝑡) ̸≡ 0 in any neighborhood

of +∞. Then there exist 𝑡1 ≥ 𝑡0 and ℓ ∈ {0, . . . , 𝑛 − 1} such
that ℓ + 𝑛 is odd and

𝑢
(𝑖)
(𝑡) > 0 for 𝑡 ≥ 𝑡1 (𝑖 = 0, . . . , ℓ − 1) ,

(−1)
𝑖+ℓ
𝑢
(𝑖)
(𝑡) > 0 for 𝑡 ≥ 𝑡1 (𝑖 = ℓ, . . . , 𝑛 − 1) .

(20ℓ)

Remark 4. If 𝑛 is odd and ℓ = 0, then it means that in (200)
only the second inequalities are fulfilled.

Lemma 5 (see [29]). Let 𝑢 ∈ 𝐶𝑛−1loc ([𝑡0; +∞)) and let (20ℓ) be
fulfilled for some ℓ ∈ {0, . . . , 𝑛 − 1} with ℓ + 𝑛 odd. Then

∫

+∞

𝑡0

𝑡
𝑛−ℓ−1 󵄨󵄨

󵄨
󵄨
󵄨
𝑢
(𝑛)
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑡 < +∞. (21)

If, moreover,

∫

+∞

𝑡0

𝑡
𝑛−ℓ 󵄨󵄨
󵄨
󵄨
󵄨
𝑢
(𝑛)
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑡 = +∞, (22)

then there exists 𝑡∗ > 𝑡0 such that

𝑢
(𝑖)
(𝑡)

𝑡
ℓ−𝑖

↓,

𝑢
(𝑖)
(𝑡)

𝑡
ℓ−𝑖−1

↑ (𝑖 = 0, . . . , ℓ − 1) , (23𝑖)

𝑢 (𝑡) ≥

𝑡
ℓ−1

ℓ!

𝑢
(ℓ−1)

(𝑡) for 𝑡 ≥ 𝑡∗ , (24)

𝑢
(ℓ−1)

(𝑡) ≥

𝑡

(𝑛 − ℓ)!

∫

+∞

𝑡

𝑠
𝑛−ℓ−1 󵄨󵄨

󵄨
󵄨
󵄨
𝑢
(𝑛)
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+

1

(𝑛 − ℓ)!

∫

𝑡

𝑡∗

𝑠
𝑛−ℓ 󵄨󵄨
󵄨
󵄨
󵄨
𝑢
(𝑛)
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠 for 𝑡 ≥ 𝑡∗ .

(25)

3. Necessary Conditions for the Existence of
a Solution of Type (20ℓ)

The following notation will be used throughout the work:

𝛼 = inf {𝜇 (𝑡) : 𝑡 ∈ 𝑅+} , 𝛽 = sup {𝜇 (𝑡) : 𝑡 ∈ 𝑅+} , (26)

𝜎(−1) (𝑡) = sup {𝑠 ≥ 0, 𝜎 (𝑠) ≤ 𝑡} ,

𝜎(−𝑘) = 𝜎(−1) ∘ 𝜎(−(𝑘−1)), 𝑘 = 2, 3, . . . .

(27)

Clearly 𝜎(−1)(𝑡) ≥ 𝑡, and 𝜎(−1) is nondecreasing and coincides
with the inverse of 𝜎 when the latter exists.

Definition 6. Let 𝑡0 ∈ 𝑅+. By Uℓ,𝑡0 one denotes the set of all
proper solutions 𝑢 : [𝑡0, +∞) → 𝑅 of (1) satisfying the con-
dition (20ℓ) with some 𝑡1 ≥ 𝑡0.

Lemma 7. Let the conditions (2), (3) be fulfilled, let ℓ ∈

{1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd, and let 𝑢 ∈ Uℓ,𝑡0 be a positive
proper solution of (1). If, moreover, 𝛼 ≥ 1, 𝛽 < +∞,

∫

+∞

0

𝑡
𝑛−ℓ
(𝜎 (𝑡))

(ℓ−1)𝜇(𝑡)
𝑝 (𝑡) 𝑑𝑡 = +∞, (28ℓ)

then for any𝑀 ∈ (1; +∞) there exists 𝑡∗ > 𝑡0 such that for any
𝑘 ∈ 𝑁

𝑢
(ℓ−1)

(𝑡) ≥ 𝜌
(𝛼)

𝑘,ℓ,𝑡∗
(𝑡) for 𝑡 ≥ 𝜎(−𝑘) (𝑡∗) , (29)
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where 𝛼 is given by the first equality of (26) and

𝜌
(𝛼)

1,ℓ,𝑡∗
(𝑡)

= ℓ! exp{𝑀ℓ (𝛼) ∫
𝑡

𝜎(−1)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−2

× (𝜎 (𝜉))
1+(ℓ−1)𝜇(𝜉)

×𝑝 (𝜉) 𝑑𝜉 𝑑𝑠} ,

(30)

𝜌
(𝛼)

𝑖,ℓ,𝑡∗
(𝑡) = ℓ!

+

1

(𝑛 − ℓ)!

× ∫

𝑡

𝜎(−𝑖)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

× 𝑝 (𝜉)

× (

1

ℓ!

𝜌𝑖−1,ℓ,𝑡∗
(𝜎 (𝜉)))

𝜇(𝜉)

𝑑𝜉 𝑑𝑠

(𝑖 = 2, . . . , 𝑘) ,

(31)

𝑀ℓ (𝛼) =

{

{

{

1

ℓ! (𝑛 − ℓ)!

if 𝛼 = 1,

𝑀 if 𝛼 > 1.
(32)

Proof. Let 𝑡0 ∈ 𝑅+, ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd and
𝑢 ∈ Uℓ,𝑡0 (see Definition 6) is solution of (1). Since 𝛽 < +∞,
according to (1), (20ℓ), and (28ℓ), it is clear that condition
(22) holds. Thus, by Lemma 5 there exists 𝑡2 > 𝑡1 such that
the conditions (23𝑖)–(25) with 𝑡∗ = 𝑡2 are fulfilled and

𝑢
(ℓ−1)

(𝑡) ≥

𝑡

(𝑛 − ℓ)!

∫

+∞

𝑡

𝑠
𝑛−ℓ−1

𝑝 (𝑠) (𝑢 (𝜎 (𝑠)))
𝜇(𝑠)
𝑑𝑠

+

1

(𝑛 − ℓ)!

∫

𝑡

𝑡2

𝑠
𝑛−ℓ
𝑝 (𝑠) (𝑢 (𝜎 (𝑠)))

𝜇(𝑠)
𝑑𝑠

for 𝑡 ≥ 𝑡2.

(33)

Observe that there exists 𝑡3 > 𝑡2 such that 𝜎(𝑡) ≥ 𝑡2 for 𝑡 ≥ 𝑡3.
Thus, by (24), for any 𝑡 ≥ 𝑡3 we get

𝑢
(ℓ−1)

(𝑡)

≥

𝑡

(𝑛 − ℓ)!

∫

+∞

𝑡

𝑠
𝑛−ℓ−1

𝑝 (𝑠) (𝑢 (𝜎 (𝑠)))
𝜇(𝑠)
𝑑𝑠

−

1

(𝑛 − ℓ)!

∫

𝑡

𝑡2

𝑠𝑑∫

+∞

𝑠

𝜉
𝑛−ℓ−1

𝑝 (𝜉)

× (𝑢 (𝜎 (𝜉)))
𝜇(𝜉)
𝑑𝜉 𝑑𝑠

≥

1

(𝑛 − ℓ)!

∫

𝑡

𝑡3

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

× (

1

ℓ!

𝑢
(ℓ−1)

(𝜎 (𝜉)))

𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠.

(34)

According to (28ℓ) and (23ℓ−1), choose 𝑡∗ > 𝑡3 such that

1

(𝑛 − ℓ)!

∫

𝑡∗

𝑡3

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

× (

𝑢
(ℓ−1)

(𝜎 (𝜉))

ℓ!

)

𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 > ℓ!.

(35)

By (34) and (35) we have

𝑢
(ℓ−1)

(𝑡) ≥ ℓ!

+

1

(𝑛 − ℓ)!

∫

𝑡

𝑡∗

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

𝑝 (𝜉)

× (

𝑢
(ℓ−1)

(𝜎 (𝜉))

ℓ!

)

𝜇(𝜉)

𝑑𝜉 𝑑𝑠

for 𝑡 ≥ 𝑡∗.
(36)

Let 𝛼 = 1. Since 𝑢(ℓ−1)(𝑡) → +∞ as 𝑡 → +∞, without loss
of generally we can assume that 𝑢(ℓ−1)(𝜎(𝜉)) ≥ ℓ! for 𝜉 ≥ 𝑡3.
Then by (23ℓ) from (36) we get

𝑢
(ℓ−1)

(𝑡)

≥ ℓ! +

1

ℓ! (𝑛 − ℓ)!

∫

𝑡

𝑡∗

∫

+∞

𝑠

𝜉
𝑛−ℓ−2

×(𝜎 (𝜉))
1+(ℓ−1)𝜇(𝜉)

𝑢
(ℓ−1)

(𝜉) 𝑝 (𝜉) 𝑑𝜉 𝑑𝑠

for 𝑡≥ 𝑡∗.
(37)

It is obvious that

𝑥
󸀠
(𝑡) ≥

𝑢
(ℓ−1)

(𝑡)

ℓ! (𝑛 − ℓ)!

∫

+∞

𝑡

𝜉
𝑛−ℓ−2

(𝜎 (𝜉))
1+(ℓ−1)𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉,

(38)

where

𝑥 (𝑡) = ℓ! +

1

ℓ! (𝑛 − ℓ)!

∫

𝑡

𝑡∗

∫

+∞

𝑠

𝜉
𝑛−ℓ−2

× (𝜎 (𝜉))
1+(ℓ−1)𝜇(𝜉)

𝑝 (𝜉) 𝑢
(ℓ−1)

(𝜉) 𝑑𝜉 𝑑𝑠.

(39)
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Thus, according to (23ℓ−1) (37), and (39) from (38) we get

𝑥
󸀠
(𝑡)

≥

𝑥 (𝑡)

ℓ! (𝑛 − ℓ)!

∫

+∞

𝑡

𝜉
𝑛−ℓ−2

(𝜎 (𝜉))
1+(ℓ−1)𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉

for 𝑡 ≥ 𝑡∗.
(40)

Therefore

𝑥 (𝑡)

≥ ℓ! exp{ 1

ℓ! (𝑛 − ℓ)!

×∫

𝑡

𝑡∗

∫

+∞

𝑠

𝜉
𝑛−ℓ−2

(𝜎 (𝜉))
1+(ℓ−1)𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠}

for 𝑡 ≥ 𝑡∗.
(41)

Hence, according to (37) and (39)

𝑢
(ℓ−1)

(𝑡) ≥ 𝜌
(1)

1,ℓ,𝑡∗
(𝑡) for 𝑡 ≥ 𝜎(−1) (𝑡∗) , (42)

where

𝜌
(1)

1,ℓ,𝑡∗
(𝑡)

= ℓ! exp{ 1

ℓ! (𝑛 − ℓ)!

× ∫

𝑡

𝜎(−1)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−2

× (𝜎 (𝜉))
1+(ℓ−1)𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠} .

(43)

Thus, according to (36) and (42)

𝑢
(ℓ−1)

(𝑡) ≥ 𝜌
(1)

𝑖,ℓ,𝑡∗
(𝑡) for 𝑡 ≥ 𝜎(−𝑖) (𝑡∗) (𝑖 = 1, . . . , 𝑘) ,

(44)

where

𝜌
(1)

𝑖,ℓ,𝑡∗
(𝑡)

= ℓ! +

1

(𝑛 − ℓ)!

× ∫

𝑡

𝜎(−𝑖)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

𝑝 (𝜉)

× (

1

ℓ!

𝜌
(1)

𝑖−1,ℓ,𝑡∗
(𝜎 (𝜉)))

𝜇(𝜉)

𝑑𝜉 𝑑𝑠

(𝑖 = 2, . . . , 𝑘) .

(45)

Now assume that 𝛼 > 1 and𝑀 ∈ (1, +∞). Since 𝑢(ℓ−1)(𝑡) ↑
+∞ for 𝑡 ↑ +∞, without loss of generality we can assume that

(𝑢
(ℓ−1)

(𝜎(𝜉))/ℓ!)
𝛼−1

≥ ℓ!(𝑛−ℓ)! 𝑀 for 𝜉 ≥ 𝑡∗.Therefore, from
(36) we have

𝑢
(ℓ−1)

(𝑡)

≥ ℓ! + 𝑀∫

𝑡

𝑡∗

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

× 𝑝 (𝜉) 𝑢
(ℓ−1)

(𝜎 (𝜉)) 𝑑𝜉 𝑑𝑠

for 𝑡 ≥ 𝑡∗.

(46)

Taking into account (46), as above we can find that if 𝛼 > 1,
then

𝑢
(ℓ−1)

(𝑡) ≥ 𝜌
(𝛼)

𝑘,ℓ,𝑡∗
(𝑡) for 𝑡 ≥ 𝜎(−𝑘) (𝑡∗) , (47)

where

𝜌
(𝛼)

1,ℓ,𝑡∗
(𝑡)

= ℓ! exp{𝑀∫

𝑡

𝜎(−1)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−2

(𝜎 (𝜉))
1+(ℓ−1)𝜇(𝜉)

× 𝑝 (𝜉) 𝑑𝜉 𝑑𝑠}

for 𝑡 ≥ 𝜎(−1) (𝑡∗) ,
(48)

𝜌
(𝛼)

𝑖,ℓ,𝑡∗
(𝑡) = ℓ! +

1

(𝑛 − ℓ)!

× ∫

𝑡

𝜎(−𝑖)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

𝑝 (𝜉)

× (

1

ℓ!

𝜌
(𝛼)

𝑖−1,ℓ,𝑡∗
(𝜎 (𝜉)))

𝜇(𝜉)

𝑑𝜉 𝑑𝑠

for 𝑡 ≥ 𝜎(−𝑖) (𝑡∗) (𝑖 = 2, . . . , 𝑘) .
(49)

According to (43)–(45) and (47)–(49), it is obvious that for
any 𝛼 ≥ 1, 𝑘 ∈ 𝑁, and𝑀 > 1 there exists 𝑡∗ ∈ 𝑅+ such that
(29)–(31) hold, where 𝑀ℓ(𝛼) is defined by (32). This proves
the validity of the lemma.

Analogously we can prove.

Lemma 8. Let conditions (2), (3), (28ℓ) be fulfilled, let ℓ ∈

{1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd, 1 ≤ 𝛽 < +∞, and let 𝑢 ∈ Uℓ,𝑡0
be a positive proper solution of (1). Then for any𝑀 ∈ (1; +∞)

there exists 𝑡∗ > 𝑡0 such that for any 𝑘 ∈ 𝑁

𝑢
(ℓ−1)

(𝑡) ≥ 𝜌
(𝛽)

𝑘,ℓ,𝑡∗
(𝑡) for 𝑡 ≥ 𝜎(−𝑘) (𝑡∗) , (50)
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where 𝛽 is defined by the second equality of (26) and

𝜌
(𝛽)

1,ℓ,𝑡∗
(𝑡) = ℓ! exp

× {𝑀(𝛽)

× ∫

𝑡

𝜎(−1)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−2

× (𝜎 (𝜉))
1+ℓ𝜇(𝜉)−𝛽

×𝑝 (𝜉) 𝑑𝜉 𝑑𝑠} ,

(51)

𝜌
(𝛽)

𝑖,ℓ,𝑡∗
(𝑡)

= ℓ! +

1

(𝑛 − ℓ)!

× ∫

𝑡

𝜎(−𝑖)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

× (

1

ℓ!

𝜌𝑖−1,ℓ,𝑡∗
(𝜎 (𝜉)))

𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠

(𝑖 = 2, . . . , 𝑘) ,

(52)

𝑀(𝛽) =

{

{

{

1

ℓ! (𝑛 − ℓ)!

if 𝛽 = 1,

𝑀 if 𝛽 > 1.
(53)

Remark 9. In Lemma 7, the condition 𝛽 < +∞ cannot be
replaced by the condition 𝛽 = +∞. Indeed, let 𝑐 ∈ (0, 1).
Consider (1), where 𝑛 is even and

𝜎 (𝑡) ≡ 𝑡, 𝑝 (𝑡) =

𝑛! 𝑡
log
1/𝑐
𝑡

𝑡
𝑛+1
(𝑐𝑡 − 1)

log
1/𝑐
𝑡
,

𝛽 (𝑡) = log1/𝑐𝑡, 𝑡 ≥

2

𝑐

.

(54)

It is obvious that the function 𝑢(𝑡) = 𝑐 − (1/𝑡) is the
solution of (1) and it satisfies the condition (201) for 𝑡 ≥

(2/𝑐). On the other hand, the condition (281) holds, but the
condition (22) is not fulfilled.

Theorem 10. Let ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 be odd, let 𝛽 <
+∞ and the conditions (2), (3), (28ℓ), and let

∫

+∞

0

𝑡
𝑛−ℓ−1

(𝜎 (𝑡))
ℓ𝜇(𝑡)

𝑝 (𝑡) 𝑑𝑡 = +∞ (55ℓ)

be fulfilled, and for some 𝑡0 ∈ 𝑅+,Uℓ,𝑡0 ̸= 0.Then for any𝑀 > 1

there exists 𝑡∗ > 𝑡0 such that if 𝛼 = 1,

lim
𝑡→+∞

1

𝑡

∫

𝑡

𝜎(−𝑘)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

× (

1

ℓ!

𝜌
(1)

𝑘,ℓ,𝑡∗
(𝜎 (𝜉)))

𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 = 0

(56)

and if 𝛼 > 1, then for any 𝑘 ∈ 𝑁 and 𝛿 ∈ (1; 𝛼],

∫

+∞

𝜎(−𝑘)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)+𝛿

× (

1

ℓ!

𝜌
(𝛼)

𝑘,ℓ,𝑡∗
(𝜎 (𝜉)))

𝜇(𝜉)−𝛿

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 < +∞,

(57)

where 𝛼 is defined by first equality of (26) and 𝜌(𝛼)
𝑘,ℓ,𝑡∗

is given
by (30)–(32).

Proof. Let 𝑀 > 1 and 𝑡0 ∈ 𝑅+ such that Uℓ,𝑡0 ̸= 0. By
definition, (1) has a proper solution 𝑢 ∈ Uℓ,𝑡0 satisfying
the condition (20ℓ) with some 𝑡ℓ ≥ 𝑡0. Due to (1), (20ℓ),
and (28ℓ), it is obvious that condition (22) holds. Thus by
Lemma 5 there exists 𝑡2 > 𝑡1 such that conditions (23𝑖)-(24)
with 𝑡∗ = 𝑡2 are fulfilled. On the other hand, according to
Lemma 7 (and its proof), we see that

𝑢
(ℓ−1)

(𝑡)

≥

1

(𝑛 − ℓ)!

∫

𝑡

𝑡2

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

𝑝 (𝜉) (𝑢 (𝜎 (𝜉)))
𝜇(𝜉)
𝑑𝜉 𝑑𝑠

for 𝑡 ≥ 𝑡2,

(58)

and there exists 𝑡∗ > 𝑡2 such that relation (30) is fulfilled.
Without loss of generality we can assume that 𝜎(𝑡) ≥ 𝑡2 for
𝑡 ≥ 𝑡∗. Therefore, by (24), from (58) we have

𝑢
(ℓ−1)

(𝑡)

≥

1

(𝑛 − ℓ)!

∫

𝑡

𝜎(−𝑘)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

𝑝 (𝜉)

× (

1

ℓ!

𝑢
(ℓ−1)

(𝜎 (𝜉)))

𝜇(𝜉)

𝑑𝜉 𝑑𝑠.

(59)

Assume that 𝛼 = 1. Then by (44) and (59), we have

𝑢
(ℓ−1)

(𝑡)

≥

1

(𝑛 − ℓ)!

∫

𝑡

𝜎(−𝑘)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

𝑝 (𝜉)

× (

1

ℓ!

𝜌
(1)

𝑘−1,ℓ,𝑡∗
(𝜎 (𝜉)))

𝜇(𝜉)

𝑑𝜉 𝑑𝑠 for 𝑡 ≥ 𝜎(−𝑘) (𝑡∗) .
(60)

On the other hand, according to (23ℓ−1) and (55ℓ) it is obvious
that

𝑢
(ℓ−1)

(𝑡)

𝑡

↓ 0 for 𝑡 ↑ +∞. (61)

Therefore, from (60) we get

lim
𝑡→+∞

1

𝑡

∫

𝑡

𝜎(−𝑘)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

𝑝 (𝜉)

× (

1

ℓ!

𝜌
(1)

𝑘,ℓ,𝑡∗
(𝜎 (𝜉)))

𝜇(𝜉)

𝑑𝜉 𝑑𝑠 = 0.

(62)
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Now assume that 𝛼 > 1 and 𝛿 ∈ (1, 𝛼]. Then according to
(47), (23ℓ−1), and (61), from (59) we have

𝑢
(ℓ−1)

(𝑡)

≥

1

(𝑛 − ℓ)!

∫

𝑡

𝜎(−𝑘)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

𝑝 (𝜉)

× (

1

ℓ!

𝑢
(ℓ−1)

(𝜎 (𝜉)))

𝜇(𝜉)−𝛿

× (

1

ℓ!

𝑢
(ℓ−1)

(𝜎 (𝜉)))

𝛿

𝑑𝜉 𝑑𝑠

≥

1

(𝑛 − ℓ)!

∫

𝑡

𝜎(−𝑘)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−𝛿

(𝜎 (𝜉))
𝛿+(ℓ−1)𝜇(𝜉)

𝑝 (𝜉)

× (

1

ℓ!

𝜌
(𝛼)

𝑘,ℓ,𝑡∗
(𝜎 (𝜉)))

𝜇(𝜉)−𝛿

×(

1

ℓ!

𝑢
(ℓ−1)

(𝜉))

𝛿

𝑑𝜉 𝑑𝑠

≥

1

(𝑛 − ℓ)!

∫

𝑡

𝜎(−𝑘)(𝑡∗)

(

𝑢
ℓ−1
(𝑠)

ℓ!

)

𝛿

× ∫

+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿

(𝜎 (𝜉))
𝛿+(ℓ−1)𝜇(𝜉)

𝑝 (𝜉)

× (

1

ℓ!

𝜌
(𝛼)

𝑘,ℓ,𝑡∗
(𝜎 (𝜉)))

𝜇(𝜉)−𝛿

𝑑𝜉 𝑑𝑠.

(63)

Thus, we obtain

(V (𝑡))𝛿 ≥
1

(ℓ! (𝑛 − ℓ)!)
𝛿

× (∫

𝑡

𝜎(−𝑘)(𝑡∗)

V𝛿 (𝑠) ∫
+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿

(𝜎 (𝜉))
𝛿+(ℓ−1)𝜇(𝜉)

× 𝑝 (𝜉) (

1

ℓ!

𝜌
(𝛼)

𝑘,ℓ,𝑡∗
(𝜎 (𝜉)))

𝜇(𝜉)−𝛿

𝑑𝜉 𝑑𝑠)

𝛿

,

(64)

where V(𝑡) = (1/ℓ!)𝑢(ℓ−1)(𝑡).
It is obvious that there exist 𝑡1 > 𝜎(−𝑘)(𝑡∗) such that

∫

𝑡

𝜎(−𝑘)(𝑡∗)

V𝛿 (𝑠) ∫
+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿

(𝜎 (𝜉))
𝛿+(ℓ−1)𝜇(𝜉)

𝑝 (𝜉)

× (

1

ℓ!

𝜌
(𝛼)

𝑘,ℓ,𝑡∗
(𝜎 (𝜉)))

𝜇(𝜉)−𝛿

𝑑𝜉 𝑑𝑠 > 0

for 𝑡 ≥ 𝑡1.
(65)

Therefore, from (64)

∫

𝑡

𝑡1

𝜑
󸀠
(𝑠)

(𝜑 (𝑠))
𝛿
𝑑𝑠

≥

1

(ℓ! (𝑛 − ℓ)!)
𝛿

× ∫

𝑡

𝑡1

∫

+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿

(𝜎 (𝜉))
𝛿+(ℓ−1)𝜇(𝜉)

× 𝑝 (𝜉) (

1

ℓ!

𝜌
(𝛼)

𝑘,ℓ,𝑡∗
(𝜎 (𝜉)))

𝜇(𝜉)−𝛿

𝑑𝜉 𝑑𝑠,

(66)

where

𝜑 (𝑡)

= ∫

𝑡

𝜎(−𝑘)(𝑡∗)

(V (𝑠))𝛿 ∫
+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿

(𝜎 (𝜉))
𝛿+(ℓ−1)𝜇(𝜉)

× 𝑝 (𝜉) (

1

ℓ!

𝜌
(𝛼)

𝑘,ℓ,𝑡∗
(𝜎 (𝜉)))

𝜇(𝜉)−𝛿

𝑑𝜉 𝑑𝑠.

(67)

From the last inequality we get

∫

𝑡

𝑡1

∫

+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿

(𝜎 (𝜉))
𝛿+(ℓ−1)𝜇(𝜉)

𝑝 (𝜉)

× (

1

ℓ!

𝜌
(𝛼)

𝑘,ℓ,𝑡∗
(𝜎 (𝜉)))

𝜇(𝜉)−𝛿

𝑑𝜉 𝑑𝑠

≤

(ℓ! (𝑛 − ℓ)!)
𝛿

𝛿 − 1

[𝜑
1−𝛿

(𝑡1) − 𝜑
1−𝛿

(𝑡)]

≤

(ℓ! (𝑛 − ℓ)!)
𝛿

𝛿 − 1

𝜑
1−𝛿

(𝑡1) for 𝑡 ≥ 𝑡1.

(68)

Passing to the limit in the latter inequality, we get

∫

+∞

𝑡1

∫

+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿

(𝜎 (𝜉))
𝛿+(ℓ−1)𝜇(𝜉)

𝑝 (𝜉)

× (

1

ℓ!

𝜌
(𝛼)

𝑘,ℓ,𝑡∗
(𝜎 (𝜉)))

𝜇(𝜉)−𝛿

𝑑𝜉 𝑑𝑠 < +∞;

(69)

that is, according to (62) and (69), (56) and (57) hold, which
proves the validity of the theorem.

Using Lemma 8 in a similar manner one can prove the
following.

Theorem11. Let ℓ ∈ {1, . . . , 𝑛−1}with ℓ+𝑛 be odd, let (2), (3),
(28ℓ), and (55ℓ) be fulfilled, and for some 𝑡0 ∈ 𝑅+, Uℓ,𝑡0 = 0.
Then there exists 𝑡∗ > 𝑡0 such that if 𝛽 = 1, for any 𝑘 ∈ 𝑁

lim sup
𝑡→+∞

1

𝑡

× ∫

𝑡

𝜎(−𝑘)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

× (𝜌
(1)

𝑘,ℓ,𝑡∗
(𝜎 (𝜉)))

𝜇(𝜉)
𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 = 0,

(70)
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and if 1 < 𝛽 < +∞, then for any 𝑘 ∈ 𝑁 and 𝛿 ∈ (1, 𝛽]

∫

+∞

𝜎(−𝑘)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿

(𝜎 (𝜉))
ℓ𝜇(𝜉)+𝛿−𝛽

× (𝜌
(𝛽)

𝑘,ℓ,𝑡∗
(𝜎 (𝜉)))

𝛽−𝛿

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 < +∞,

(71)

where 𝛽 is defined by the second equality of (26) and 𝜌 (𝛽)
𝑘,ℓ,𝑡∗

is
given by (51)–(53).

4. Sufficient Conditions for Nonexistence of
Solutions of the Type (20ℓ)

Theorem 12. Let 𝛽 < +∞, ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd,
let the conditions (2), (3), (28ℓ), and (55ℓ) be fulfilled, and if
𝛼 = 1, for any large 𝑡∗ ∈ 𝑅+ and for some 𝑘 ∈ 𝑁

lim sup
𝑡→+∞

1

𝑡

∫

𝑡

𝜎(−𝑘)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

× (

1

ℓ!

𝜌
(1)

𝑘,ℓ,𝑡∗
(𝜎 (𝜉)))

𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 > 0

(72ℓ)

or if 𝛼 > 1, for same 𝑘 ∈ 𝑁 and 𝛿 ∈ (1, 𝛼]

∫

+∞

𝜎(−𝑘)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿

(𝜎 (𝜉))
𝛿+(ℓ−1)𝜇(𝜉)

× (

1

ℓ!

𝜌
(𝛼)

𝑘,ℓ,𝑡∗
(𝜎 (𝜉)))

𝜇(𝜉)−𝛿

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 = +∞.

(73ℓ)

Then for any 𝑡0 ∈ 𝑅+ one has Uℓ,𝑡0 = 0, where 𝛼 and 𝛽 are
defined by (26) and 𝜌(𝛼)

𝑘,ℓ,𝑡∗
is given by (30)–(32).

Proof. Assume the contrary. Let there exist 𝑡0 ∈ 𝑅+ such
thatUℓ,𝑡0 ̸= 0 (seeDefinition 6).Then (1) has a proper solution
𝑢 : [𝑡0, +∞) → 𝑅 satisfying the condition (20ℓ). Since the
condition of Theorem 10 is fulfilled, there exists 𝑡∗ > 𝑡0 such
that if 𝛼 = 1 (if 𝛼 > 1), the condition (56) (the condition
(57)) holds, which contradicts (72ℓ) and (73ℓ). The obtained
contradiction proves the validity of the theorem.

Using Theorem 11 analogously we can prove the follow-
ing.

Theorem 13. Let ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd, let the
conditions (2), (3), (28ℓ), and (55ℓ) be fulfilled, and if 𝛽 = 1,
for any large 𝑡∗ ∈ 𝑅+ and for some 𝑘 ∈ 𝑁

lim sup
𝑡→+∞

1

𝑡

∫

𝑡

𝜎(−𝑘)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

× (

1

ℓ!

𝜌
(1)

𝑘,ℓ,𝑡∗
(𝜎 (𝜉)))

𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 > 0

(74ℓ)

or if 1 < 𝛽 < +∞ for same 𝑘 ∈ 𝑁 and 𝛿 ∈ (1, 𝛽]

∫

+∞

𝜎(−𝑘)(𝑡∗)

∫

+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿

(𝜎 (𝜉))
ℓ𝜇(𝜉)+𝛿−𝛽

× (𝜌
(𝛽)

𝑘,ℓ,𝑡∗
(𝜎 (𝜉)))

𝛽−𝛿

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 = +∞.

(75ℓ)

Then for any 𝑡0 ∈ 𝑅+ we have Uℓ,𝑡0 = 0, where 𝛽 is defined by
the second equality of (26) and 𝜌𝑘,ℓ,𝑡∗ is given by (51)–(53).

Corollary 14. Let ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd, let the
conditions (2), (3), and (55ℓ) be fulfilled, 𝛼 = 1, 𝛽 < +∞, and

lim sup
𝑡→+∞

1

𝑡

∫

𝑡

0

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 > 0. (76ℓ)

Then Uℓ,𝑡0 = 0 for any 𝑡0 ∈ 𝑅+.

Proof. Since

𝜌
(𝛼)

1,ℓ,𝑡 (𝜎 (𝑡∗)) ≥ ℓ! for 𝑡 ≥ 𝜎(−1) (𝑡∗) , (77)

it suffices to note that by (76ℓ) the conditions (72ℓ) and (28ℓ)
are fulfilled for 𝑘 = 1.

Corollary 15. Let ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd, let the
conditions (2) and (3) be fulfilled, 𝛼 = 1, 𝛽 < +∞, and

lim inf
𝑡→+∞

𝑡 ∫

+∞

𝑡

𝑠
𝑛−ℓ−2

(𝜎 (𝑠))
1+(ℓ−1)𝜇(𝑠)

𝑝 (𝑠) 𝑑𝑠 = 𝛾 > 0. (78ℓ)

If, moreover, for some 𝜀 ∈ (0, 𝛾)

lim sup
𝑡→+∞

1

𝑡

×∫

𝑡

0

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
𝜇(𝜉)(ℓ−1+((𝛾−𝜀)/(ℓ!(𝑛−ℓ)!)))

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠

> 0,

(79ℓ)

then for any 𝑡0 ∈ 𝑅+, Uℓ,𝑡0 = 0.

Proof. Clearly by virtue of (78ℓ) conditions (28ℓ) and (55ℓ)
are fulfilled. Let 𝜀 ∈ (0, 𝛾). According to (78ℓ) and (79ℓ) it is
obvious that, for large 𝑡, 𝜌(1)

1,ℓ,𝑡∗
(𝑡) ≥ ℓ!𝑡

(𝛾−𝜀)/(ℓ!(𝑛−ℓ)!).Therefore,
by (79ℓ), for 𝑘 = 1, (72ℓ) holds, which proves the validity of
the corollary.

Corollary 16. Let ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd, let the
conditions (2), (3), (28ℓ), and (55ℓ) be fulfilled, 𝛼 > 1, 𝛽 <

+∞, and for some 𝛿 ∈ (1, 𝛼]

∫

+∞

0

∫

+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿

(𝜎 (𝜉))
𝛿+(ℓ−1)𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 = +∞. (80ℓ)

Then for any 𝑡0 ∈ 𝑅+, Uℓ,𝑡0 = 0, where 𝛼 is defined by the
first condition of (3).
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Proof. By (80ℓ) and (77), for 𝑘 = 1, the condition (73ℓ) holds,
which proves the validity of the corollary.

Corollary 17. Let ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ+ 𝑛 odd and let the
conditions (2), (3), and (78ℓ) be fulfilled. Moreover, if 𝛼 > 1,
𝛽 < +∞, and there exists𝑚 ∈ 𝑁 such that

lim inf
𝑡→+∞

𝜎
𝑚
(𝑡)

𝑡

> 0, (81)

then for any 𝑡0 ∈ 𝑅+, Uℓ,𝑡0 = 0, where 𝛼 is defined by the first
condition of (3).

Proof. By (78ℓ) there exist 𝑐 > 0 and 𝑡1 ∈ 𝑅+ such that

𝑡 ∫

+∞

𝑡

𝜉
𝑛−ℓ−2

(𝜎 (𝜉))
1+(ℓ−1)𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 ≥ 𝑐 for 𝑡 ≥ 𝑡1. (82ℓ)

Let 𝛿 = (1 + 𝛼)/2 and𝑀 = 𝑚(1 + 𝛼)/𝑐(𝛼 − 𝛿). Then by (82ℓ)
and (30), for large 𝑡∗ > 𝑡1,

𝜌
(𝛼)

1,ℓ,𝑡∗
(𝑡) ≥ 𝑡

𝑀𝑐
𝑡 ≥ 𝑡∗. (83)

Therefore

(

𝜎 (𝑡)

𝑡

)

𝛿

(

1

ℓ!

𝜌
(𝛼)

1,ℓ,𝑡∗
(𝜎 (𝑡)))

𝜇(𝑡)−𝛿

≥ (

𝜎 (𝑡)

𝑡

)

𝛿

(

1

ℓ!

𝜎
𝑀𝑐
(𝑡))

𝛼−𝛿

=

1

(ℓ!)
𝛼−𝛿

(

(𝜎 (𝑡))
1+(𝑀𝑐(𝛼−𝛿)/𝛿)

𝑡

)

𝛿

>

1

(ℓ!)
𝛼−𝛿

(

(𝜎 (𝑡))
𝑚

𝑡

)

𝛿

.

(84)

Thus, by (81) and (78ℓ), it is obvious that (73ℓ) holds, which
proves the corollary.

Quite similarly one can prove the following.

Corollary 18. Let ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd, let the
conditions (2), (3), (28ℓ), and (55ℓ) be fulfilled, 𝛼 > 1, and
𝛽 < +∞. Moreover, if

lim inf
𝑡→+∞

𝑡 ln 𝑡 ∫
+∞

𝑡

𝜉
𝑛−ℓ−2

(𝜎 (𝜉))
1+(ℓ−1)𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 > 0 (85ℓ)

and for some 𝛿 ∈ (1, 𝛼] and𝑚 ∈ 𝑁

∫

+∞

0

∫

+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿

(𝜎 (𝜉))
𝛿+(ℓ−1)𝜇(𝜉)

(ln 𝜎 (𝜉))𝑚𝑑𝜉 𝑑𝑠 = +∞,

(86ℓ)

then for any 𝑡0 ∈ 𝑅+ one has Uℓ,𝑡0 = 0, where 𝛼 and 𝛽 are
defined by the condition of (26).

Corollary 19. Let ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 be odd, let the
conditions (2), (3), and (28ℓ) be fulfilled, 𝛼 > 1, and 𝛽 < +∞.
Moreover, let there exist 𝛾 ∈ (0, 1) and 𝑟 ∈ (0, 1] such that

lim inf
𝑡→+∞

𝑡
𝛾
∫

+∞

𝑡

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 > 0, (87ℓ)

lim inf
𝑡→+∞

𝜎 (𝑡)

𝑡
𝑟
> 0, (88)

and let at least one of the conditions

𝑟𝛼 ≥ 1 (89)

or 𝑟𝛼 < 1 and for some 𝜀 > 0 and 𝛿 ∈ (1, 𝛼]

∫

+∞

0

∫

+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿+(𝛼𝑟(1−𝛾)/(1−𝛼𝑟))−𝜀

× (𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 = +∞

(90ℓ)

be fulfilled. Then for any 𝑡0 ∈ 𝑅+ one has Uℓ,𝑡0 = 0, where 𝛼 is
defined by (26).

Proof. It suffices to show that the condition (73ℓ) is satisfied
for some 𝑘 ∈ 𝑁 and 𝛿 = (1+𝛼)/2. Indeed, according to (87ℓ)
and (88), there exist 𝛾 ∈ (0, 1), 𝑟 ∈ (0, 1], 𝑐 > 0, and 𝑡1 ∈ 𝑅+
such that

𝑡
𝛾
∫

+∞

𝑡

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 > 𝑐 for 𝑡 ≥ 𝑡1, (91)

𝜎 (𝑡) ≥ 𝑐𝑡
𝑟 for 𝑡 ≥ 𝑡1. (92)

By (77), (31), and (91), from (31) we get

𝜌
(𝛼)

2,ℓ,𝑡∗
(𝑡)

≥

𝑐

(𝑛 − ℓ)!

∫

𝑡

𝜎(−1)(𝑡∗)

𝑠
−𝛾
𝑑𝑠

=

𝑐 (𝑡
1−𝛾

− 𝜎
1−𝛾

(−1)
(𝑡∗))

(𝑛 − ℓ)! (1 − 𝛾)

for 𝑡 ≥ 𝜎(−1) (𝑡∗) .

(93)

Let 𝛾1 ∈ (𝛾, 1). Choose 𝑡2 > 𝜎(−1)(𝑡∗) such that

𝜌
(𝛼)

2,ℓ,𝑡∗
(𝑡) ≥ 𝑡

1−𝛾1 for 𝑡 ≥ 𝑡2. (94)

Therefore, by (91) from (31) we can find 𝑡3 > 𝑡2 such that

𝜌
(𝛼)

3,ℓ,𝑡∗
(𝑡) ≥ 𝑡

(1−𝛾1)(1+𝛼𝑟) for 𝑡 ≥ 𝑡3. (95)

Hence for any 𝑘0 ∈ 𝑁 there exists 𝑡𝑘0 such that

𝜌
(𝛼)

𝑘0 ,ℓ,𝑡∗
(𝑡) ≥ 𝑡

(1−𝛾1)(1+𝛼𝑟+⋅⋅⋅+(𝛼𝑟)
𝑘𝛼−2) for 𝑡 ≥ 𝑡𝑘0 . (96)

Assume that (89) is fulfilled. Choose 𝑘0 ∈ 𝑁 such that
𝑘0 − 1 ≥ ((1 − 𝑟)(1 + 𝛼))/((1 − 𝛾1)(𝛼 − 1)). Then according
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to (92), (96), and (28ℓ), the condition (73ℓ) holds for 𝑘 = 𝑘0
and 𝛿 = (1 + 𝛼)/2. In this case, the validity of the corollary
has already been proven.

Assume now that (90ℓ) is fulfilled. Let 𝜀 > 0 and choose
𝑘0 ∈ 𝑁 and 𝛾1 ∈ (𝛾, 1) such that

(1 − 𝛾1) (1 + 𝛼𝑟 + ⋅ ⋅ ⋅ + (𝛼𝑟)
𝑘0−2

) >

(1 − 𝛾) 𝛼𝑟

1 − 𝛼𝑟

− 𝜀. (97)

Then according to (96), (92), and (90ℓ), it is obvious that (73ℓ)
holds for 𝑘 = 𝑘0. The proof of the corollary is complete.

Using Theorem 13, in a manner similar to above we can
prove the following.

Corollary 20. Let ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd, let the
conditions (2), (3), and (28ℓ) be fulfilled, 𝛽 = 1, and

lim sup
𝑡→+∞

1

𝑡

∫

𝑡

0

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 > 0. (98ℓ)

Then for any 𝑡0 ∈ 𝑅+, Uℓ,𝑡0 = 0, where 𝛽 is given by (26).

Corollary 21. Let ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd, let the
conditions (2), (3), and (28ℓ) be fulfilled, 𝛽 = 1, and

lim inf
𝑡→+∞

𝑡 ∫

+∞

𝑡

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
(ℓ−1)𝜇(𝜉)

𝑝 (𝜉) 𝑑𝜉 = 𝛾 > 0. (99ℓ)

Moreover, let for some 𝜀 ∈ (0, 𝛾)

lim sup
𝑡→+∞

1

𝑡

∫

𝑡

0

∫

+∞

𝑠

𝜉
𝑛−ℓ−1

(𝜎 (𝜉))
𝜇(𝜉)(ℓ−1+((𝛾−𝜀)/ℓ!(𝑛−ℓ)!))

× 𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 > 0.

(100ℓ)

Then for any 𝑡0 ∈ 𝑅+ one has Uℓ,𝑡0 = 0, where 𝛽 is given by
(26).

Corollary 22. Let ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd, let the
conditions (2), (3), (28ℓ), and (55ℓ) be fulfilled, 1 < 𝛽 < +∞,
and for some 𝛿 ∈ (1, 𝛽]

∫

+∞

0

∫

+∞

𝑠

𝜉
𝑛−ℓ−1−𝛿

(𝜎 (𝜉))
ℓ𝜇(𝜉)+𝛿−𝛽

𝑝 (𝜉) 𝑑𝜉 𝑑𝑠 = +∞.

(101ℓ)

Then for any 𝑡0 ∈ 𝑅+, Uℓ,𝑡0 = 0.

5. Differential Equation with Property A

Theorem 23. Let the conditions (2), (3) be fulfilled and for
any ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd, the conditions (74ℓ)
and (75ℓ) hold. Moreover for any large 𝑡∗ ∈ 𝑅+, if 𝛼 = 1 and
𝛽 < +∞ for some 𝑘 ∈ 𝑁 let (72ℓ) be fulfilled or if 𝛼 > 1 and
𝛽 < +∞, for some 𝑘 ∈ 𝑁, 𝑀 ∈ (1, +∞), and 𝛿 ∈ (1, 𝛼],
let (72ℓ) be fulfilled. Then, if for odd 𝑛

∫

+∞

0

𝑡
𝑛−1
𝑝 (𝑡) 𝑑𝑡 = +∞, (102)

then (1) has PropertyA, where 𝛼 and 𝛽 are defined by (26) and
𝜌
(𝛼)

𝑘,ℓ,𝑡∗
is given by (30)–(32).

Proof. Let (1) have a proper nonoscillatory solution 𝑢 :

[𝑡0, +∞) → (0, +∞) (the case 𝑢(𝑡) < 0 is similar). Then
by (2), (3), and Lemma 3 there exists ℓ ∈ {0, . . . , 𝑛 − 1} such
that ℓ+𝑛 is odd and conditions (20ℓ) hold. Since, for any ℓ ∈
{1, . . . , 𝑛−1}with ℓ+𝑛 odd, the conditions ofTheorem 12 are
fulfilled we have ℓ ∉ {1, . . . , 𝑛 − 1}. Now assume that ℓ = 0,
𝑛 is odd, and there exists 𝑐 ∈ (0, 1) such that 𝑢(𝑡) ≥ 𝑐 for
sufficiently large 𝑡. According to (200) since 𝛽 < +∞, from
(1) we have

𝑛−1

∑

𝑖=0

(𝑛 − 𝑖 − 1)!𝑡
𝑖

1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
(𝑖)
(𝑡1)

󵄨
󵄨
󵄨
󵄨
󵄨

≥ ∫

𝑡

𝑡1

𝑠
𝑛−1
𝑝 (𝑠) 𝑐

𝜇(𝑠)
𝑑𝑠

≥ 𝑐
𝛽
∫

𝑡

𝑡1

𝑠
𝑛−1
𝑝 (𝑠) 𝑑𝑠 for 𝑡 ≥ 𝑡1,

(103)

where 𝑡1 is a sufficiently large number. The last inequality
contradicts the condition (102). The obtained contradiction
proves that (1) has Property A.

Theorem 24. Let the conditions (2), (3) be fulfilled and for
any ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd the conditions (28ℓ) and
(55ℓ) hold. Let moreover, if 𝛽 = 1, for some 𝑘 ∈ 𝑁 (74ℓ) hold
or if 1 < 𝛽 < +∞ and for some 𝑘 ∈ 𝑁,𝑀 ∈ (1, +∞), and
𝛿 ∈ (1, 𝛽], (75ℓ) hold. Then, if for odd 𝑛 (102) is fulfilled, then
(1) has PropertyA, where 𝛽 is defined by the second equality of
(26) and 𝜌 (𝛽)

𝑘,ℓ,𝑡∗
is given by (51)–(53).

Proof. The proof of the theorem is analogous to that
of Theorem 23. We simply use Theorem 13 instead of
Theorem 12.

Theorem 25. Let 𝛼 > 1, 𝛽 < +∞, let the conditions (2), (3),
(281), and (551) be fulfilled, and

lim inf
𝑡→+∞

(𝜎 (𝑡))
𝜇(𝑡)

𝑡

> 0. (104)

If, moreover, for some 𝑘 ∈ 𝑁,𝑀 ∈ (1, +∞), and 𝛿 ∈ (1, 𝛼],
(731) holds and for odd n (102) is fulfilled, then (1) has Property
A, where 𝛼 and 𝛽 are defined by (26) and 𝜌(𝛼)

𝑘,1,𝑡∗
is given by

(30)–(32).

Proof. It suffices to note that by (104) and (721), for any ℓ ∈
{2, . . . , 𝑛 − 1} there exist𝑀 > 1, 𝑘 ∈ 𝑁, and 𝛿 ∈ (1, 𝛼) such
that condition (72ℓ) is fulfilled.

Theorem 26. Let 1 < 𝛽 < +∞, and conditions (2), (3), (281),
(29), and (104) be fulfilled. If, moreover, for some 𝑘 ∈ 𝑁,
𝑀 ∈ (1, +∞), and 𝛿 ∈ (1, 𝛽], (751) holds and for odd n (102)
is fulfilled, then (1) has Property A, where 𝛽 is defined by the
second condition of (26) and 𝜌 (𝛽)

𝑘,1,𝑡∗
is given by (51)–(55).

Proof. The theorem is proved similarly to Theorem 25 if we
replace the condition (731) by the condition (751).
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Corollary 27. Let 𝛼 = 1, 𝛽 < +∞, and conditions (2), (3),
(281), (761), and (104) be fulfilled. Then (1) has Property A,
where 𝛼 and 𝛽 are given by (26).

Proof. By (281), (761), and (104), condition (102), and for
any ℓ ∈ {1, . . . , 𝑛 − 1} (76ℓ) holds. Now assume that (1) has
a proper nonoscillatory solution 𝑢 : [𝑡0, +∞) → (0, +∞).
Then, by (2), (3), and Lemma 3, there exists ℓ ∈ {0, . . . , 𝑛 − 1}
such that ℓ + 𝑛 is odd and the condition (20ℓ) holds. Since
for any ℓ ∈ {1, . . . , 𝑛 − 1} with ℓ + 𝑛 odd the conditions
of Corollary 14 are fulfilled, we have ℓ ∉ {1, . . . , 𝑛 − 1}.
Therefore 𝑛 is odd and ℓ = 0. According to (102) and (200)
it is obvious that the condition (5) holds. Therefore, (1) has
Property A.

Using Corollaries 15–19, the validity of Corollaries 28–32
can be proven similarly to Corollary 27.

Corollary 28. Let 𝛼 = 1, 𝛽 < +∞, and conditions (2), (3),
(781), (791), and (104) be fulfilled. Then (1) has Property A,
where 𝛼 and 𝛽 are given by (26).

Corollary 29. Let 𝛼 > 1, 𝛽 < +∞, conditions (2), (3), (104)
be fulfilled, and (801) for some 𝛿 ∈ (1, 𝛼] hold and if 𝑛 is odd,
condition (102) holds. Then (1) has Property A.

Corollary 30. Let 𝛼 > 1, 𝛽 < +∞, the conditions (2), (3),
(281), (781), (104) be fulfilled, and (81) for some𝑚 ∈ 𝑁 holds.
Then (1) has Property A.

Corollary 31. Let 𝛼 > 1, 𝛽 < +∞, the conditions (2), (3),
(281), (104), and (851) and for some 𝛿 ∈ (1, 𝛼] and 𝑚 ∈

𝑁 (861) be fulfilled. Then (1) has Property A, where 𝛼 and 𝛽
are given by (26).

Corollary 32. Let 𝛼 > 1, 𝛽 < +∞, and the conditions (2),
(3), (281), and (104) be fulfilled. Let moreover, there exist 𝛾 ∈
(0, 1) and 𝑟 ∈ (0, 1] such that (871) and (88) hold. Then either
condition (89) or condition (901) is sufficient for (1) to have
Property A.

Corollary 33. Let 𝛽 = 1 and the conditions (2), (3), (281),
(104), and (981) be fulfilled. Then (1) has Property A, where 𝛽
is defined by the second condition of (26).

Proof. By (281), (104), and (981), the condition (102), and for
any ℓ ∈ {1, . . . , 𝑛−1} (98ℓ) holds.Therefore, by Corollary 20,
for any 𝑡0 ∈ 𝑅+ and ℓ ∈ {1, . . . , 𝑛−1}with ℓ+𝑛 is oddUℓ,𝑡0 =
0. On the other hand, if 𝑛 is odd and ℓ = 0, according to (102)
it is obvious that the condition (5) holds, which proves that
(1) has Property A.

Using Corollaries 21 and 22, we can analogously prove the
following corollaries.

Corollary 34. Let 𝛽 = 1 and the conditions (2), (3), (104),
(991), and (1001) be fulfilled.Then (1) has PropertyA, where 𝛽
is given by (26).

Corollary 35. Let 1 < 𝛽 < +∞, the conditions (2), (3),
(104), (281), and (291) be fulfilled, and if 𝑛 is odd (102) holds.

Moreover, if for some 𝛿 ∈ (1, 𝛽) (1011) holds, then (1) has
Property A.

Theorem 36. Let 𝛼 > 1, 𝛽 < +∞, the conditions (2), (3),
(28𝑛−1), and (29𝑛−1) be fulfilled, and

lim sup
𝑡→+∞

(𝜎 (𝑡))
𝜇(𝑡)

𝑡

< +∞. (105)

Moreover, for some 𝑘 ∈ 𝑁,𝑀 ∈ (1, +∞), and 𝛿 ∈ (1, 𝛼], let
(73𝑛−1) be fulfilled.Then (1) has PropertyA, where 𝛼 and 𝛽 are
defined by (26).

Proof. It suffices to note that by (28𝑛−1), (29𝑛−1), (105), and
(73𝑛−1) there exist𝑀 > 1, 𝑘 ∈ 𝑁, and 𝛿 ∈ (1, 𝛼] such that
(28ℓ), (29ℓ), and (73ℓ) hold for any ℓ ∈ {1, . . . , 𝑛 − 2}.

Theorem 37. Let 1 < 𝛽 < +∞ and the conditions (2), (3),
(28𝑛−1), (29𝑛−1), and (105) be fulfilled, and for some 𝑘 ∈ 𝑁,
𝑀 ∈ (1, +∞), and 𝛿 ∈ (1, 𝛽], (75𝑛−1) holds. Then (1) has
Property A, where 𝛽 is given by the second condition of (26).

Proof. The proof is similar to that of Theorem 36 we replace
the condition (73𝑛−1) by the condition (75𝑛−1).

Corollary 38. Let 𝛼 = 1, 𝛽 < +∞, and the conditions (2), (3),
(28𝑛−1), (76𝑛−1), and (105) be fulfilled. Then (1) has Property
A, where 𝛼 and 𝛽 are given by (26).

Proof. By (28𝑛−1), (76𝑛−1), and (105), the condition (102), and
for any ℓ ∈ {1, . . ., 𝑛−1} the condition (76ℓ)holds; it is obvious
that (1) has Property A.

Using Corollaries 15–19, the validity of Corollaries 39–43
below can be proven similarly to Corollary 38.

Corollary 39. Let 𝛼 = 1, 𝛽 < +∞, and the conditions (2), (3),
(78𝑛−1), (79𝑛−1), and (105) be fulfilled. Then (1) has Property
A, where 𝛼 and 𝛽 are given by (26).

Corollary 40. Let 𝛼 > 1, 𝛽 < +∞, and the conditions (2), (3),
(105), and, for some 𝛿 ∈ (1, 𝛼], (80𝑛−1) be fulfilled.Then (1) has
Property A, where 𝛼 is given by (26).

Corollary 41. Let 𝛼 > 1, 𝛽 < +∞, and the conditions (2), (3),
(28𝑛−1), (78𝑛−1), (105), and for some 𝑚 ∈ 𝑁 (81) be fulfilled.
Then (1) has Property A, where 𝛼 and 𝛽 are given by (26).

Corollary 42. Let 𝛼 > 1, 𝛽 < +∞, and the conditions (2), (3),
(28𝑛−1), (85𝑛−1) and (105) be fulfilled and for some 𝛿 ∈ (1, 𝛼]
and 𝑚 ∈ 𝑁 (86𝑛−1) holds. Then (1) has Property A, where 𝛼
and 𝛽 are given by (26).

Corollary 43. Let 𝛼 > 1, 𝛽 < +∞, and the conditions (2),
(3), (28𝑛−1), and (105) be fulfilled. Let, moreover, there exist
𝛾 ∈ (0, 1) and 𝑟 ∈ (0, 1) such that (87𝑛−1) and (88) hold. Then
either condition (89) or condition (90𝑛−1) is sufficient for (1) to
have Property A.

Corollary 44. Let 𝛽 = 1 and the conditions (2), (3), (28𝑛−1),
(105), and (98𝑛−1) be fulfilled. Then (1) has Property A.
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Proof. By (28𝑛−1), (105), and (98𝑛−1), the conditions (102),
and for any ℓ ∈ {1, . . . , 𝑛 − 1} (98ℓ) holds. Therefore, by
Corollary 20, it is clear that (1) has Property A.

Using Corollaries 21 and 22, analogously we can prove
Corollaries 45 and 5.18.

Corollary 45. Let 𝛽 = 1 and the conditions (2), (3), (105),
(99𝑛−1), and (100𝑛−1) be fulfilled. Then (1) has Property A,
where 𝛽 is given by (26).

Corollary 46. Let 1 < 𝛽 < +∞ and the conditions (2), (3),
(105), and (29𝑛−1) be fulfilled. If for some 𝛿 ∈ (1, 𝛽], (101𝑛−1)
holds, then (1) has Property A.

6. Necessary and Sufficient Conditions

Theorem 47. Let 𝛼 > 1 and 𝛽 < +∞, let the conditions (2)
and (3) be fulfilled and

lim inf
𝑡→+∞

𝜎 (𝑡)

𝑡

> 0. (106)

Then the condition (102) is necessary and sufficient for (1) to
have Property A, where 𝛼 and 𝛽 are given by (26).

Proof. Necessity. Assume that (1) has Property A and

∫

+∞

0

𝑡
𝑛−1
𝑝 (𝑡) 𝑑𝑡 < +∞. (107)

Therefore, by Lemma 4.1 from [28], there exists 𝑐 ̸= 0 such that
(1) has a proper solution 𝑢 : [0, +∞) → 𝑅 satisfying the
condition lim𝑡→+∞𝑢(𝑡) = 𝑐. But this contradicts the fact that
(1) has Property A.
Sufficiency. By (106) and (102) it is obvious that the con-
dition (801) holds. Therefore the sufficiency follows from
Corollary 29.

Remark 48. InTheorem 47 the condition 𝛽 < +∞ cannot be
replaced by the condition 𝛽 = +∞. Indeed, let 𝑐 ∈ (0, 1/2),
𝛼 = 1/2𝑐, and

𝑝 (𝑡) =

𝑛!𝑡
lg
𝛼
𝑡

𝑡
1+𝑛
(1 + 𝑐𝑡)

lg
𝛼
𝑡

𝑡 ≥ 1. (108)

It is obvious that the condition (102) is fulfilled, but equation

𝑢
(𝑛)
(𝑡) + 𝑝 (𝑡) |𝑢 (𝑡)|

lg
𝛼
𝑡 sign 𝑢 (𝑡) = 0 (109)

has solution 𝑢(𝑡) = (1/𝑡 + 𝑐). Therefore, (109) does not have
Property A.
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